
MET User’s Guide
version 11.1.0-beta2

May 05, 2023

Contents

1 Overview of MET 3
1.1 Purpose and organization of the User’s Guide . 3
1.2 The Developmental Testbed Center (DTC) . 4
1.3 MET goals and design philosophy . 4
1.4 MET components . 5
1.5 Future development plans . 8
1.6 Code support . 9
1.7 Fortify and SonarQube . 9

2 MET Release Information 11
2.1 MET Release Notes . 11

2.1.1 MET Version 11.1.0-beta2 release notes (20230505) 11
2.1.2 MET Version 11.1.0-beta1 release notes (20230228) 12
2.1.3 MET Version 11.0.0 release notes (20221209) . 13

2.2 MET Upgrade Instructions . 17
2.2.1 MET Version 11.1.0 upgrade instructions . 17
2.2.2 MET Version 11.0.0 upgrade instructions . 18

3 Software Installation/Getting Started 19
3.1 Introduction . 19
3.2 Supported Architectures . 19
3.3 Programming Languages . 19
3.4 Required Compilers and Scripting Languages . 20
3.5 Required Libraries and Optional Utilities . 20
3.6 Installation of Required Libraries . 21
3.7 Installation of Optional Utilities . 22
3.8 MET Directory Structure . 23
3.9 Building the MET Package . 24

3.9.1 Get the MET source code . 24
3.9.2 Install the Required Libraries . 24
3.9.3 Set Environment Variables . 25
3.9.4 Configure and Execute the Build . 26
3.9.5 Make Targets . 28

3.10 Sample Test Cases . 28

i

4 MET Data I/O 31
4.1 Input data formats . 31

4.1.1 Requirements for CF Compliant NetCDF . 32
4.1.2 Performance with NetCDF input data . 34

4.2 Intermediate data formats . 34
4.3 Output data formats . 35
4.4 Data format summary . 36
4.5 Configuration File Details . 40

5 Configuration File Overview 41
5.1 Runtime Environment Variables . 44

5.1.1 User-Specified Environment Variables . 44
5.1.2 MET_AIRNOW_STATIONS . 45
5.1.3 MET_NDBC_STATIONS . 45
5.1.4 MET_BASE . 46
5.1.5 MET_OBS_ERROR_TABLE . 46
5.1.6 MET_GRIB_TABLES . 46
5.1.7 OMP_NUM_THREADS . 48

5.2 Settings common to multiple tools . 49
5.2.1 exit_on_warning . 49
5.2.2 nc_compression . 49
5.2.3 output_precision . 50
5.2.4 tmp_dir . 50
5.2.5 message_type_group_map . 50
5.2.6 message_type_map . 50
5.2.7 model . 51
5.2.8 desc . 51
5.2.9 obtype . 51
5.2.10 regrid . 52
5.2.11 fcst . 53
5.2.12 obs . 60
5.2.13 climo_mean . 63
5.2.14 climo_stdev . 64
5.2.15 climo_cdf . 64
5.2.16 climato_data . 65
5.2.17 mask_missing_flag . 66
5.2.18 obs_window . 66
5.2.19 mask . 66
5.2.20 ci_alpha . 68
5.2.21 boot . 68
5.2.22 interp . 69
5.2.23 land_mask . 71
5.2.24 topo_mask . 71
5.2.25 hira . 72
5.2.26 output_flag . 73
5.2.27 nc_pairs_flag . 74
5.2.28 nc_pairs_var_name . 74
5.2.29 nc_pairs_var_suffix . 75

ii

5.2.30 ps_plot_flag . 75
5.2.31 grid_weight_flag . 75
5.2.32 hss_ec_value . 76
5.2.33 rank_corr_flag . 76
5.2.34 duplicate_flag . 76
5.2.35 obs_summary . 76
5.2.36 obs_perc_value . 77
5.2.37 obs_quality_inc . 77
5.2.38 obs_quality_exc . 77
5.2.39 met_data_dir . 78
5.2.40 many_plots . 78
5.2.41 output_prefix . 78
5.2.42 version . 79
5.2.43 time_summary . 79

5.3 Settings specific to individual tools . 80
5.3.1 EnsembleStatConfig_default . 80

5.3.1.1 ens . 80
5.3.1.2 nbrhd_prob . 81
5.3.1.3 nmep_smooth . 81
5.3.1.4 fcst, obs . 82
5.3.1.5 nc_var_str . 83
5.3.1.6 obs_thresh . 83
5.3.1.7 skip_const . 83
5.3.1.8 obs_error . 83
5.3.1.9 ensemble_flag . 84
5.3.1.10 rng . 85

5.3.2 MODEAnalysisConfig_default . 85
5.3.3 MODEConfig_default . 90

5.3.3.1 quilt . 90
5.3.3.2 fcst, obs . 90
5.3.3.3 grid_res . 92
5.3.3.4 match_flag . 92
5.3.3.5 max_centroid_dist . 92
5.3.3.6 weight . 92
5.3.3.7 interest_function . 93
5.3.3.8 total_interest_thresh . 94
5.3.3.9 print_interest_thresh . 94
5.3.3.10 plot_valid_flag . 94
5.3.3.11 plot_gcarc_flag . 95
5.3.3.12 ct_stats_flag . 95
5.3.3.13 shift_right . 95

5.3.4 PB2NCConfig_default . 95
5.3.4.1 message_type . 96
5.3.4.2 station_id . 97
5.3.4.3 elevation_range . 97
5.3.4.4 pb_report_type . 97
5.3.4.5 in_report_type . 98
5.3.4.6 instrument_type . 98

iii

5.3.4.7 level_range . 98
5.3.4.8 level_category . 98
5.3.4.9 obs_bufr_var . 99
5.3.4.10 obs_bufr_map . 100
5.3.4.11 obs_prepbufr_map . 100
5.3.4.12 quality_mark_thresh . 101
5.3.4.13 event_stack_flag . 101

5.3.5 SeriesAnalysisConfig_default . 101
5.3.5.1 block_size . 101
5.3.5.2 vld_thresh . 101
5.3.5.3 output_stats . 101

5.3.6 STATAnalysisConfig_default . 102
5.3.6.1 jobs . 102

5.3.7 WaveletStatConfig_default . 110
5.3.7.1 grid_decomp_flag . 110
5.3.7.2 tile . 111
5.3.7.3 wavelet . 111
5.3.7.4 obs_raw_wvlt_object_plots . 112

5.3.8 WWMCARegridConfig_default . 112
5.3.8.1 to_grid . 112
5.3.8.2 NetCDF output information . 112
5.3.8.3 max_minutes (pixel age) . 112
5.3.8.4 swap_endian . 112
5.3.8.5 write_pixel_age . 113

6 Tropical Cyclone Configuration Options 115
6.1 Configuration settings common to multiple tools . 115

6.1.1 storm_id . 115
6.1.2 basin . 116
6.1.3 cyclone . 116
6.1.4 storm_name . 116
6.1.5 init_beg end inc exc . 117
6.1.6 valid_beg end inc exc . 117
6.1.7 init_hour . 118
6.1.8 lead_req . 118
6.1.9 version . 118

6.2 Settings specific to individual tools . 118
6.2.1 TCPairsConfig_default . 118

6.2.1.1 model . 118
6.2.1.2 init_mask, valid_mask . 119
6.2.1.3 check_dup . 119
6.2.1.4 interp12 . 120
6.2.1.5 consensus . 120
6.2.1.6 lag_time . 121
6.2.1.7 best . 121
6.2.1.8 anly_track . 122
6.2.1.9 match_points . 122
6.2.1.10 dland_file . 122

iv

6.2.1.11 watch_warn . 123
6.2.1.12 basin_map . 123

6.2.2 TCStatConfig_default . 124
6.2.2.1 amodel, bmodel . 124
6.2.2.2 init valid_hour lead req . 124
6.2.2.3 init_mask, valid_mask . 125
6.2.2.4 line_type . 125
6.2.2.5 track_watch_warn . 125
6.2.2.6 column_thresh_name_and_val . 126
6.2.2.7 column_str_name, column_str_val . 126
6.2.2.8 column_str_name val . 126
6.2.2.9 init_thresh_name, init_thresh_val . 127
6.2.2.10 init_str_name, init_str_val . 127
6.2.2.11 init_str_exc_name and _exc_val . 128
6.2.2.12 water_only . 128
6.2.2.13 rirw . 128
6.2.2.14 landfall beg end . 129
6.2.2.15 event_equal . 130
6.2.2.16 event_equal_lead . 130
6.2.2.17 out_int_mask . 130
6.2.2.18 out_valid_mask . 130
6.2.2.19 job . 131

6.2.3 TCGenConfig_default . 134
6.2.3.1 init_freq . 134
6.2.3.2 lead_window . 135
6.2.3.3 min_duration . 135
6.2.3.4 fcst_genesis . 135
6.2.3.5 best_genesis . 135
6.2.3.6 oper_genesis . 136
6.2.3.7 filter . 136
6.2.3.8 desc . 136
6.2.3.9 model . 136
6.2.3.10 init_beg, init_end . 136
6.2.3.11 valid_beg, valid_end . 137
6.2.3.12 lead . 137
6.2.3.13 vx_mask . 137
6.2.3.14 dland_thresh . 137
6.2.3.15 genesis_window . 137
6.2.3.16 genesis_radius . 137
6.2.3.17 ci_alpha . 138
6.2.3.18 output_flag . 138

7 Re-Formatting of Point Observations 139
7.1 PB2NC tool . 139

7.1.1 pb2nc usage . 139
7.1.1.1 Required arguments for pb2nc . 140
7.1.1.2 Optional arguments for pb2nc . 140

7.1.2 pb2nc configuration file . 141

v

7.1.3 pb2nc output . 146
7.2 ASCII2NC tool . 147

7.2.1 ascii2nc usage . 149
7.2.1.1 Required arguments for ascii2nc . 149
7.2.1.2 Optional arguments for ascii2nc . 149

7.2.2 ascii2nc configuration file . 150
7.2.3 ascii2nc output . 151

7.3 MADIS2NC tool . 151
7.3.1 madis2nc usage . 151

7.3.1.1 Required arguments for madis2nc . 152
7.3.1.2 Optional arguments for madis2nc . 152

7.3.2 madis2nc configuration file . 153
7.3.3 madis2nc output . 153

7.4 LIDAR2NC tool . 153
7.4.1 lidar2nc usage . 153

7.4.1.1 Required arguments for lidar2nc . 154
7.4.1.2 Optional arguments for lidar2nc . 154

7.4.2 lidar2nc output . 154
7.5 IODA2NC tool . 155

7.5.1 ioda2nc usage . 155
7.5.1.1 Required arguments for ioda2nc . 156
7.5.1.2 Optional arguments for ioda2nc . 156

7.5.2 ioda2nc configuration file . 157
7.5.3 ioda2nc output . 158

7.6 Point2Grid tool . 158
7.6.1 point2grid usage . 158

7.6.1.1 Required arguments for point2grid . 159
7.6.1.2 Optional arguments for point2grid . 159

7.6.2 point2grid output . 161
7.6.3 point2grid configuration file . 161

7.7 Point NetCDF to ASCII Python Utility . 162

8 Re-Formatting of Gridded Fields 163
8.1 Pcp-Combine tool . 163

8.1.1 pcp_combine usage . 164
8.1.1.1 Required arguments for the pcp_combine . 165
8.1.1.2 Optional arguments for pcp_combine . 165
8.1.1.3 Required arguments for the pcp_combine sum command 165
8.1.1.4 Optional arguments for pcp_combine sum command 166
8.1.1.5 Required arguments for the pcp_combine derive command 166
8.1.1.6 Input files for pcp_combine add, subtract, and derive commands 166

8.1.2 pcp_combine output . 168
8.2 Regrid-Data-Plane tool . 168

8.2.1 regrid_data_plane usage . 169
8.2.1.1 Required arguments for regrid_data_plane 169
8.2.1.2 Optional arguments for regrid_data_plane . 169

8.2.2 Automated regridding within tools . 170
8.3 Shift-Data-Plane tool . 170

vi

8.3.1 shift_data_plane usage . 171
8.3.1.1 Required arguments for shift_data_plane . 171
8.3.1.2 Optional arguments for shift_data_plane . 171

8.4 MODIS regrid tool . 172
8.4.1 modis_regrid usage . 172

8.4.1.1 Required arguments for modis_regrid . 173
8.4.1.2 Optional arguments for modis_regrid . 173

8.5 WWMCA Tool Documentation . 174
8.5.1 wwmca_plot usage . 175

8.5.1.1 Required arguments for wwmca_plot . 175
8.5.1.2 Optional arguments for wwmca_plot . 175

8.5.2 wwmca_regrid usage . 176
8.5.2.1 Required arguments for wwmca_regrid . 177
8.5.2.2 Optional arguments for wwmca_regrid . 177

8.5.3 wwmca_regrid configuration file . 177

9 Gen-Ens-Prod Tool 179
9.1 Introduction . 179
9.2 Scientific and statistical aspects . 179

9.2.1 Ensemble forecasts derived from a set of deterministic ensemble members 179
9.2.2 Climatology data . 180

9.3 Practical Information . 180
9.3.1 gen_ens_prod usage . 180
9.3.2 Required arguments gen_ens_prod . 181
9.3.3 Optional arguments for gen_ens_prod . 181
9.3.4 gen_ens_prod configuration file . 181
9.3.5 gen_ens_prod output . 186

10 Regional Verification using Spatial Masking 187
10.1 Gen-Vx-Mask tool . 187

10.1.1 gen_vx_mask usage . 187
10.1.1.1 Required arguments for gen_vx_mask . 188
10.1.1.2 Optional arguments for gen_vx_mask . 188

10.2 Feature-Relative Methods . 192

11 Point-Stat Tool 193
11.1 Introduction . 193
11.2 Scientific and statistical aspects . 193

11.2.1 Interpolation/matching methods . 193
11.2.2 HiRA framework . 197
11.2.3 SEEPS scores . 198
11.2.4 Statistical measures . 199

11.2.4.1 Measures for categorical variables . 199
11.2.4.2 Measures for continuous variables . 199
11.2.4.3 Measures for probabilistic forecasts and dichotomous outcomes 200
11.2.4.4 Measures for comparison against climatology 200

11.2.5 Statistical confidence intervals . 200
11.3 Practical information . 203

vii

11.3.1 point_stat usage . 203
11.3.1.1 Required arguments for point_stat . 203
11.3.1.2 Optional arguments for point_stat . 204

11.3.2 point_stat configuration file . 204
11.3.3 point_stat output . 208

12 Grid-Stat Tool 225
12.1 Introduction . 225
12.2 Scientific and statistical aspects . 225

12.2.1 Statistical measures . 225
12.2.1.1 Measures for categorical variables . 226
12.2.1.2 Measures for continuous variables . 226
12.2.1.3 Measures for probabilistic forecasts and dichotomous outcomes 226
12.2.1.4 Use of a climatology field for comparative verification 227
12.2.1.5 Use of analysis fields for verification . 227

12.2.2 Statistical confidence intervals . 227
12.2.3 Grid weighting . 227
12.2.4 Neighborhood methods . 227
12.2.5 SEEPS scores . 228
12.2.6 Fourier Decomposition . 228
12.2.7 Gradient Statistics . 229
12.2.8 Distance Maps . 229
12.2.9 𝛽 and 𝐺𝛽 . 232

12.3 Practical information . 234
12.3.1 grid_stat usage . 234

12.3.1.1 Required arguments for grid_stat . 234
12.3.1.2 Optional arguments for grid_stat . 235

12.3.2 grid_stat configuration file . 236
12.3.3 grid_stat output . 241

13 Ensemble-Stat Tool 249
13.1 Introduction . 249
13.2 Scientific and statistical aspects . 249

13.2.1 HiRA framework . 249
13.2.2 Ensemble statistics . 250
13.2.3 Climatology data . 251
13.2.4 Ensemble observation error . 252

13.3 Practical Information . 252
13.3.1 ensemble_stat usage . 253

13.3.1.1 Required arguments ensemble_stat . 253
13.3.1.2 Optional arguments for ensemble_stat . 253

13.3.2 ensemble_stat configuration file . 254
13.3.3 ensemble_stat output . 260

14 Wavelet-Stat Tool 267
14.1 Introduction . 267
14.2 Scientific and statistical aspects . 268

14.2.1 The method . 268

viii

14.2.2 The spatial domain constraints . 277
14.2.3 Aggregation of statistics on multiple cases . 278

14.3 Practical information . 278
14.3.1 wavelet_stat usage . 278

14.3.1.1 Required arguments for wavelet_stat . 279
14.3.1.2 Optional arguments for wavelet_stat . 279

14.3.2 wavelet_stat configuration file . 279
14.3.3 wavelet_stat output . 282

15 GSI Tools 287
15.1 GSID2MPR tool . 287

15.1.1 gsid2mpr usage . 288
15.1.1.1 Required arguments for gsid2mpr . 288
15.1.1.2 Optional arguments for gsid2mpr . 288

15.1.2 gsid2mpr output . 289
15.2 GSIDENS2ORANK tool . 291

15.2.1 gsidens2orank usage . 291
15.2.1.1 Required arguments for gsidens2orank . 291
15.2.1.2 Optional arguments for gsidens2orank . 291

15.2.2 gsidens2orank output . 292

16 Stat-Analysis Tool 295
16.1 Introduction . 295
16.2 Scientific and statistical aspects . 295

16.2.1 Filter STAT lines . 296
16.2.2 Summary statistics for columns . 296
16.2.3 Aggregated values from multiple STAT lines . 297
16.2.4 Aggregate STAT lines and produce aggregated statistics 297
16.2.5 Skill Score Index . 298
16.2.6 GO Index . 299
16.2.7 CBS Index . 300
16.2.8 Ramp Events . 300
16.2.9 Wind Direction Statistics . 300

16.3 Practical information . 301
16.3.1 stat_analysis usage . 301

16.3.1.1 Required arguments for stat_analysis . 302
16.3.1.2 Optional arguments for stat_analysis . 302

16.3.2 stat_analysis configuration file . 303
16.3.3 stat-analysis tool output . 311

16.3.3.1 Job: filter . 311
16.3.3.2 Job: summary . 311
16.3.3.3 Job: aggregate . 312
16.3.3.4 Job: aggregate_stat . 313
16.3.3.5 Job: ss_index, go_index, cbs_index . 313
16.3.3.6 Job: ramp . 314

17 Series-Analysis Tool 315
17.1 Introduction . 315

ix

17.2 Practical Information . 315
17.2.1 series_analysis usage . 316

17.2.1.1 Required arguments series_stat . 316
17.2.1.2 Optional arguments for series_analysis . 316

17.2.2 series_analysis output . 317
17.2.3 series_analysis configuration file . 318

18 Grid-Diag Tool 321
18.1 Introduction . 321
18.2 Practical information . 321

18.2.1 grid_diag usage . 321
18.2.1.1 Required arguments for grid_diag . 322
18.2.1.2 Optional arguments for grid_diag . 322

18.2.2 grid_diag configuration file . 322
18.2.3 grid_diag output file . 323

19 MODE Tool 325
19.1 Introduction . 325
19.2 Scientific and statistical aspects . 326

19.2.1 Resolving objects . 326
19.2.2 Attributes . 328
19.2.3 Fuzzy logic . 328
19.2.4 Summary statistics . 329
19.2.5 Multi-Variate MODE . 329

19.3 Practical information . 330
19.3.1 mode usage . 330

19.3.1.1 Required arguments for mode . 331
19.3.1.2 Optional arguments for mode . 331

19.3.2 mode configuration file . 332
19.3.3 mode output . 339

20 MODE-Analysis Tool 347
20.1 Introduction . 347
20.2 Scientific and statistical aspects . 347
20.3 Practical information . 348

20.3.1 mode_analysis usage . 348
20.3.1.1 Required arguments for mode_analysis: . 348
20.3.1.2 Optional arguments for mode_analysis . 349
20.3.1.3 Analysis options . 349
20.3.1.4 MODE Command Line Options . 349
20.3.1.5 Toggles . 349
20.3.1.6 Multiple-set string options . 350
20.3.1.7 Multiple-set integer options . 351
20.3.1.8 Integer max/min options . 351
20.3.1.9 Date/time max/min options . 352
20.3.1.10Floating-point max/min options . 353
20.3.1.11Miscellaneous options . 356

20.3.2 mode_analysis configuration file . 356

x

20.3.3 mode_analysis output . 356

21 MODE Time Domain Tool 357
21.1 Introduction . 357

21.1.1 Motivation . 357
21.2 Scientific and statistical aspects . 359

21.2.1 Attributes . 359
21.2.2 Convolution . 359
21.2.3 3D Single Attributes . 360
21.2.4 3D Pair Attributes . 362
21.2.5 2D Constant-Time Attributes . 363
21.2.6 Matching and Merging . 364

21.3 Practical information . 366
21.3.1 MTD input . 366
21.3.2 MTD usage . 366

21.3.2.1 Required arguments for mtd . 366
21.3.2.2 Optional arguments for mtd . 367

21.3.3 MTD configuration file . 367
21.3.4 mtd output . 370

22 MET-TC Overview 375
22.1 Introduction . 375
22.2 MET-TC components . 375
22.3 Input data format . 376
22.4 Output data format . 378

23 TC-Dland Tool 379
23.1 Introduction . 379
23.2 Input/output format . 379
23.3 Practical information . 380

23.3.1 tc_dland usage . 380
23.3.1.1 Required arguments for tc_dland . 380
23.3.1.2 Optional arguments for tc_dland . 380

24 TC-Pairs Tool 381
24.1 Introduction . 381
24.2 Scientific and statistical aspects . 381

24.2.1 TC Diagnostics . 381
24.3 Practical information . 383

24.3.1 tc_pairs usage . 383
24.3.1.1 Required arguments for tc_pairs . 383
24.3.1.2 Optional arguments for tc_pairs . 384

24.3.2 tc_pairs configuration file . 385
24.3.3 tc_pairs output . 391

25 TC-Stat Tool 397
25.1 Introduction . 397
25.2 Statistical aspects . 397

xi

25.2.1 Filter TCST lines . 397
25.2.2 Summary statistics for columns . 398

25.2.2.1 Frequency of Superior Performance . 398
25.2.2.2 Time-Series Independence . 398

25.2.3 Rapid Intensification/Weakening . 399
25.2.4 Probability of Rapid Intensification . 399

25.3 Practical information . 399
25.3.1 tc_stat usage . 399

25.3.1.1 Required arguments for tc_stat . 400
25.3.1.2 Optional arguments for tc_stat . 400
25.3.1.3 tc_stat configuration file . 401

25.3.2 tc_stat output . 406

26 TC-Gen Tool 409
26.1 Introduction . 409
26.2 Statistical aspects . 409
26.3 Practical information . 410

26.3.1 tc_gen usage . 410
26.3.1.1 Required arguments for tc_gen . 411
26.3.1.2 Optional arguments for tc_gen . 411
26.3.1.3 Scoring Logic . 412

26.3.2 tc_gen configuration file . 414
26.3.3 tc_gen output . 421

27 TC-RMW Tool 425
27.1 Introduction . 425
27.2 Practical information . 425

27.2.1 tc_rmw usage . 425
27.2.1.1 Required arguments for tc_rmw . 426
27.2.1.2 Optional arguments for tc_rmw . 426

27.2.2 tc_rmw configuration file . 426
27.2.3 tc_rmw output file . 428

28 RMW-Analysis Tool 429
28.1 Introduction . 429
28.2 Practical information . 429

28.2.1 rmw_analysis usage . 429
28.2.1.1 Required arguments for rmw_analysis . 430
28.2.1.2 Optional arguments for rmw_analysis . 430

28.2.2 rmw_analysis configuration file . 430
28.2.3 rmw_analysis output file . 431

29 Plotting and Graphics Support 433
29.1 Plotting Utilities . 433

29.1.1 plot_point_obs usage . 433
29.1.1.1 Required arguments for plot_point_obs . 434
29.1.1.2 Optional arguments for plot_point_obs . 434

29.1.2 plot_point_obs configuration file . 435

xii

29.1.3 plot_data_plane usage . 438
29.1.3.1 Required arguments for plot_data_plane . 438
29.1.3.2 Optional arguments for plot_data_plane . 438

29.1.4 plot_mode_field usage . 439
29.1.4.1 Required arguments for plot_mode_field . 439
29.1.4.2 Optional arguments for plot_mode_field . 439

29.2 Examples of plotting MET output . 441
29.2.1 Grid-Stat tool examples . 441
29.2.2 MODE tool examples . 441
29.2.3 TC-Stat tool example . 444

30 References 447

31 Appendix A FAQs & How do I . . . ? 455
31.1 Frequently Asked Questions . 455

31.1.1 File-IO . 455
31.1.1.1 Q. How do I improve the speed of MET tools using Gen-Vx-Mask? 455
31.1.1.2 Q. How do I use map_data? . 455
31.1.1.3 Q. How can I understand the number of matched pairs? 456
31.1.1.4 Q. What types of NetCDF files can MET read? 457
31.1.1.5 Q. How do I choose a time slice in a NetCDF file? 458
31.1.1.6 Q. How do I use the UNIX time conversion? 458
31.1.1.7 Q. Does MET use a fixed-width output format for its ASCII output files? . . . 459
31.1.1.8 Q. Do the ASCII output files created by MET use scientific notation? 459

31.1.2 Gen-Vx-Mask . 459
31.1.2.1 Q. I have a list of stations to use for verification. I also have a poly region

defined. If I specify both of these should the result be a union of them? . . . 459
31.1.2.2 Q. How do I define a masking region with a GFS file? 460

31.1.3 Grid-Stat . 461
31.1.3.1 Q. How do I define a complex masking region? 461
31.1.3.2 Q. How do I use neighborhood methods to compute fraction skill score? . . . 462
31.1.3.3 Q. Is an example of verifying forecast probabilities? 462
31.1.3.4 Q. What is an example of using Grid-Stat with regridding and masking turned

on? . 463
31.1.3.5 Q. How do I use one mask for the forecast field and a different mask for the

observation field? . 464
31.1.4 Pcp-Combine . 465

31.1.4.1 Q. How do I add and subtract with Pcp-Combine? 465
31.1.4.2 Q. How do I combine 12-hour accumulated precipitation from two different

initialization times? . 466
31.1.4.3 Q. How do I correct a precipitation time range? 467
31.1.4.4 Q. How do I use Pcp-Combine as a pass-through to simply reformat from

GRIB to NetCDF or to change output variable name? 468
31.1.4.5 Q. How do I use “-pcprx” to run a project faster? 468
31.1.4.6 Q. How do I enter the time format correctly? 469
31.1.4.7 Q. How do I use Pcp-Combine when my GRIB data doesn’t have the appro-

priate accumulation interval time range indicator? 469

xiii

31.1.4.8 Q. How do I use “-sum”, “-add”, and “-subtract“ to achieve the same accumu-
lation interval? . 470

31.1.4.9 Q. What is the difference between “-sum” vs. “-add”? 471
31.1.4.10Q. How do I select a specific GRIB record? . 472

31.1.5 Plot-Data-Plane . 472
31.1.5.1 Q. How do I inspect Gen-Vx-Mask output? . 472
31.1.5.2 Q. How do I specify the GRIB version? . 472
31.1.5.3 Q. How do I test the variable naming convention? (Record number example.) 473
31.1.5.4 Q. How do I compute and verify wind speed? 473

31.1.6 Stat-Analysis . 474
31.1.6.1 Q. How does ‘-aggregate_stat’ work? . 474
31.1.6.2 Q. What is the best way to average the FSS scores within several days or even

several months using ‘Aggregate to Average Scores’? 475
31.1.6.3 Q. How do I use ‘-by’ to capture unique entries? 475
31.1.6.4 Q. How do I use ‘-filter’ to refine my output? 476
31.1.6.5 Q. How do I use the “-by” flag to stratify results? 476
31.1.6.6 Q. How do I speed up run times? . 477

31.1.7 TC-Stat . 477
31.1.7.1 Q. How do I use the “-by” flag to stratify results? 477
31.1.7.2 Q. How do I use rapid intensification verification? 478

31.1.8 Utilities . 478
31.1.8.1 Q. What would be an example of scripting to call MET? 478
31.1.8.2 Q. How do I convert TRMM data files? . 479
31.1.8.3 Q. How do I convert a PostScript to png? . 480
31.1.8.4 Q. How does pairwise differences using plot_tcmpr.R work? 480

31.1.9 Miscellaneous . 481
31.1.9.1 Q. Regrid-Data-Plane - How do I define a LatLon grid? 481
31.1.9.2 Q. Pre-processing - How do I use wgrib2, pcp_combine regrid and reformat

to format NetCDF files? . 481
31.1.9.3 Q. TC-Pairs - How do I get rid of WARNING: TrackInfo Using Specify Model

Suffix? . 482
31.1.9.4 Q. Why is the grid upside down? . 483
31.1.9.5 Q. Why was the MET written largely in C++ instead of FORTRAN? 484
31.1.9.6 Q. How does MET differ from the previously mentioned existing verification

packages? . 484
31.1.9.7 Q. Will the MET work on data in native model coordinates? 484
31.1.9.8 Q. How do I get help if my questions are not answered in the User’s Guide? . 484
31.1.9.9 Q. What graphical features does MET provide? 485
31.1.9.10Q. How do I find the version of the tool I am using? 485
31.1.9.11Q. What are MET’s conventions for latitude, longitude, azimuth and bearing

angles? . 485
31.2 Troubleshooting . 485

31.2.1 MET won’t compile . 486
31.2.2 BUFRLIB Errors during MET installation . 486
31.2.3 Command line double quotes . 486
31.2.4 Environment variable settings . 487
31.2.5 NetCDF install issues . 487
31.2.6 Error while loading shared libraries . 488

xiv

31.2.7 General troubleshooting . 488
31.3 Where to get help . 488
31.4 How to contribute code . 488

32 Appendix B Map Projections, Grids, and Polylines 489
32.1 Map Projections . 489
32.2 Grid Specification Strings . 489
32.3 Grids . 491
32.4 Polylines for NCEP Regions . 491

33 Appendix C Verification Measures 493
33.1 Which statistics are the same, but with different names? . 493
33.2 MET verification measures for categorical (dichotomous) variables 494

33.2.1 TOTAL . 495
33.2.2 Base rate . 495
33.2.3 Mean forecast . 495
33.2.4 Accuracy . 495
33.2.5 Frequency Bias . 495
33.2.6 H_RATE . 496
33.2.7 Probability of Detection (POD) . 496
33.2.8 Probability of False Detection (POFD) . 496
33.2.9 Probability of Detection of the non-event (PODn) . 496
33.2.10 False Alarm Ratio (FAR) . 497
33.2.11 Critical Success Index (CSI) . 497
33.2.12 Gilbert Skill Score (GSS) . 497
33.2.13 Hanssen-Kuipers Discriminant (HK) . 497
33.2.14 Heidke Skill Score (HSS) . 498
33.2.15 Heidke Skill Score - Expected Correct (HSS_EC) . 498
33.2.16 Odds Ratio (OR) . 498
33.2.17 Logarithm of the Odds Ratio (LODDS) . 499
33.2.18 Odds Ratio Skill Score (ORSS) . 499
33.2.19 Extreme Dependency Score (EDS) . 499
33.2.20 Extreme Dependency Index (EDI) . 499
33.2.21 Symmetric Extreme Dependency Score (SEDS) . 500
33.2.22 Symmetric Extremal Dependency Index (SEDI) . 500
33.2.23 Bias-Adjusted Gilbert Skill Score (BAGSS) . 500
33.2.24 Economic Cost Loss Relative Value (ECLV) . 500
33.2.25 Stable Equitable Error in Probability Space (SEEPS) 501

33.3 MET verification measures for continuous variables . 501
33.3.1 Mean forecast . 502
33.3.2 Mean observation . 502
33.3.3 Forecast standard deviation . 502
33.3.4 Observation standard deviation . 502
33.3.5 Pearson Correlation Coefficient . 502
33.3.6 Spearman rank correlation coefficient (𝜌𝑠) . 503
33.3.7 Kendall’s Tau statistic (𝜏) . 503
33.3.8 Mean Error (ME) . 504
33.3.9 Mean Error Squared (ME2) . 504

xv

33.3.10 Multiplicative Bias . 504
33.3.11 Mean-squared error (MSE) . 504
33.3.12 Root-mean-squared error (RMSE) . 504
33.3.13 Scatter Index (SI) . 505
33.3.14 Standard deviation of the error . 505
33.3.15 Bias-Corrected MSE . 505
33.3.16 Mean Absolute Error (MAE) . 505
33.3.17 InterQuartile Range of the Errors (IQR) . 505
33.3.18 Median Absolute Deviation (MAD) . 506
33.3.19 Mean Squared Error Skill Score . 506
33.3.20 Root-mean-squared Forecast Anomaly . 506
33.3.21 Root-mean-squared Observation Anomaly . 506
33.3.22 Percentiles of the errors . 506
33.3.23 Anomaly Correlation Coefficient . 507
33.3.24 Partial Sums lines (SL1L2, SAL1L2, VL1L2, VAL1L2) 507
33.3.25 Scalar L1 and L2 values . 508
33.3.26 Scalar anomaly L1 and L2 values . 508
33.3.27 Vector L1 and L2 values . 509
33.3.28 Vector anomaly L1 and L2 values . 509
33.3.29 Gradient values . 510

33.4 MET verification measures for probabilistic forecasts . 511
33.4.1 Reliability . 512
33.4.2 Resolution . 512
33.4.3 Uncertainty . 512
33.4.4 Brier score . 512
33.4.5 Brier Skill Score (BSS) . 513
33.4.6 OY_TP - Observed Yes Total Proportion . 513
33.4.7 ON_TP - Observed No Total Proportion . 513
33.4.8 Calibration . 514
33.4.9 Refinement . 514
33.4.10 Likelihood . 514
33.4.11 Base Rate . 515
33.4.12 Reliability diagram . 515
33.4.13 Receiver operating characteristic . 516
33.4.14 Area Under the ROC curve (AUC) . 518

33.5 MET verification measures for ensemble forecasts . 518
33.5.1 RPS . 518
33.5.2 CRPS . 519
33.5.3 Ensemble Mean Absolute Difference . 520
33.5.4 CRPS Skill Score . 520
33.5.5 Bias Ratio . 520
33.5.6 IGN . 521
33.5.7 PIT . 521
33.5.8 RANK . 521
33.5.9 SPREAD . 522

33.6 MET verification measures for neighborhood methods . 522
33.6.1 Fractions Brier Score . 523
33.6.2 Fractions Skill Score . 523

xvi

33.6.3 Asymptotic Fractions Skill Score . 523
33.6.4 Uniform Fractions Skill Score . 523
33.6.5 Forecast Rate . 524
33.6.6 Observation Rate . 524

33.7 MET verification measures for distance map methods . 524
33.7.1 Baddeley’s ∆ Metric and Hausdorff Distance . 525
33.7.2 Mean-error Distance . 525
33.7.3 Pratt’s Figure of Merit . 526
33.7.4 Zhu’s Measure . 526
33.7.5 𝐺 and 𝐺𝛽 . 527

33.8 Calculating Percentiles . 527

34 Appendix D Confidence Intervals 529

35 Appendix E WWMCA Tools 533

36 Appendix F Python Embedding 537
36.1 Introduction . 537
36.2 Compiling MET for Python Embedding . 537
36.3 Controlling Which Python MET Uses When Running . 538
36.4 Data Structures Supported by Python Embedding . 539

36.4.1 Python Embedding for 2D Gridded Dataplanes . 539
36.4.1.1 Python Script Requirements for 2D Gridded Dataplanes 540
36.4.1.2 Required Attributes for 2D Gridded Dataplanes 540
36.4.1.3 Running Python Embedding for 2D Gridded Dataplanes 543
36.4.1.4 Special Case for Ensemble-Stat, Series-Analysis, and MTD 544
36.4.1.5 Examples of Python Embedding for 2D Gridded Dataplanes 546

36.4.2 Python Embedding for Point Observations . 547
36.4.2.1 Python Script Requirements for Point Observations 547
36.4.2.2 Running Python Embedding for Point Observations 548
36.4.2.3 Examples of Python Embedding for Point Observations 549

36.4.3 Python Embedding for MPR Data . 549
36.4.3.1 Python Script Requirements for MPR Data . 550
36.4.3.2 Running Python Embedding for MPR Data . 550

36.5 MET Python Package . 551

37 Appendix G Vectors and Vector Statistics 553

xvii

xviii

MET User’s Guide, version 11.1.0-beta2

Foreword: A note to MET users

This User’s guide is provided as an aid to users of the Model Evaluation Tools (MET). MET is a set of
verification tools developed by the Developmental Testbed Center (DTC) for use by the numerical weather
prediction community to help them assess and evaluate the performance of numerical weather predictions.
It is also the core component of the unified METplus verification framework. More details about METplus
can be found on the METplus website.

It is important to note here that MET is an evolving software package. This documentation describes the
11.1.0-beta2 release dated 2023-05-05. Previous releases of MET have occurred each year since 2008.
Intermediate releases may include bug fixes. MET is also able to accept new modules contributed by the
community. If you have code you would like to contribute, we will gladly consider your contribution. Please
create a post in the METplus GitHub Discussions Forum. We will then determine the maturity of the new
verification method and coordinate the inclusion of the new module in a future version.

Model Evaluation Tools (MET) TERMS OF USE - IMPORTANT!

Copyright 2023, UCAR/NCAR, NOAA, CSU/CIRA, and CU/CIRES Licensed under the Apache License, Ver-
sion 2.0 (the “License”); You may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

Citations

The citation for this User’s Guide should be:

Jensen, T., J. Prestopnik, H. Soh, L. Goodrich, B. Brown, R. Bullock, J. Halley Gotway, K. Newman, J.
Opatz, 2023: The MET Version 11.1.0-beta2 User’s Guide. Developmental Testbed Center. Available at:
https://github.com/dtcenter/MET/releases

Acknowledgments

We thank the National Science Foundation (NSF) along with three organizations within the National Oceanic
and Atmospheric Administration (NOAA): 1) Office of Atmospheric Research (OAR); 2) Next Generation
Global Prediction System project (NGGPS); and 3) United State Weather Research Program (USWRP), the
United States Air Force (USAF), and the United States Department of Energy (DOE) for their support of this
work. Funding for the development of MET-TC is from the NOAA’s Hurricane Forecast Improvement Project
(HFIP) through the Developmental Testbed Center (DTC). Funding for the expansion of capability to address
many methods pertinent to global and climate simulations was provided by NOAA’s Next Generation Global
Prediction System (NGGPS) and NSF Earth System Model 2 (EaSM2) projects. We would like to thank
James Franklin at the National Hurricane Center (NHC) for his insight into the original development of the
existing NHC verification software. Thanks also go to the staff at the Developmental Testbed Center for their
help, advice, and many types of support. We released METv1.0 in January 2008 and would not have made
a decade of cutting-edge verification support without those who participated in the original MET planning
workshops and the now dis-banded verification advisory group (Mike Baldwin, Matthew Sittel, Elizabeth
Ebert, Geoff DiMego, Chris Davis, and Jason Knievel).

Contents 1

http://dtcenter.org/community-code/metplus
https://github.com/dtcenter/METplus/discussions
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/dtcenter/MET/releases

MET User’s Guide, version 11.1.0-beta2

The National Center for Atmospheric Research (NCAR) is sponsored by NSF. The DTC is sponsored by the
National Oceanic and Atmospheric Administration (NOAA), the United States Air Force, and the National
Science Foundation (NSF). NCAR is sponsored by the National Science Foundation (NSF).

2 Contents

Chapter 1

Overview of MET

1.1 Purpose and organization of the User’s Guide

The goal of this User’s Guide is to provide basic information for users of the Model Evaluation Tools (MET)
to enable them to apply MET to their datasets and evaluation studies. MET was originally designed for
application to the post-processed output of the Weather Research and Forecasting (WRF) model. However,
MET may also be used for the evaluation of forecasts from other models or applications, including the
Unified Forecast System (UFS), and the System for Integrated Modeling of the Atmosphere (SIMA) if certain
file format definitions (described in this document) are followed.

The MET User’s Guide is organized as follows. Section 1 provides an overview of MET and its components.
Section 3 contains basic information about how to get started with MET - including system requirements,
required software (and how to obtain it), how to download MET, and information about compilers, libraries,
and how to build the code. Section 4 - Section 10 focuses on the data needed to run MET, including formats
for forecasts, observations, and output. These sections also document the reformatting and masking tools
available in MET. Section 11 - Section 15 focuses on the main statistics modules contained in MET, including
the Point-Stat, Grid-Stat, Ensemble-Stat, Wavelet-Stat and GSI Diagnostic Tools. These sections include
an introduction to the statistical verification methodologies utilized by the tools, followed by a section
containing practical information, such as how to set up configuration files and the format of the output.
Section 16 and Section 17 focus on the analysis modules, Stat-Analysis and Series-Analysis, which aggregate
the output statistics from the other tools across multiple cases. Section 19 - Section 21 describes a suite of
object-based tools, including MODE, MODE-Analysis, and MODE-TD. Section 22 - Section 28 describes tools
focused on tropical cyclones, including MET-TC Overview, TC-Dland, TC-Pairs, TC-Stat, TC-Gen, TC-RMW
and RMW-Analysis. Finally, Section 29 includes plotting tools included in the MET release for checking and
visualizing data, as well as some additional tools and information for plotting MET results. The appendices
provide further useful information, including answers to some typical questions (Appendix A, Section 31)
and links and information about map projections, grids, and polylines (Appendix B, Section 32). Appendix
C, Section 33 and Appendix D, Section 34 provide more information about the verification measures and
confidence intervals that are provided by MET. Sample code that can be used to perform analyses on the
output of MET and create particular types of plots of verification results is posted on the MET website). Note
that the MET development group also accepts contributed analysis and plotting scripts which may be posted
on the MET website for use by the community. It should be noted there are References (Section 30) in this
User’s Guide as well.

3

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://www.ufscommunity.org
https://wiki.ucar.edu/display/SIMA/
https://dtcenter.org/community-code/model-evaluation-tools-met

MET User’s Guide, version 11.1.0-beta2

The remainder of this section includes information about the context for MET development, as well as
information on the design principles used in developing MET. In addition, this section includes an overview
of the MET package and its specific modules.

1.2 The Developmental Testbed Center (DTC)

MET has been developed, and will be maintained and enhanced, by the Developmental Testbed Center
(DTC). The main goal of the DTC is to serve as a bridge between operations and research, to facilitate the
activities of these two important components of the numerical weather prediction (NWP) community. The
DTC provides an environment that is functionally equivalent to the operational environment in which the re-
search community can test model enhancements; the operational community benefits from DTC testing and
evaluation of models before new models are implemented operationally. MET serves both the research and
operational communities in this way - offering capabilities for researchers to test their own enhancements
to models and providing a capability for the DTC to evaluate the strengths and weaknesses of advances in
NWP prior to operational implementation.

The MET package is available to DTC staff, visitors, and collaborators, as well as both the US and Inter-
national modeling community, for testing and evaluation of new model capabilities, applications in new
environments, and so on. It is also the core component of the unified METplus verification framework.
METplus details can be found on the METplus webpage.

1.3 MET goals and design philosophy

The primary goal of MET development is to provide a state-of-the-art verification package to the NWP com-
munity. By “state-of-the-art” we mean that MET will incorporate newly developed and advanced verification
methodologies, including new methods for diagnostic and spatial verification and new techniques provided
by the verification and modeling communities. MET also utilizes and replicates the capabilities of existing
systems for verification of NWP forecasts. For example, the MET package replicates existing National Center
for Environmental Prediction (NCEP) operational verification capabilities (e.g., I/O, methods, statistics, data
types). MET development will take into account the needs of the NWP community - including operational
centers and the research and development community. Some of the MET capabilities include traditional
verification approaches for standard surface and upper air variables (e.g., Equitable Threat Score, Mean
Squared Error), confidence intervals for verification measures, and spatial forecast verification methods. In
the future, MET will include additional state-of-the-art and new methodologies.

The MET package has been designed to be modular and adaptable. For example, individual modules can
be applied without running the entire set of tools. New tools can easily be added to the MET package
due to this modular design. In addition, the tools can readily be incorporated into a larger “system” that
may include a database as well as more sophisticated input/output and user interfaces. Currently, the MET
package is a set of tools that can easily be applied by any user on their own computer platform. A suite of
Python scripts for low-level automation of verification workflows and plotting has been developed to assist
users with setting up their MET-based verification. It is called METplus and may be obtained on the METplus
GitHub repository.

The MET code and documentation is maintained by the DTC in Boulder, Colorado. The MET package is freely
available to the modeling, verification, and operational communities, including universities, governments,

4 Chapter 1. Overview of MET

http://www.dtcenter.org/
http://www.dtcenter.org/
http://dtcenter.org/community-code/metplus
https://github.com/dtcenter/METplus
https://github.com/dtcenter/METplus

MET User’s Guide, version 11.1.0-beta2

the private sector, and operational modeling and prediction centers.

1.4 MET components

The major components of the MET package are represented in Figure 1.1. The main stages represented are
input, reformatting, plotting, intermediate output, statistical analyses, and output and aggregation/analysis.
Each of these stages is described further in later sections. For example, the input and output formats are
discussed in Section 4 as well as in the sections associated with each of the statistics modules. MET input
files are represented on the far left.

The reformatting stage of MET consists of several tools which perform a variety of functions. The ASCII2NC,
PB2NC, MADIS2NC, LIDAR2NC, and IODA2NC tools read a variety of point observation input file formats
and, optionally, derive time summaries for each observing location. They all write to a common NetCDF
point observation file format which can be read by the other MET tools. The Point2Grid tool reads that com-
mon NetCDF point observation file format or observations provided via Python and interpolates the point
data onto a user-specified grid. The Regrid-Data-Plane, Shift-Data-Plane, MODIS-Regrid, and WWMCA-
Regrid tools read a variety of gridded input file formats and interpolate user-requested input fields to a
user-defined output grid. While the MET statistics tools can interpolate many input file formats in-memory
and on-the-fly, manually regridding upstream is sometimes useful. The Pcp-Combine tool adds, subtracts,
or derives fields across multiple time steps. It is often run to accumulate precipitation amounts into a
user-specified time interval - if a user would like to verify over a different time interval than is included in
their forecast or observational dataset. The Gen-Vx-Mask tool provides a variety of methods for creating
bitmapped masking areas. Those masks can then be used to efficiently limit verification to the interior of a
user-specified region in the downstream statistics tools. The Gen-Ens-Prod tool derives basic ensemble prod-
ucts (mean, spread, probabilities) from multiple gridded input ensemble members. The GSI tools reformat
binary GSI diagnostic data to be read by the Stat-Analysis tool.

1.4. MET components 5

MET User’s Guide, version 11.1.0-beta2

Figure 1.1: Basic representation of current MET structure and modules. Gray areas represent input and
output files. Dark green areas represent reformatting and pre-processing tools. Light green areas represent
plotting utilities. Blue areas represent statistical tools. Yellow areas represent aggregation and analysis tools.

Several optional plotting utilities are provided to assist users in checking their output from the data prepro-
cessing step. Plot-Point-Obs creates a postscript plot showing the locations of point observations. This can be
quite useful for assessing whether the latitude and longitude of observation stations was specified correctly.
Plot-Data-Plane produces a similar plot for gridded data. For users of the MODE object based verification
methods, the Plot-MODE-Field utility will create graphics of the MODE object output. Finally, WWMCA-Plot
produces a plot of the raw WWMCA data file.

The main statistical analysis components of the current version of MET are: Point-Stat, Grid-Stat, Series-
Analysis, Ensemble-Stat, MODE, MODE-TD (MTD), Grid-Diag, and Wavelet-Stat. The Point-Stat tool is
used for grid-to-point verification, or verification of a gridded forecast field against point observations (i.e.,
surface observing stations, ACARS, rawinsondes, and other observation types that could be described as
a point observation). The point observations are read from the common NetCDF point observation file
format or are supplied via Python. In addition to providing traditional forecast verification scores for both
continuous and categorical variables, confidence intervals are also produced using parametric and non-

6 Chapter 1. Overview of MET

MET User’s Guide, version 11.1.0-beta2

parametric methods. Confidence intervals take into account the uncertainty associated with verification
statistics due to sampling variability and limitations in sample size. These intervals provide more meaningful
information about forecast performance. For example, confidence intervals allow credible comparisons of
performance between two models when a limited number of model runs is available.

Sometimes it may be useful to verify a forecast against gridded fields (e.g., Stage IV precipitation analyses).
The Grid-Stat tool produces traditional verification statistics when a gridded field is used as the observational
dataset. Like the Point-Stat tool, the Grid-Stat tool also produces confidence intervals. The Grid-Stat tool
also includes “neighborhood” spatial methods, such as the Fractional Skill Score (Roberts and Lean, 2008
(page 452)). These methods are discussed in Ebert (2008) (page 449). The Grid-Stat tool accumulates
statistics over the entire domain.

Users wishing to accumulate statistics over a time, height, or other series separately for each grid location
should use the Series-Analysis tool. Series-Analysis can read any gridded matched pair data produced by the
other MET tools and accumulate them, keeping each spatial location separate. Maps of these statistics can
be useful for diagnosing spatial differences in forecast quality.

Ensemble-Stat compares ensemble member data to gridded analyses and/or point observations and com-
putes measures of ensemble characteristics. The ensemble characteristics include ensemble mean and spread
information, computation of rank and probability integral transform (PIT) histograms, the points for the re-
ceiver operator characteristic (ROC) and reliability diagrams, and ranked probabilities scores (RPS) and
the continuous version (CRPS). When categorical thresholds are specified, Ensemble-Stat derives ensemble
relative frequencies and verifies them as probability forecasts against the gridded analyses and/or point
observations provided. Note that the ensemble post-processing provided in prior versions of this tool has
moved to Gen-Ens-Prod.

The MODE (Method for Object-based Diagnostic Evaluation) tool also uses gridded fields as observational
datasets. However, unlike the Grid-Stat tool, which applies traditional forecast verification techniques,
MODE applies the object-based spatial verification technique described in Davis et al. (2006a,b) (page 448)
and Brown et al. (2007) (page 448). This technique was developed in response to the “double penalty”
problem in forecast verification. A forecast missed by even a small distance is effectively penalized twice by
standard categorical verification scores: once for missing the event and a second time for producing a false
alarm of the event elsewhere. As an alternative, MODE defines objects in both the forecast and observation
fields. The objects in the forecast and observation fields are then matched and compared to one another. Ap-
plying this technique also provides diagnostic verification information that is difficult or even impossible to
obtain using traditional verification measures. For example, the MODE tool can provide information about
errors in location, size, and intensity.

The MODE-TD tool extends object-based analysis from two-dimensional forecasts and observations to in-
clude the time dimension. In addition to the two dimensional information provided by MODE, MODE-TD
can be used to examine even more features including displacement in time, and duration and speed of
moving areas of interest.

The Grid-Diag tool produces multivariate probability density functions (PDFs) that may be used either for
exploring the relationship between two fields, or for the computation of percentiles generated from the
sample for use with percentile thresholding. The output from this tool requires post-processing by METplus
or user-provided utilities.

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations according to the Intensity-
Scale verification technique described by Casati et al. (2004) (page 448). There are many types of spa-
tial verification approaches and the Intensity-Scale technique belongs to the scale-decomposition (or scale-

1.4. MET components 7

MET User’s Guide, version 11.1.0-beta2

separation) verification approaches. The spatial scale components are obtained by applying a wavelet trans-
formation to the forecast and observation fields. The resulting scale-decomposition measures error, bias and
skill of the forecast on each spatial scale. Information is provided on the scale dependency of the error and
skill, on the no-skill to skill transition scale, and on the ability of the forecast to reproduce the observed scale
structure. The Wavelet-Stat tool is primarily used for precipitation fields. However, the tool can be applied
to other variables, such as cloud fraction.

Results from the statistical analysis stage are output in ASCII, NetCDF and Postscript formats. The Point-Stat,
Grid-Stat, Wavelet-Stat, and Ensemble-Stat tools create STAT (statistics) files which are tabular ASCII files
ending with a “.stat” suffix. The STAT output files consist of multiple line types, each containing a different
set of related statistics. The columns preceeding the LINE_TYPE column are common to all lines. However,
the number and contents of the remaining columns vary by line type.

The Stat-Analysis and MODE-Analysis tools aggregate the output statistics from the previous steps across
multiple cases. The Stat-Analysis tool reads the STAT output of Point-Stat, Grid-Stat, Ensemble-Stat, and
Wavelet-Stat and can be used to filter the STAT data and produce aggregated continuous and categorical
statistics. Stat-Analysis also reads matched pair data (i.e. MPR line type) via python embedding. The MODE-
Analysis tool reads the ASCII output of the MODE tool and can be used to produce summary information
about object location, size, and intensity (as well as other object characteristics) across one or more cases.

Tropical cyclone forecasts and observations are quite different than numerical model forecasts, and thus
they have their own set of tools. These consist of TC-Dland, TC-Pairs, TC-Stat, TC-Gen, TC-RMW, and
RMW-Analysis. The TC-Dland module calculates the distance to land from all locations on a specified grid.
This information can be used in later modules to eliminate tropical cyclones that are over land from being
included in the statistics. TC-Pairs matches up tropical cyclone forecasts and observations and writes all
output to a file. In TC-Stat, these forecast / observation pairs are analyzed according to user preference to
produce statistics. TC-Gen evaluates the performance of Tropical Cyclone genesis forecast using contingency
table counts and statistics. TC-RMW performs a coordinate transformation for gridded model or analysis
fields centered on the current storm location. RMW-Analysis filters and aggregates the output of TC-RMW
across multiple cases.

The following sections of this MET User’s Guide contain usage statements for each tool, which may be viewed
if you type the name of the tool. Alternatively, the user can also type the name of the tool followed by -help
to obtain the usage statement. Each tool also has a -version command line option associated with it so that
the user can determine what version of the tool they are using.

1.5 Future development plans

MET is an evolving verification software package. New capabilities are planned in controlled, successive
version releases. Bug fixes and user-identified problems will be addressed as they are found and posted to
the known issues section of the MET User Support web page. Plans are also in place to incorporate many
new capabilities and options in future releases of MET. Please refer to the issues listed in the MET GitHub
repository to see our development priorities for upcoming releases.

8 Chapter 1. Overview of MET

https://dtcenter.org/community-code/model-evaluation-tools-met/user-support
https://github.com/dtcenter/MET/issues
https://github.com/dtcenter/MET/issues

MET User’s Guide, version 11.1.0-beta2

1.6 Code support

MET support is provided through the METplus GitHub Discussions Forum. We will endeavor to respond to
requests for help in a timely fashion. In addition, information about MET and tools that can be used with
MET are provided on the MET web page.

We welcome comments and suggestions for improvements to MET, especially information regarding errors.
Comments may be submitted using the MET Feedback form available on the MET website. In addition,
comments on this document would be greatly appreciated. While we cannot promise to incorporate all
suggested changes, we will certainly take all suggestions into consideration.

-help and -version command line options are available for all of the MET tools. Typing the name of the tool
with no command line options also produces the usage statement.

The MET package is a “living” set of tools. Our goal is to continually enhance it and add to its capabilities.
Because our time, resources, and talents are limited, we welcome contributed code for future versions of
MET. These contributions may represent new verification methodologies, new analysis tools, or new plotting
functions. For more information on contributing code to MET, please create a post in the METplus GitHub
Discussions Forum.

1.7 Fortify and SonarQube

Requirements from various government agencies that use MET have resulted in our code being analyzed
by both the Fortify and SonarQube static source code analysis tools. Fortify and SonarQube analyze source
code to identify for security risks, memory leaks, uninitialized variables, and other such weaknesses and bad
coding practices. They categorize issue as low priority, high priority, or critical, and report these issues back
to the developers for them to address. The goal is to drive the counts of both high priority and critical issues
down to zero.

The MET developers are pleased to report that Fortify reports zero critical issues in the MET code. Users
of the MET tools who work in high security environments can rest assured about the possibility of security
risks when using MET, since the quality of the code has now been vetted by unbiased third-party experts.
The MET developers continue using Fortify routinely to ensure that the critical counts remain at zero and to
further reduce the counts for lower priority issues.

1.6. Code support 9

https://github.com/dtcenter/METplus/discussions
https://dtcenter.org/community-code/model-evaluation-tools-met
https://github.com/dtcenter/METplus/discussions
https://github.com/dtcenter/METplus/discussions

MET User’s Guide, version 11.1.0-beta2

10 Chapter 1. Overview of MET

Chapter 2

MET Release Information

2.1 MET Release Notes

When applicable, release notes are followed by the GitHub issue number which describes the bugfix, en-
hancement, or new feature (MET GitHub issues). Important issues are listed in bold for emphasis.

2.1.1 MET Version 11.1.0-beta2 release notes (20230505)

Note that the 11.1.0-beta2 release was originally created on 20230423 but was recreated on 20230428 and
20230505 to include critical bugfixes.

Documentation

• Improve documentation on Python Embedding for point observations (#2303).

• Create dropdown menus for Appendix A (#2460).

• Clarify MET Compile Time Python requirements (#2490).

Enhancements

• Enhance the MET point processing tools to read the Python ‘point_data’ variable instead of
just ‘met_point_data’ (#2285).

• SonarQube: Further reduce bugs for MET-11.1.0-beta2 (#2474).

• SonarQube: Replace all instances of NULL with nullptr (#2504).

• SonarQube: Remove code that will never be executed (#2506).

11

https://github.com/dtcenter/MET/issues
https://github.com/dtcenter/MET/issues/2303
https://github.com/dtcenter/MET/issues/2460
https://github.com/dtcenter/MET/issues/2490
https://github.com/dtcenter/MET/issues/2285
https://github.com/dtcenter/MET/issues/2474
https://github.com/dtcenter/MET/issues/2504
https://github.com/dtcenter/MET/issues/2506

MET User’s Guide, version 11.1.0-beta2

Bugfixes

• Bugfix: Correct the branch name for the SonarQube scanning nightly (#2401).

• Bugfix: Fix support for the YYYYMMDD format in NetCDF level timestrings (#2482).

• Bugfix: AERONET the lat/lon is not changed with different station ID (#2493).

• Bugfix: dtype in Python embedding example script and appendixF correction (#2518).

• Bugfix: write_tmp_dataplane uses fill_value unrecognized by MET (#2525).

• Bugfix: Resolve compilation problems due to need for -std=c++11 (#2531).

2.1.2 MET Version 11.1.0-beta1 release notes (20230228)

Repository, build, and test

• Add modulefiles for supported systems to the repository (#2415).

• Add LICENSE.md to the repository (#2461).

• Update the copyright year to 2023 and increase the version number to 11.1.0 (#2469).

Documentation

• Enhance the Release Notes by adding dropdown menus (#2146).

Enhancements

• Convert the python list to the numpy array for the python embedding at the base class
(#2386).

• Refine Python runtime environment (#2388).

• Upgrade to using Python 3.10.4 (#2421).

• Enhance TC-Pairs to disable the output of consensus track members (#2429).

Bugfixes

• Bugfix: Fix the MET CF-Compliant NetCDF library code to Polar Stereographic data from
NSIDC Sea Ice Edge NetCDF files (#2218).

• Bugfix: Remove override keyword to avoid C++11 dependency (#2380).

• Bugfix: Fix ASCII2NC to not compute AOD 550 if other inputs are negative values (#2383).

• Bugfix: Fix PB2NC to report accurate total observation counts in log messages (#2387).

• Bugfix: Update the MET flowchart for version 11.0.0 (#2389).

12 Chapter 2. MET Release Information

https://github.com/dtcenter/MET/issues/2401
https://github.com/dtcenter/MET/issues/2482
https://github.com/dtcenter/MET/issues/2493
https://github.com/dtcenter/MET/issues/2518
https://github.com/dtcenter/MET/issues/2525
https://github.com/dtcenter/MET/issues/2531
https://github.com/dtcenter/MET/issues/2415
https://github.com/dtcenter/MET/issues/2461
https://github.com/dtcenter/MET/issues/2469
https://github.com/dtcenter/MET/issues/2146
https://github.com/dtcenter/MET/issues/2386
https://github.com/dtcenter/MET/issues/2388
https://github.com/dtcenter/MET/issues/2421
https://github.com/dtcenter/MET/issues/2429
https://github.com/dtcenter/MET/issues/2218
https://github.com/dtcenter/MET/issues/2380
https://github.com/dtcenter/MET/issues/2383
https://github.com/dtcenter/MET/issues/2387
https://github.com/dtcenter/MET/issues/2389

MET User’s Guide, version 11.1.0-beta2

• Bugfix: Fix issues with the met_compile_all.sh script and associated tar files (#2390).

• Bugfix: Correct definitions of NCEP grid numbers 172 and 220 (#2399).

• Bugfix: Address MET-11.0.0 SonarQube Blocker Bugs (#2402).

• Bugfix: Refine fix for handling empty configuration files (#2408).

• Bugfix: Fix time interpolation of monthly climatology data between December 15 and Jan-
uary 15 (#2412).

• Bugfix: Fix ASCII2NC to handle missing NDBC buoy location information (#2426).

• Bugfix: Fix the MET vx_pointdata_python library to handle MET_PYTHON_EXE for python
embedding of point observations (#2428).

• Bugfix: Refine the regrid dictionary’s data conversion and censoring operations and fix climo
time matching logic for a single monthly climo file (#2437).

• Bugfix: Fix the creation of the MET User’s Guide PDF (#2449).

• Bugfix: Fix inconsistent ASCII2NC AIRNOW location lookup logic (#2452).

2.1.3 MET Version 11.0.0 release notes (20221209)

Repository, build, and test

• Restructure the contents of the MET repository so that it matches the existing release
tarfiles (#1920).

• Add initial files to create the MET compilation environment in the dtcenter/met-base
Docker image (dtcenter/METbaseimage#1).

• Restructure the MET Dockerfiles to create images based on the new METbaseimage
(#2196).

• Enhance METbaseimage to support NetCDF files using groups in the enhanced data model
(dtcenter/METbaseimage#6).

• Add .zenodo.json file to add metadata about releases (#2198).

• Update the SonarQube version used for routine software scans (#2270).

• Fix OpenMP compilation error for GCC 9.3.0/9.4.0 (#2106).

• Fix oom() compile time linker error (#2238).

• Fix MET-11.0.0-beta3 linker errors (#2281).

• Fix GHA documentation workflow (#2282).

• Fix GHA warnings and update the version of actions (i.e. actions/checkout@v3) (#2297).

2.1. MET Release Notes 13

https://github.com/dtcenter/MET/issues/2390
https://github.com/dtcenter/MET/issues/2399
https://github.com/dtcenter/MET/issues/2402
https://github.com/dtcenter/MET/issues/2408
https://github.com/dtcenter/MET/issues/2412
https://github.com/dtcenter/MET/issues/2426
https://github.com/dtcenter/MET/issues/2428
https://github.com/dtcenter/MET/issues/2437
https://github.com/dtcenter/MET/issues/2449
https://github.com/dtcenter/MET/issues/2452
https://github.com/dtcenter/MET/issues/1920
https://github.com/dtcenter/METbaseimage/issues/1
https://github.com/dtcenter/MET/issues/2196
https://github.com/dtcenter/METbaseimage/issues/6
https://github.com/dtcenter/MET/issues/2198
https://github.com/dtcenter/MET/issues/2270
https://github.com/dtcenter/MET/issues/2106
https://github.com/dtcenter/MET/issues/2238
https://github.com/dtcenter/MET/issues/2281
https://github.com/dtcenter/MET/issues/2282
mailto:actions/checkout@v3
https://github.com/dtcenter/MET/issues/2297

MET User’s Guide, version 11.1.0-beta2

Documentation

• Create outline for the MET Contributor’s Guide (#1774).

• Document PB2NC’s handling of quality markers (#2278).

• Move release notes into its own chapter in the User’s Guide (#2298).

Bugfixes

• Fix regression test differences in pb2nc and ioda2nc output (#2102).

• Fix support for reading rotated lat/lon grids from CF-compliant NetCDF files (#2115).

• Fix support for reading rotated lat/lon grids from GRIB1 files (grid type 10) (#2118).

• Fix support for int64 NetCDF variable types (#2123).

• Fix Stat-Analysis to aggregate the ECNT ME and RMSE values correctly (#2170).

• Fix NetCDF library code to process scale_factor and add_offset attributes independently
(#2187).

• Fix Ensemble-Stat to work with different missing members for two or more variables
(#2208).

• Fix truncated station_id name in the output from IODA2NC (#2216).

• Fix Stat-Analysis aggregation of the neighborhood statistics line types (#2271).

• Fix Point-Stat and Ensemble-Stat GRIB table lookup logic for python embedding of point
observations (#2286).

• Fix ascii2nc_airnow_hourly test in unit_ascii2nc.xml (#2306).

• Fix TC-Stat parsing of TCMPR lines (#2309).

• Fix ASCII2NC logic for reading AERONET v3 data (#2370).

Enhancements

NetCDF

• Enhance MET’s NetCDF library interface to support level strings that include coordi-
nate variable values instead of just indexes (#1815).

• Enhance MET to handle NC strings when processing CF-Compliant NetCDF files (#2042).

• Enhance MET to handle CF-compliant time strings with an offset defined in months or years
(#2155).

• Refine NetCDF level string handling logic to always interpret @ strings as values (#2225).

14 Chapter 2. MET Release Information

https://github.com/dtcenter/MET/issues/1774
https://github.com/dtcenter/MET/issues/2278
https://github.com/dtcenter/MET/issues/2298
https://github.com/dtcenter/MET/issues/2102
https://github.com/dtcenter/MET/issues/2115
https://github.com/dtcenter/MET/issues/2118
https://github.com/dtcenter/MET/issues/2123
https://github.com/dtcenter/MET/issues/2170
https://github.com/dtcenter/MET/issues/2187
https://github.com/dtcenter/MET/issues/2208
https://github.com/dtcenter/MET/issues/2216
https://github.com/dtcenter/MET/issues/2271
https://github.com/dtcenter/MET/issues/2286
https://github.com/dtcenter/MET/issues/2306
https://github.com/dtcenter/MET/issues/2309
https://github.com/dtcenter/MET/issues/2370
https://github.com/dtcenter/MET/issues/1815
https://github.com/dtcenter/MET/issues/2042
https://github.com/dtcenter/MET/issues/2155
https://github.com/dtcenter/MET/issues/2225

MET User’s Guide, version 11.1.0-beta2

GRIB

• Add support for reading National Blend Model GRIB2 data (#2055).

• Update the GRIB2 MRMS table in MET (#2081).

METplus-Internal

• MET: Replace fixed length character arrays with strings (dtcenter/METplus-Internal#14).

• MET: Add a timestamp to the log output at the beginning and end of each MET tool run
(dtcenter/METplus-Internal#18).

• MET: Add the user ID and the command line being executed to the log output at beginning
and end of each MET tool run (dtcenter/METplus-Internal#19).

• MET: Enhance MET to have better signal handling for shutdown events (dtcenter/METplus-
Internal#21).

Common Libraries

• Define new grid class to store semi-structured grid information (e.g. lat or lon vs level
or time) (#1954).

• Refine warning/error messages when parsing thresholds (#2211).

• Remove namespace specification from header files (#2227).

• Update MET version number to 11.0.0 (#2132).

• Store unspecified accumulation interval as 0 rather than bad data (#2250).

• Add sanity check to error out when both is_u_wind and is_v_wind are set to true (#2357).

Statistics

• Add Anomaly Correlation Coefficient to VCNT Line Type (#2022).

• Allow 2x2 HSS calculations to include user-defined EC values (#2147).

• Add the fair CRPS statistic to the ECNT line type in a new CRPS_EMP_FAIR column
(#2206).

• Add MAE to the ECNT line type from Ensemble-Stat and for HiRA (#2325).

• Add the Mean Absolute Difference (SPREAD_MD) to the ECNT line type (#2332).

• Add new bias ratio statistic to the ECNT line type from Ensemble-Stat and for HiRA
(#2058).

2.1. MET Release Notes 15

https://github.com/dtcenter/MET/issues/2055
https://github.com/dtcenter/MET/issues/2081
https://github.com/dtcenter/METplus-Internal/issues/14
https://github.com/dtcenter/METplus-Internal/issues/18
https://github.com/dtcenter/METplus-Internal/issues/19
https://github.com/dtcenter/METplus-Internal/issues/21
https://github.com/dtcenter/METplus-Internal/issues/21
https://github.com/dtcenter/MET/issues/1954
https://github.com/dtcenter/MET/issues/2211
https://github.com/dtcenter/MET/issues/2227
https://github.com/dtcenter/MET/issues/2132
https://github.com/dtcenter/MET/issues/2250
https://github.com/dtcenter/MET/issues/2357
https://github.com/dtcenter/MET/issues/2022
https://github.com/dtcenter/MET/issues/2147
https://github.com/dtcenter/MET/issues/2206
https://github.com/dtcenter/MET/issues/2325
https://github.com/dtcenter/MET/issues/2332
https://github.com/dtcenter/MET/issues/2058

MET User’s Guide, version 11.1.0-beta2

Configuration and masking

• Define the Bukovsky masking regions for use in MET (#1940).

• Enhance Gen-Vx-Mask by adding a new poly_xy masking type option (#2152).

• Add M_to_KFT and KM_to_KFT functions to ConfigConstants (#2180).

• Update map data with more recent NaturalEarth definitions (#2207).

Point Pre-Processing Tools

• Enhance IODA2NC to support IODA v2.0 format (#2068).

• Add support for EPA AirNow ASCII data in ASCII2NC (#2142).

• Add a sum option to the time summaries computed by the point pre-processing tools
(#2204).

• Add “station_ob” to metadata_map as a message_type metadata variable for ioda2nc
(#2215).

• Enhance ASCII2NC to read NDBC buoy data (#2276).

• Print ASCII2NC warning message about python embedding support not being compiled
(#2277).

Point-Stat, Grid-Stat, Stat-Analysis

• Add support for point-based climatologies for use in SEEPS (#1941).

• Enhance Point-Stat to compute SEEPS for point observations and write new SEEPS and
SEEPS_MPR STAT line types (#1942).

• Enhance Grid-Stat to compute SEEPS for gridded observations and write the SEEPS
STAT line type (#1943).

• Sort mask.sid station lists to check their contents more efficiently (#1950).

• Enhance Stat-Analysis to aggregate SEEPS_MPR and SEEPS line types (#2339).

• Relax Point-Stat and Ensemble-Stat logic for the configuration of message_type_group_map
(#2362).

• Fix Point-Stat and Grid-Stat logic for processing U/V winds with python embedding
(#2366).

16 Chapter 2. MET Release Information

https://github.com/dtcenter/MET/issues/1940
https://github.com/dtcenter/MET/issues/2152
https://github.com/dtcenter/MET/issues/2180
https://github.com/dtcenter/MET/issues/2207
https://github.com/dtcenter/MET/issues/2068
https://github.com/dtcenter/MET/issues/2142
https://github.com/dtcenter/MET/issues/2204
https://github.com/dtcenter/MET/issues/2215
https://github.com/dtcenter/MET/issues/2276
https://github.com/dtcenter/MET/issues/2277
https://github.com/dtcenter/MET/issues/1941
https://github.com/dtcenter/MET/issues/1942
https://github.com/dtcenter/MET/issues/1943
https://github.com/dtcenter/MET/issues/1950
https://github.com/dtcenter/MET/issues/2339
https://github.com/dtcenter/MET/issues/2362
https://github.com/dtcenter/MET/issues/2366

MET User’s Guide, version 11.1.0-beta2

Ensemble Tools

• Remove ensemble post-processing from the Ensemble-Stat tool (#1908).

• Eliminate Gen-Ens-Prod warning when parsing the nbhrd_prob dictionary (#2224).

Tropical Cyclone Tools

• Enhance TC-Pairs to read hurricane model diagnostic files (e.g. SHIPS) and TC-Stat to
filter the new data (#392).

• Enhance TC-Pairs consensus logic to compute the spread of the location, wind speed,
and pressure (#2036).

• Enhance TC-RMW to compute tangential and radial winds (#2072).

• Refine TCDIAG output from TC-Pairs as needed (#2321).

• Rename the TCDIAG SOURCE column as DIAG_SOURCE (#2337).

Miscellaneous

• Enhance MTD to process time series with non-uniform time steps, such as monthly data
(#1971).

• Refine Grid-Diag output variable names when specifying two input data sources (#2232).

• Add tmp_dir configuration option to the Plot-Point-Obs tool (#2237).

2.2 MET Upgrade Instructions

2.2.1 MET Version 11.1.0 upgrade instructions

• If compiling support for PYTHON (Section 36.2), in addition to $MET_PYTHON_CC and
$MET_PYTHON_LD, set $MET_PYTHON_BIN_EXE to specify the desired python executable to be
used (#2428).

• If running TC-Pairs to generate consensus tracks, update your TC-Pairs configuration file to include the
new write_members option (#2429).

2.2. MET Upgrade Instructions 17

https://github.com/dtcenter/MET/issues/1908
https://github.com/dtcenter/MET/issues/2224
https://github.com/dtcenter/MET/issues/392
https://github.com/dtcenter/MET/issues/2036
https://github.com/dtcenter/MET/issues/2072
https://github.com/dtcenter/MET/issues/2321
https://github.com/dtcenter/MET/issues/2337
https://github.com/dtcenter/MET/issues/1971
https://github.com/dtcenter/MET/issues/2232
https://github.com/dtcenter/MET/issues/2237
https://github.com/dtcenter/MET/issues/2428
https://github.com/dtcenter/MET/issues/2429

MET User’s Guide, version 11.1.0-beta2

2.2.2 MET Version 11.0.0 upgrade instructions

• Ensemble post-processing has been fully removed from Ensemble-Stat in version 11.0.0. It can be
performed using the Gen-Ens-Prod tool.

18 Chapter 2. MET Release Information

Chapter 3

Software Installation/Getting Started

3.1 Introduction

This section describes how to install the MET package. MET has been developed and tested on Linux
operating systems. Support for additional platforms and compilers may be added in future releases. The
MET package requires many external libraries to be available on the user’s computer prior to installation.
Required and recommended libraries, how to install MET, the MET directory structure, and sample cases are
described in the following sections.

3.2 Supported Architectures

The MET package was developed on Debian Linux using the GNU compilers and the Portland Group (PGI)
compilers. The MET package has also been built on several other Linux distributions using the GNU, PGI,
and Intel compilers. Past versions of MET have also been ported to IBM machines using the IBM compilers,
but we are currently unable to support this option as the development team lacks access to an IBM machine
for testing. Other machines may be added to this list in future releases as they are tested. In particular, the
goal is to support those architectures supported by the WRF model itself.

The MET tools run on a single processor. Therefore, none of the utilities necessary for running WRF on
multiple processors are necessary for running MET. Individual calls to the MET tools have relatively low
computing and memory requirements. However users will likely be making many calls to the tools and
passing those individual calls to several processors will accomplish the verification task more efficiently.

3.3 Programming Languages

The MET package, including MET-TC, is written primarily in C/C++ in order to be compatible with an
extensive verification code base in C/C++ already in existence. In addition, the object-based MODE and
MODE-TD verification tools rely heavily on the object-oriented aspects of C++. Knowledge of C/C++ is not
necessary to use the MET package. The MET package has been designed to be highly configurable through
the use of ASCII configuration files, enabling a great deal of flexibility without the need for source code
modifications.

19

MET User’s Guide, version 11.1.0-beta2

With the release of MET-11.1.0, C++11 is now the minimum required version of the C++ programming
language standard.

NCEP’s BUFRLIB is written entirely in Fortran. The portion of MET that handles the interface to the BUFRLIB
for reading PrepBUFR point observation files is also written in Fortran.

The MET package is intended to be a tool for the modeling community to use and adapt. As users make
upgrades and improvements to the tools, they are encouraged to offer those upgrades to the broader com-
munity by offering feedback to the developers.

3.4 Required Compilers and Scripting Languages

The MET package was developed and tested using the GNU g++/gfortran compilers and the Intel icc/ifort
compilers. As additional compilers are successfully tested, they will be added to the list of supported plat-
forms/compilers.

The GNU make utility is used in building all executables and is therefore required.

The MET package consists of a group of command line utilities that are compiled separately. The user may
choose to run any subset of these utilities to employ the type of verification methods desired. New tools
developed and added to the toolkit will be included as command line utilities.

In order to control the desired flow through MET, users are encouraged to run the tools via a script or
consider using the METplus package. Some sample scripts are provided in the distribution; these examples
are written in the Bourne shell. However, users are free to adapt these sample scripts to any scripting
language desired.

3.5 Required Libraries and Optional Utilities

Three external libraries are required for compiling/building MET and should be downloaded and installed
before attempting to install MET. Additional external libraries required for building advanced features in
MET are discussed in Section 3.6 :

1. NCEP’s BUFRLIB is used by MET to decode point-based observation datasets in PrepBUFR format.
BUFRLIB is distributed and supported by NCEP and is freely available for download from NCEP’s
BUFRLIB website. BUFRLIB requires C and Fortran-90 compilers that should be from the same family
of compilers used when building MET.

2. Several tools within MET use Unidata’s NetCDF libraries for writing output NetCDF files. NetCDF
libraries are distributed and supported by Unidata and are freely available for download from Unidata’s
NetCDF website. The same family of compilers used to build NetCDF should be used when building
MET. MET is now compatible with the enhanced data model provided in NetCDF version 4. The
support for NetCDF version 4 requires NetCDF-C, NetCDF-CXX, and HDF5, which is freely available for
download on the HDF5 webpage.

3. The GNU Scientific Library (GSL) is used by MET when computing confidence intervals. GSL is dis-
tributed and supported by the GNU Software Foundation and is freely available for download from the
GNU website.

20 Chapter 3. Software Installation/Getting Started

https://dtcenter.org/community-code/metplus
https://emc.ncep.noaa.gov/emc/pages/infrastructure/bufrlib.php
https://emc.ncep.noaa.gov/emc/pages/infrastructure/bufrlib.php
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
https://support.hdfgroup.org/HDF5/
http://www.gnu.org/software/gsl

MET User’s Guide, version 11.1.0-beta2

4. The Zlib is used by MET for compression when writing postscript image files from tools (e.g. MODE,
Wavelet-Stat, Plot-Data-Plane, and Plot-Point-Obs). Zlib is distributed, supported and is freely available
for download from the Zlib website.

Two additional utilities are strongly recommended for use with MET:

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the model forecasts with MET. The Unified Post-Processor is freely available for download.
MET can read data on a standard, de-staggered grid and on pressure or regular levels in the vertical.
The Unified Post-Processor outputs model data in this format from both WRF cores, the NMM and
the ARW. However, the Unified Post-Processor is not strictly required as long as the user can produce
gridded model output on a standard de-staggered grid on pressure or regular levels in the vertical.
Two-dimensional fields (e.g., precipitation amount) are also accepted for some modules.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB version
1 format to a common verification grid. The copygb utility is distributed as part of the Unified Post-
Processor and is available from other sources as well. While earlier versions of MET required that all
gridded data be placed on a common grid, MET version 5.1 added support for automated re-gridding
on the fly. After version 5.1, users have the option of running copygb to regrid their GRIB1 data ahead
of time or leveraging the automated regridding capability within MET.

3.6 Installation of Required Libraries

As described in Section 3.5, some external libraries are required for building the MET:

1. NCEP’s BUFRLIB is used by the MET to decode point-based observation datasets in PrepBUFR for-
mat. Once you have downloaded and unpacked the BUFRLIB tarball, refer to the README_BUFRLIB file.
When compiling the library using the GNU C and Fortran compilers, users are strongly encouraged to use
the -DUNDERSCORE and -fno-second-underscore options. Compiling the BUFRLIB version 11.3.0 (recom-
mended version) using the GNU compilers consists of the following three steps:

gcc -c -DUNDERSCORE `./getdefflags_C.sh` *.c >> make.log
gfortran -c -fno-second-underscore -fallow-argument-mismatch `./getdefflags_F.sh` modv*.F␣
→˓moda*.F \
`ls -1 *.F *.f | grep -v "mod[av]_"` >> make.log
ar crv libbufr.a *.o

Compiling the BUFRLIB using the PGI C and Fortran-90 compilers consists of the following three steps:

pgcc -c -DUNDERSCORE `./getdefflags_C.sh` *.c >> make.log
pgf90 -c -Mnosecond_underscore `./getdefflags_F.sh` modv*.F moda*.F \
`ls -1 *.F *.f | grep -v "mod[av]_"` >> make.log
ar crv libbufr.a *.o

Compiling the BUFRLIB using the Intel icc and ifort compilers consists of the following three steps:

icc -c -DUNDERSCORE `./getdefflags_C.sh` *.c >> make.log
ifort -c `./getdefflags_F.sh` modv*.F moda*.F \

(continues on next page)

3.6. Installation of Required Libraries 21

http://www.zlib.net
https://dtcenter.org/community-code/unified-post-processor-upp

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

`ls -1 *.F *.f | grep -v "mod[av]_"` >> make.log
ar crv libbufr.a *.o

In the directions above, the static library file that is created will be named libbufr.a. MET will check for the
library file named libbufr.a, however in some cases (e.g. where the BUFRLIB is already available on a system)
the library file may be named differently (e.g. libbufr_v11.3.0_4_64.a). If the library is named anything
other than libbufr.a, users will need to tell MET what library to link with by passing the BUFRLIB_NAME
option to MET when running configure (e.g. BUFRLIB_NAME=-lbufr_v11.3.0_4_64).

2. Unidata’s NetCDF libraries are used by several tools within MET for writing output NetCDF files. Both
NetCDF-C and NetCDF-CXX are required. The same family of compilers used to build NetCDF should
be used when building MET. Users may also find some utilities built for NetCDF such as ncdump and
ncview useful for viewing the contents of NetCDF files. Support for NetCDF version 4 requires HDF5.

3. The GNU Scientific Library (GSL) is used by MET for random sampling and normal and binomial
distribution computations when estimating confidence intervals. Precompiled binary packages are
available for most GNU/Linux distributions and may be installed with root access. When installing
GSL from a precompiled package on Debian Linux, the developer’s version of GSL must be used;
otherwise, use the GSL version available from the GNU GSL website. MET requires access to the GSL
source headers and library archive file at build time.

4. For users wishing to compile MET with GRIB2 file support, NCEP’s GRIB2 Library in C (g2clib) must
be installed, along with jasperlib, libpng, and zlib. Please note that compiling the GRIB2C library
with the -D__64BIT__ option requires that MET also be configured with CFLAGS=”-D__64BIT__”.
Compiling MET and the GRIB2C library inconsistently may result in a segmentation fault or an
“out of memory” error when reading GRIB2 files. MET looks for the GRIB2C library to be named
libgrib2c.a, which may be set in the GRIB2C makefile as LIB=libgrib2c.a. However in some cases,
the library file may be named differently (e.g. libg2c_v1.6.0.a). If the library is named anything other
than libgrib2c.a, users will need to tell MET what library to link with by passing the GRIB2CLIB_NAME
option to MET when running configure (e.g. GRIB2CLIB_NAME=-lg2c_v1.6.0).

5. Users wishing to compile MODIS-regrid and/or lidar2nc will need to install both the HDF4 and HDF-
EOS2 libraries available from the HDF group websites linked here.

6. The MODE-Graphics utility requires Cairo and FreeType. Thus, users who wish to compile this utility
must install both libraries. In addition, users will need to download the Ghostscript font data required
at runtime.

3.7 Installation of Optional Utilities

As described in the introduction to this section, two additional utilities are strongly recommended for use
with MET.

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the data with MET. The Unified Post-Processor may be used on WRF output from both the
ARW and NMM cores.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB format to
a common verification grid. The copygb utility is distributed as part of the Unified Post-Processor and

22 Chapter 3. Software Installation/Getting Started

https://www.unidata.ucar.edu/downloads/netcdf/
https://portal.hdfgroup.org/display/HDF5/HDF5
http://www.gnu.org/software/gsl/
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2
https://portal.hdfgroup.org/display/HDF4/HDF4
http://hdfeos.org/
http://hdfeos.org/
http://cairographics.org/releases
http://www.freetype.org/download.html
http://sourceforge.net/projects/gs-fonts
https://dtcenter.org/community-code/unified-post-processor-upp

MET User’s Guide, version 11.1.0-beta2

is available from other sources as well. Please refer to the “Unified Post-processor” utility mentioned
above for information on availability and installation.

3.8 MET Directory Structure

The top-level MET directory consists of Makefiles, configuration files, and several subdirectories. The top-
level Makefile and configuration files control how the entire toolkit is built. Instructions for using these files
to build MET can be found in Section 3.9.

When MET has been successfully built and installed, the installation directory contains two subdirectories.
The bin/ directory contains executables for each module of MET as well as several plotting utilities. The
share/met/ directory contains many subdirectories with data required at runtime and a subdirectory of sam-
ple R scripts utilities. The colortables/, map/, and ps/ subdirectories contain data used in creating PostScript
plots for several MET tools. The poly/ subdirectory contains predefined lat/lon polyline regions for use in se-
lecting regions over which to verify. The polylines defined correspond to verification regions used by NCEP
as described in Appendix B, Section 32. The config/ directory contains default configuration files for the
MET tools. The python/ subdirectory contains python scripts. The python/examples subdirectory contains
sample scripts used in Python embedding (Appendix F, Section 36). The python/pyembed/ subdirectory con-
tains code used in Python embedding (Appendix F, Section 36). The table_files/ and tc_data/ subdirectories
contain GRIB table definitions and tropical cyclone data, respectively. The Rscripts/ subdirectory contains a
handful of plotting graphic utilities for MET-TC. These are the same Rscripts that reside under the top-level
MET scripts/Rscripts directory, other than it is the installed location.

The data/ directory contains several configuration and static data files used by MET. The sample_fcst/ and
sample_obs/ subdirectories contain sample data used by the test scripts provided in the scripts/ directory.

The docs/ directory contains the Sphinx documentation for MET.

The out/ directory will be populated with sample output from the test cases described in the next section.

The src/ directory contains the source code for each of the tools in MET.

The scripts/ directory contains test scripts that are run by make test after MET has been successfully built,
and a directory of sample configuration files used in those tests located in the scripts/config/ subdirectory.
The output from the test scripts in this directory will be written to the out/ directory. Users are encouraged
to copy sample configuration files to another location and modify them for their own use.

The share/met/Rscripts directory contains a handful of sample R scripts, including plot_tcmpr.R, which pro-
vides graphic utilities for MET-TC. For more information on the graphics capabilities, see Section 29.2.3 of
this User’s Guide.

3.8. MET Directory Structure 23

MET User’s Guide, version 11.1.0-beta2

3.9 Building the MET Package

Building the MET package consists of three main steps: (1) install the required libraries, (2) configure the
environment variables, and (3) configure and execute the build. Users can follow the instructions below or
use a sample installation script. Users can find the script and its instructions under on the Downloads page
of the MET website.

3.9.1 Get the MET source code

The MET source code is available for download from the public MET GitHub repository.

• Open a web browser and go to the latest stable MET release.

• Click on the Source code link (either the zip or tar.gz) under Assets and when prompted, save it to your
machine.

• (Optional) Verify the checksum of the source code download

– Download the checksum file that corresponds to the source code download link that was used
(checksum_zip.txt for the zip file and checksum_tar.txt for the tar.gz file). Put the checksum file
into the same directory as the source code file.

– Run the sha256sum command with the –check argument to verify that the source code download
file was not corrupted.

Zip File:

sha256sum --check checksum_zip.txt

Tar File:

sha256sum --check checksum_tar.txt

Note: If the source code is downloaded using wget, then the filenames will not match the filenames listed
in the checksum files. If the source code is downloaded using curl, the -LJO flags should be added to the
command to preserve the expected filenames found in the checksum files.

• Uncompress the source code (on Linux/Unix: gunzip for zip file or tar xvfz for the tar.gz file)

3.9.2 Install the Required Libraries

• Please refer to Section 3.6 and Section 3.7 on how to install the required and optional libraries.

• If installing the required and optional libraries in a non-standard location, the user may need to tell
MET where to find them. This can be done by setting or adding to the LD_LIBRARY PATH to include
the path to the library files.

24 Chapter 3. Software Installation/Getting Started

https://dtcenter.org/community-code/model-evaluation-tools-met/download
https://github.com/dtcenter/MET
https://github.com/dtcenter/MET/releases/latest

MET User’s Guide, version 11.1.0-beta2

3.9.3 Set Environment Variables

The MET build uses environment variables to specify the locations of the needed external libraries.
For each library, there is a set of three environment variables to describe the locations: $MET_<lib>,
$MET_<lib>INC and $MET_<lib>LIB.

The $MET_<lib> environment variable can be used if the external library is installed such that there is
a main directory which has a subdirectory called “lib” containing the library files and another subdirec-
tory called “include” containing the include files. For example, if the NetCDF library files are installed in
/opt/netcdf/lib and the include files are in /opt/netcdf/include, you can just define the $MET_NETCDF envi-
ronment variable to be “/opt/netcdf”.

The $MET_<lib>INC and $MET_<lib>LIB environment variables are used if the library and include files
for an external library are installed in separate locations. In this case, both environment variables must
be specified and the associated $MET_<lib> variable will be ignored. For example, if the NetCDF include
files are installed in /opt/include/netcdf and the library files are in /opt/lib/netcdf, then you would set
$MET_NETCDFINC to “/opt/include/netcdf” and $MET_NETCDFLIB to “/opt/lib/netcdf”.

The following environment variables should also be set:

• Set $MET_NETCDF to point to the main NetCDF directory, or set $MET_NETCDFINC to point to the
directory with the NetCDF include files and set $MET_NETCDFLIB to point to the directory with the
NetCDF library files. Note that the files for both NetCDF-C and NetCDF-CXX must be installed in the
same include and library directories.

• Set $MET_HDF5 to point to the main HDF5 directory.

• Set $MET_BUFR to point to the main BUFR directory, or set $MET_BUFRLIB to point to the directory
with the BUFR library files. Because we don’t use any BUFR library include files, you don’t need to
specify $MET_BUFRINC.

• Set $MET_GSL to point to the main GSL directory, or set $MET_GSLINC to point to the directory with
the GSL include files and set $MET_GSLLIB to point to the directory with the GSL library files.

• If compiling support for GRIB2, set $MET_GRIB2CINC and $MET_GRIB2CLIB to point to the main
GRIB2C directory which contains both the include and library files. These are used instead of
$MET_GRIB2C since the main GRIB2C directory does not contain include and lib subdirectories.

• If compiling support for PYTHON, set $MET_PYTHON_BIN_EXE to specify the desired python exe-
cutable to be used. Also set $MET_PYTHON_CC, and $MET_PYTHON_LD to specify the compiler (-I)
and linker (-L) flags required for python. Set $MET_PYTHON_CC for the directory containing the
“Python.h” header file. Set $MET_PYTHON_LD for the directory containing the python library file and
indicate the name of that file. For example:

MET_PYTHON_BIN_EXE='/usr/bin/python3.6'
MET_PYTHON_CC='-I/usr/include/python3.6'
MET_PYTHON_LD='-L/usr/lib/python3.6/config-x86_64-linux-gnu -lpython3.6m'

Note that this version of Python must include support for a minimum set of required packages. For
more information about Python support in MET, including the list of required packages, please refer
to Appendix F, Section 36.

3.9. Building the MET Package 25

MET User’s Guide, version 11.1.0-beta2

• If compiling MODIS-Regrid and/or lidar2nc, set $MET_HDF to point to the main HDF4 directory, or set
$MET_HDFINC to point to the directory with the HDF4 include files and set $MET_HDFLIB to point
to the directory with the HDF4 library files. Also, set $MET_HDFEOS to point to the main HDF EOS
directory, or set $MET_HDFEOSINC to point to the directory with the HDF EOS include files and set
$MET_HDFEOSLIB to point to the directory with the HDF EOS library files.

• If compiling MODE Graphics, set $MET_CAIRO to point to the main Cairo directory, or
set$MET_CAIROINC to point to the directory with the Cairo include files and set $MET_CAIROLIB
to point to the directory with the Cairo library files. Also, set $MET_FREETYPE to point to the main
FreeType directory, or set $MET_FREETYPEINC to point to the directory with the FreeType include
files and set $MET_FREETYPELIB to point to the directory with the FreeType library files.

• When running MODE Graphics, set $MET_FONT_DIR to the directory containing font data required at
runtime. A link to the tarball containing this font data can be found on the MET website.

For ease of use, you should define these in your .cshrc or equivalent file.

3.9.4 Configure and Execute the Build

Example: To configure MET to install all of the available tools in the “bin” subdirectory of your current
directory, you would use the following commands:

1. ./configure --prefix=`pwd` --enable-grib2 --enable-python \
--enable-modis --enable-mode_graphics --enable-lidar2nc

2. Type 'make install >& make_install.log &'
3. Type 'tail -f make_install.log' to view the execution of the make.
4. When make is finished, type 'CTRL-C' to quit the tail.

If all tools are enabled and the build is successful, the “<prefix>/bin” directory (where <prefix> is the prefix
you specified on your configure command line) will contain the following executables:

- ascii2nc
- ensemble_stat
- gen_ens_prod
- gen_vx_mask
- grid_stat
- gis_dump_dbf
- gis_dump_shp
- gis_dump_shx
- grid_diag
- gsid2mpr
- gsidens2orank
- lidar2nc
- madis2nc
- mode
- mode_analysis
- modis_regrid
- mtd

(continues on next page)

26 Chapter 3. Software Installation/Getting Started

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

- pb2nc
- pcp_combine
- plot_data_plane
- plot_mode_field
- plot_point_obs
- point2grid
- point_stat
- rmw_analysis
- regrid_data_plane
- series_analysis
- shift_data_plane
- stat_analysis
- tc_dland
- tc_gen
- tc_pairs
- tc_rmw
- tc_stat
- wavelet_stat
- wwmca_plot
- wwmca_regrid

NOTE: Several compilation warnings may occur which are expected. If any errors occur, please refer to
Appendix A, Section 31.2 on troubleshooting for common problems.

-help and -version command line options are available for all of the MET tools. Typing the name of the tool
with no command line options also produces the usage statement.

The configure script has command line options to specify where to install MET and which MET utilities to
install. Include any of the following options that apply to your system:

--prefix=PREFIX

By default, MET will install all the files in “/usr/local/bin”. You can specify an installation prefix other than
“/usr/local” using “–prefix”, for instance “–prefix=$HOME” or “–prefix=`pwd`”.

--enable-grib2

Enable compilation of utilities using GRIB2. Requires $MET_GRIB2C.

--enable-python

Enable compilation of python interface. Requires $MET_PYTHON_CC and $MET_PYTHON_LD.

--enable-lidar2nc

Enable compilation of utilities using the LIDAR2NC tool.

3.9. Building the MET Package 27

MET User’s Guide, version 11.1.0-beta2

--enable-modis

Enable compilation of the Modis-Regrid tool. Requires $MET_HDF, $MET_HDFEOSINC, and
$MET_HDFEOSLIB.

--enable-mode_graphics

Enable compilation of the MODE-Graphics tool. Requires $MET_CAIRO and $MET_FREETYPE.

--disable-block4

Disable use of BLOCK4 in the compilation. Use this if you have trouble using PrepBUFR files.

--disable-openmp

Disable compilation of OpenMP directives within the code which allows some code regions to benefit from
thread-parallel execution. Runtime environment variable OMP_NUM_THREADS controls the number of threads.

Run the configure script with the -help argument to see the full list of configuration options.

3.9.5 Make Targets

The autoconf utility provides some standard make targets for the users. In MET, the following standard
targets have been implemented and tested:

1. all - compile all of the components in the package, but don’t install them.

2. install - install the components (where is described below). Will also compile if “make all” hasn’t been
done yet.

3. clean - remove all of the temporary files created during the compilation.

4. uninstall - remove the installed files. For us, these are the executables and the files in $MET_BASE.

MET also has the following non-standard targets:

5. test - runs the scripts/test_all.sh script. You must run “make install” before using this target.

3.10 Sample Test Cases

Once the MET package has been built successfully, the user is encouraged to run the sample test scripts
provided. They are run using make test in the top-level directory. Execute the following commands:

1. Type ‘make test >& make_test.log &’ to run all of the test scripts in the directory. These test scripts use
test data supplied with the tarball. For instructions on running your own data, please refer to the MET
User’s Guide.

2. Type ‘tail -f make_test.log’ to view the execution of the test script.

3. When the test script is finished, type ‘CTRL-C’ to quit the tail. Look in “out” to find the output files for
these tests. Each tool has a separate, appropriately named subdirectory for its output files.

28 Chapter 3. Software Installation/Getting Started

MET User’s Guide, version 11.1.0-beta2

4. In particular, check that the PB2NC tool ran without error. If there was an error, run “make clean” then
rerun your configure command adding –disable-block4 to your configure command line and rebuild
MET.

3.10. Sample Test Cases 29

MET User’s Guide, version 11.1.0-beta2

30 Chapter 3. Software Installation/Getting Started

Chapter 4

MET Data I/O

Data must often be preprocessed prior to using it for verification. Several MET tools exist for this purpose.
In addition to preprocessing observations, some plotting utilities for data checking are also provided and
described at the end of this section. Both the input and output file formats are described in this section.
Section 4.1 and Section 4.2 are primarily concerned with re-formatting input files into the intermediate
files required by some MET modules. These steps are represented by the first three columns in the MET
flowchart depicted in Figure 1.1. Output data formats are described in Section 4.3. Common configuration
files options are described in Section 4.5. Description of software modules used to reformat the data may
now be found in Section 7 and Section 8.

4.1 Input data formats

The MET package can handle multiple gridded input data formats: GRIB version 1, GRIB version 2, and
NetCDF files following the Climate and Forecast (CF) conventions, containing WRF output post-processed
using wrf_interp, or produced by the MET tools themselves. MET supports standard NCEP, USAF, UKMet
Office and ECMWF GRIB tables along with custom, user-defined GRIB tables and the extended PDS including
ensemble member metadata. See Section 4.5 for more information. Point observation files may be supplied
in either PrepBUFR, ASCII, or MADIS format. Note that MET does not require the Unified Post-Processor to
be used, but does require that the input GRIB data be on a standard, de-staggered grid on pressure or regular
levels in the vertical. While the Grid-Stat, Wavelet-Stat, MODE, and MTD tools can be run on a gridded field
at virtually any level, the Point-Stat tool can only be used to verify forecasts at the surface or on pressure or
height levels. MET does not interpolate between native model vertical levels.

When comparing two gridded fields with the Grid-Stat, Wavelet-Stat, Ensemble-Stat, MODE, MTD, or Series-
Analysis tools, the input model and observation datasets must be on the same grid. MET will regrid files
according to user specified options. Alternatively, outside of MET, the copygb and wgrib2 utilities are recom-
mended for re-gridding GRIB1 and GRIB2 files, respectively. To preserve characteristics of the observations,
it is generally preferred to re-grid the model data to the observation grid, rather than vice versa.

Input point observation files in PrepBUFR format are available through NCEP. The PrepBUFR observation
files contain a wide variety of point-based observation types in a single file in a standard format. However,
some users may wish to use observations not included in the standard PrepBUFR files. For this reason, prior
to performing the verification step in the Point-Stat tool, the PrepBUFR file is reformatted with the PB2NC
tool. In this step, the user can select various ways of stratifying the observation data spatially, temporally,

31

MET User’s Guide, version 11.1.0-beta2

and by type. The remaining observations are reformatted into an intermediate NetCDF file. The ASCII2NC
tool may be used to convert ASCII point observations that are not available in the PrepBUFR files into this
common NetCDF point observation format. Several other MET tools, described below, are also provided to
reformat point observations into this common NetCDF point observation format prior to passing them as
input to the Point-Stat or Ensemble-Stat verification tools.

Tropical cyclone forecasts and observations are typically provided in a specific ATCF (Automated Tropical
Cyclone Forecasting) ASCII format, in A-deck, B-deck, and E-deck files.

4.1.1 Requirements for CF Compliant NetCDF

The MET tools use following attributes and variables for input CF Compliant NetCDF data.

1. The global attribute “Conventions”.

2. The “standard_name” and “units” attributes for coordinate variables. The “axis” attribute (“T” or
“time”) must exist as the time variable if the “standard_name” attribute does not exist.

3. The “coordinates” attribute for the data variables. It contains the coordinate variable names.

4. The “grid_mapping” attribute for the data variables for projections and the matching grid mapping
variable (optional for the latitude_longitude projection).

5. The gridded data should be evenly spaced horizontally and vertically.

6. (Optional) the “forecast_reference_time” variable for init_time.

MET processes the CF-Compliant gridded NetCDF files with the projection information. The CF-
Compliant NetCDF is defined by the global attribute “Conventions” whose value begins with “CF-” (“CF-
<Version_number>”). The global attribute “Conventions” is mandatory. MET accepts the variation of this
attribute (“conventions” and “CONVENTIONS”). The value should be started with “CF-” and followed by
the version number. MET accepts the attribute value that begins with “CF ” (“CF” and a space instead of a
hyphen) or “COARDS”.

The grid mapping variable contains the projection information. The grid mapping variable can be found
by looking at the variable attribute “grid_mapping” from the data variables. The “standard_name” attribute
is used to filter out the coordinate variables like time, latitude, and longitude variables. The value of the
“grid_mapping” attribute is the name of the grid mapping variable. Four projections are supported with grid
mapping variables: latitude_longitude, lambert_conformal_conic, polar_stereographic, and geostationary.
In case of the latitude_longitude projection, the latitude and longitude variable names should be the same
as the dimension names and the “units” attribute should be valid.

Here are examples for the grid mapping variable (“edr” is the data variable):

Example 1: grid mapping for latitude_longitude projection

float edr(time, z, lat, lon) ;
edr:units = "m^(2/3) s^-1" ;
edr:long_name = "Median eddy dissipation rate" ;
edr:coordinates = "lat lon" ;
edr:_FillValue = -9999.f ;
edr:grid_mapping = "grid_mapping" ;

(continues on next page)

32 Chapter 4. MET Data I/O

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#standard-name
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#units
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#time-axis-ex
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#coordinate-types
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#appendix-grid-mappings
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#scalar-coordinate-variables

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

int grid_mapping ;
grid_mapping:grid_mapping_name = "latitude_longitude" ;
grid_mapping:semi_major_axis = 6371000. ;
grid_mapping:inverse_flattening = 0 ;

Example 2: grid mapping for lambert_conformal_conic projection

float edr(time, z, y, x) ;
edr:units = "m^(2/3) s^-1" ;
edr:long_name = "Eddy dissipation rate" ;
edr:coordinates = "lat lon" ;
edr:_FillValue = -9999.f ;
edr:grid_mapping = "grid_mapping" ;

int grid_mapping ;
grid_mapping:grid_mapping_name = "lambert_conformal_conic" ;
grid_mapping:standard_parallel = 25. ;
grid_mapping:longitude_of_central_meridian = -95. ;
grid_mapping:latitude_of_projection_origin = 25. ;
grid_mapping:false_easting = 0 ;
grid_mapping:false_northing = 0 ;
grid_mapping:GRIB_earth_shape = "spherical" ;
grid_mapping:GRIB_earth_shape_code = 0 ;

When the grid mapping variable is not available, MET detects the latitude_longitude projection in following
order:

1. the lat/lon projection from the dimensions

2. the lat/lon projection from the “coordinates” attribute from the data variable

3. the lat/lon projection from the latitude and longitude variables by the “standard_name” attribute

MET is looking for variables with the same name as the dimension and checking the “units” attribute to find
the latitude and longitude variables. The valid “units” strings are listed in the table below. MET accepts the
variable “tlat” and “tlon” if the dimension names are “nlat” and “nlon”.

If there are no latitude and longitude variables from dimensions, MET gets coordinate variable names from
the “coordinates” attribute. The matching coordinate variables should have the proper “units” attribute.

MET gets the time, latitude, and longitude variables by looking at the standard name: “time”, “latitude”,
and “longitude” as the last option.

MET gets the valid time from the time variable and the “forecast_reference_time” variable for the init_time.
If the time variable does not exist, it can come from the file name. MET supports only two cases:

1. TRMM_3B42_3hourly_filename (3B42.<yyyymmdd>.<hh>.7.G3.nc)

2. TRMM_3B42_daily_filename (3B42_daily.<yyyy>.<mm>.<dd>.7.G3.nc)

4.1. Input data formats 33

MET User’s Guide, version 11.1.0-beta2

Table 4.1: Valid strings for the “units” attribute.

time latitude longitude
“seconds since YYYY-MM-DD HH:MM:SS”, “minutes since YYYY-
MM-DD HH:MM:SS”, “hours since YYYY-MM-DD HH:MM:SS”,
“days since YYYY-MM-DD HH:MM:SS”, “months since YYYY-MM-
DD HH:MM:SS”, “years since YYYY-MM-DD HH:MM:SS”, Accepts
“Y”, “YY”, “YYY”, “M”, “D”, “HH”, and “HH:MM”. “HH:MM:SS” is
optional

“degrees_north”,
“degree_north”,
“degree_N”,
“degrees_N”,
“degreeN”, “de-
greesN”

“degrees_east”,
“degree_east”,
“degree_E”,
“degrees_E”,
“degreeE”, “de-
greesE”

4.1.2 Performance with NetCDF input data

There is no limitation on the NetCDF file size. The size of the data variables matters more than the file
size. The NetCDF API loads the metadata first upon opening the NetCDF file. It’s similar for accessing
data variables. There are two API calls: getting the metadata and getting the actual data. The memory is
allocated and consumed at the second API call (getting the actual data).

The dimensions of the data variables matter. MET requests the NetCDF data needs based on: 1) loading
and processing a data plane, and 2) loading and processing the next data plane. This means an extra step
for slicing with one more dimension in the NetCDF input data. The performance is quite different if the
compression is enabled with high resolution data. NetCDF does compression per variable. The variables can
have different compression levels (0 to 9). A value of 0 means no compression, and 9 is the highest level of
compression possible. The number for decompression is the same between one more and one less dimension
NetCDF input files (combined VS separated). The difference is the amount of data to be decompressed
which requires more memory. For example, let’s assume the time dimension is 30. NetCDF data with one
less dimension (no time dimension) does decompression 30 times for nx by ny dataset. NetCDF with one
more dimension does compression 30 times for 30 by nx by ny dataset and slicing for target time offset. So
it’s better to have multiple NetCDF files with one less dimension than a big file with bigger variable data if
compressed. If the compression is not enabled, the file size will be much bigger requiring more disk space.

4.2 Intermediate data formats

MET uses NetCDF as an intermediate file format. The MET tools which write gridded output files write to a
common gridded NetCDF file format. The MET tools which write point output files write to a common point
observation NetCDF file format.

34 Chapter 4. MET Data I/O

MET User’s Guide, version 11.1.0-beta2

4.3 Output data formats

The MET package currently produces output in the following basic file formats: STAT files, ASCII files,
NetCDF files, PostScript plots, and png plots from the Plot-Mode-Field utility.

The STAT format consists of tabular ASCII data that can be easily read by many analysis tools and software
packages. MET produces STAT output for the Grid-Stat, Point-Stat, Ensemble-Stat, Wavelet-Stat, and TC-Gen
tools. STAT is a specialized ASCII format containing one record on each line. However, a single STAT file will
typically contain multiple line types. Several header columns at the beginning of each line remain the same
for each line type. However, the remaining columns after the header change for each line type. STAT files
can be difficult for a human to read as the quantities represented for many columns of data change from
line to line.

For this reason, ASCII output is also available as an alternative for these tools. The ASCII files contain exactly
the same output as the STAT files but each STAT line type is grouped into a single ASCII file with a column
header row making the output more human-readable. The configuration files control which line types are
output and whether or not the optional ASCII files are generated.

The MODE tool creates two ASCII output files as well (although they are not in a STAT format). It generates
an ASCII file containing contingency table counts and statistics comparing the model and observation fields
being compared. The MODE tool also generates a second ASCII file containing all of the attributes for the
single objects and pairs of objects. Each line in this file contains the same number of columns, and those
columns not applicable to a given line type contain fill data. Similarly, the MTD tool writes one ASCII output
file for 2D objects attributes and four ASCII output files for 3D object attributes.

The TC-Pairs and TC-Stat utilities produce ASCII output, similar in style to the STAT files, but with TC
relevant fields.

Many of the tools generate gridded NetCDF output. Generally, this output acts as input to other MET tools
or plotting programs. The point observation preprocessing tools produce NetCDF output as input to the
statistics tools. Full details of the contents of the NetCDF files is found in Section 4.4 below.

The MODE, Wavelet-Stat and plotting tools produce PostScript plots summarizing the spatial approach used
in the verification. The PostScript plots are generated using internal libraries and do not depend on an
external plotting package. The MODE plots contain several summary pages at the beginning, but the total
number of pages will depend on the merging options chosen. Additional pages will be created if merging
is performed using the double thresholding or fuzzy engine merging techniques for the forecast and obser-
vation fields. The number of pages in the Wavelet-Stat plots depend on the number of masking tiles used
and the dimension of those tiles. The first summary page is followed by plots for the wavelet decomposition
of the forecast and observation fields. The generation of these PostScript output files can be disabled using
command line options.

Users can use the optional plotting utilities Plot-Data-Plane, Plot-Point-Obs, and Plot-Mode-Field to produce
graphics showing forecast, observation, and MODE object files.

4.3. Output data formats 35

MET User’s Guide, version 11.1.0-beta2

4.4 Data format summary

The following is a summary of the input and output formats for each of the tools currently in MET. The
output listed is the maximum number of possible output files. Generally, the type of output files generated
can be controlled by the configuration files and/or the command line options:

1. PB2NC Tool

• Input: PrepBUFR point observation file(s) and one configuration file.

• Output: One NetCDF file containing the observations that have been retained.

2. ASCII2NC Tool

• Input: ASCII point observation file(s) that has (have) been formatted as expected, and optional
configuration file.

• Output: One NetCDF file containing the reformatted observations.

3. MADIS2NC Tool

• Input: MADIS point observation file(s) in NetCDF format.

• Output: One NetCDF file containing the reformatted observations.

4. LIDAR2NC Tool

• Input: One CALIPSO satellite HDF file.

• Output: One NetCDF file containing the reformatted observations.

5. IODA2NC Tool

• Input: IODA observation file(s) in NetCDF format.

• Output: One NetCDF file containing the reformatted observations.

6. Point2Grid Tool

• Input: One NetCDF file in the common point observation format.

• Output: One NetCDF file containing a gridded representation of the point observations.

7. Pcp-Combine Tool

• Input: Two or more gridded model or observation files (in GRIB format for “sum” command, or
any gridded file for “add”, “subtract”, and “derive” commands) containing data (often accumu-
lated precipitation) to be combined.

• Output: One NetCDF file containing output for the requested operation(s).

8. Regrid-Data-Plane Tool

• Input: One gridded model or observation field and one gridded field to provide grid specification
if desired.

• Output: One NetCDF file containing the regridded data field(s).

9. Shift-Data-Plane Tool

36 Chapter 4. MET Data I/O

MET User’s Guide, version 11.1.0-beta2

• Input: One gridded model or observation field.

• Output: One NetCDF file containing the shifted data field.

10. MODIS-Regrid Tool

• Input: One gridded model or observation field and one gridded field to provide grid specification.

• Output: One NetCDF file containing the regridded data field.

11. Gen-VX-Mask Tool

• Input: One gridded model or observation file and one file defining the masking region (varies
based on masking type).

• Output: One NetCDF file containing a bitmap for the resulting masking region.

12. Point-Stat Tool

• Input: One gridded model file, at least one NetCDF file in the common point observation format,
and one configuration file.

• Output: One STAT file containing all of the requested line types and several ASCII files for each
line type requested.

13. Grid-Stat Tool

• Input: One gridded model file, one gridded observation file, and one configuration file.

• Output: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one NetCDF file containing the matched pair data and difference field for
each verification region and variable type/level being verified.

14. Ensemble Stat Tool

• Input: An arbitrary number of gridded model files, one or more gridded and/or point observation
files, and one configuration file. Point and gridded observations are both accepted.

• Output: One NetCDF file containing requested ensemble forecast information. If observations
are provided, one STAT file containing all requested line types, several ASCII files for each line
type requested, and one NetCDF file containing gridded observation ranks.

15. Wavelet-Stat Tool

• Input: One gridded model file, one gridded observation file, and one configuration file.

• Output: One STAT file containing the “ISC” line type, one ASCII file containing intensity-scale
information and statistics, one NetCDF file containing information about the wavelet decomposi-
tion of forecast and observed fields and their differences, and one PostScript file containing plots
and summaries of the intensity-scale verification.

16. GSID2MPR Tool

• Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

• Output: One ASCII file in matched pair (MPR) format.

17. GSID2ORANK Tool

• Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

4.4. Data format summary 37

MET User’s Guide, version 11.1.0-beta2

• Output: One ASCII file in observation rank (ORANK) format.

18. Stat-Analysis Tool

• Input: One or more STAT files output from the Point-Stat, Grid-Stat, Ensemble Stat, Wavelet-Stat,
or TC-Gen tools and, optionally, one configuration file containing specifications for the analysis
job(s) to be run on the STAT data.

• Output: ASCII output of the analysis jobs is printed to the screen unless redirected to a file using
the “-out” option or redirected to a STAT output file using the “-out_stat” option.

19. Series-Analysis Tool

• Input: An arbitrary number of gridded model files and gridded observation files and one config-
uration file.

• Output: One NetCDF file containing requested output statistics on the same grid as the input
files.

20. Grid-Diag Tool

• Input: An arbitrary number of gridded data files and one configuration file.

• Output: One NetCDF file containing individual and joint histograms of the requested data.

21. MODE Tool

• Input: One gridded model file, one gridded observation file, and one or two configuration files.

• Output: One ASCII file containing contingency table counts and statistics, one ASCII file con-
taining single and pair object attribute values, one NetCDF file containing object indices for the
gridded simple and cluster object fields, and one PostScript plot containing a summary of the
features-based verification performed.

22. MODE-Analysis Tool

• Input: One or more MODE object statistics files from the MODE tool and, optionally, one config-
uration file containing specification for the analysis job(s) to be run on the object data.

• Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-out” option.

23. MODE-TD Tool

• Input: Two or more gridded model files, two or more gridded observation files, and one configu-
ration file.

• Output: One ASCII file containing 2D object attributes, four ASCII files containing 3D object
attributes, and one NetCDF file containing object indices for the gridded simple and cluster object
fields.

24. TC-Dland Tool

• Input: One or more files containing the longitude (Degrees East) and latitude (Degrees North) of
all the coastlines and islands considered to be a significant landmass.

• Output: One NetCDF format file containing a gridded field representing the distance to the
nearest coastline or island, as specified in the input file.

38 Chapter 4. MET Data I/O

MET User’s Guide, version 11.1.0-beta2

25. TC-Pairs Tool

• Input: At least one A-deck or E-deck file and one B-deck ATCF format file containing output from
a tropical cyclone tracker and one configuration file. The A-deck files contain forecast tracks, the
E-deck files contain forecast probabilities, and the B-deck files are typically the NHC Best Track
Analysis but could also be any ATCF format reference.

• Output: ASCII output with the suffix .tcst.

26. TC-Stat Tool

• Input: One or more TCSTAT output files output from the TC-Pairs tool and, optionally, one con-
figuration file containing specifications for the analysis job(s) to be run on the TCSTAT data.

• Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-out” option.

27. TC-Gen Tool

• Input: One or more Tropical Cyclone genesis format files, one or more verifying operational and
BEST track files in ATCF format, and one configuration file.

• Output: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one gridded NetCDF file containing counts of track points.

28. TC-RMW Tool

• Input: One or more gridded data files, one ATCF track file defining the storm location, and one
configuration file.

• Output: One gridded NetCDF file containing the requested model fields transformed into cylin-
drical coordinates.

29. RMW-Analysis Tool

• Input: One or more NetCDF output files from the TC-RMW tool and one configuration file.

• Output: One NetCDF file for results aggregated across the filtered set of input files.

30. Plot-Point-Obs Tool

• Input: One NetCDF file containing point observation from the ASCII2NC, PB2NC, MADIS2NC, or
LIDAR2NC tool.

• Output: One postscript file containing a plot of the requested field.

31. Plot-Data-Plane Tool

• Input: One gridded data file to be plotted.

• Output: One postscript file containing a plot of the requested field.

32. Plot-MODE-Field Tool

• Input: One or more MODE output files to be used for plotting and one configuration file.

• Output: One PNG file with the requested MODE objects plotted. Options for objects include raw,
simple or cluster and forecast or observed objects.

33. GIS-Util Tools

4.4. Data format summary 39

MET User’s Guide, version 11.1.0-beta2

• Input: ESRI shape files ending in .dbf, .shp, or .shx.

• Output: ASCII description of their contents printed to the screen.

4.5 Configuration File Details

Part of the strength of MET is the leveraging of capability across tools. There are several configuration
options that are common to many of the tools.

Many of the MET tools use a configuration file to set parameters. This prevents the command line from
becoming too long and cumbersome and makes the output easier to duplicate.

The configuration file details are described in Configuration File Overview (page 41) and Tropical Cyclone
Configuration Options (page 115).

40 Chapter 4. MET Data I/O

Chapter 5

Configuration File Overview

The configuration files that control many of the MET tools contain formatted ASCII text. This format has
been updated for MET version 11.1.0-beta2 and continues to be used in subsequent releases.

Settings common to multiple tools are described in the top part of this file and settings specific to individual
tools are described beneath the common settings. Please refer to the MET User’s Guide for more details
about the settings if necessary.

A configuration file entry is an entry name, followed by an equal sign (=), followed by an entry value, and
is terminated by a semicolon (;). The configuration file itself is one large dictionary consisting of entries,
some of which are dictionaries themselves.

The configuration file language supports the following data types:

• Dictionary:

– Grouping of one or more entries enclosed by curly braces {}.

• Array:

– List of one or more entries enclosed by square braces [].

– Array elements are separated by commas.

• String:

– A character string enclosed by double quotation marks “”.

• Integer:

– A numeric integer value.

• Float:

– A numeric float value.

• Boolean:

– A boolean value (TRUE or FALSE).

• Threshold:

– A threshold type (<, <=, ==, !-, >=, or >) followed by a numeric value.

41

MET User’s Guide, version 11.1.0-beta2

– The threshold type may also be specified using two letter abbreviations (lt, le, eq, ne, ge, gt).

– Multiple thresholds may be combined by specifying the logic type of AND (&&) or OR (||). For
example, “>=5&&<=10” defines the numbers between 5 and 10 and “==1||==2” defines
numbers exactly equal to 1 or 2.

• Percentile Thresholds:

– A threshold type (<, <=, ==, !=, >=, or >), followed by a percentile type description (SFP,
SOP, SCP, USP, CDP, or FBIAS), followed by a numeric value, typically between 0 and 100.

– Note that the two letter threshold type abbreviations (lt, le, eq, ne, ge, gt) are not supported for
percentile thresholds.

– Thresholds may be defined as percentiles of the data being processed in several places:

* In Point-Stat and Grid-Stat when setting “cat_thresh”, “wind_thresh” and “cnt_thresh”.

* In Wavelet-Stat when setting “cat_thresh”.

* In MODE when setting “conv_thresh” and “merge_thresh”.

* In Ensemble-Stat when setting “obs_thresh”.

* When using the “censor_thresh” config option.

* In the Stat-Analysis “-out_fcst_thresh” and “-out_obs_thresh” job command options.

* In the Gen-Vx-Mask “-thresh” command line option.

– The following percentile threshold types are supported:

* “SFP” for a percentile of the sample forecast values. e.g. “>SFP33.3” means greater than the
33.3-rd forecast percentile.

* “SOP” for a percentile of the sample observation values. e.g. “>SOP75” means greater than
the 75-th observation percentile.

* “SCP” for a percentile of the sample climatology values. e.g. “>SCP90” means greater than
the 90-th climatology percentile.

* “USP” for a user-specified percentile threshold. e.g. “<USP90(2.5)” means less than the
90-th percentile values which the user has already determined to be 2.5 outside of MET.

* “==FBIAS” for a user-specified frequency bias value. e.g. “==FBIAS1” to automatically
de-bias the data, “==FBIAS0.9” to select a low-bias threshold, or “==FBIAS1.1” to select a
high-bias threshold. This option must be used in conjunction with a simple threshold in the
other field. For example, when “obs.cat_thresh = >5.0” and “fcst.cat_thresh = ==FBIAS1;”,
MET applies the >5.0 threshold to the observations and then chooses a forecast threshold
which results in a frequency bias of 1. The frequency bias can be any float value > 0.0.

* “CDP” for climatological distribution percentile thresholds. These thresholds require that
the climatological mean and standard deviation be defined using the climo_mean and
climo_stdev config file options, respectively. The categorical (cat_thresh), conditional
(cnt_thresh), or wind speed (wind_thresh) thresholds are defined relative to the climatolog-
ical distribution at each point. Therefore, the actual numeric threshold applied can change

42 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

for each point. e.g. “>CDP50” means greater than the 50-th percentile of the climatological
distribution for each point.

– When percentile thresholds of type SFP, SOP, SCP, or CDP are requested for continuous fil-
tering thresholds (cnt_thresh), wind speed thresholds (wind_thresh), or observation filtering
thresholds (obs_thresh in ensemble_stat), the following special logic is applied. Percentile
thresholds of type equality are automatically converted to percentile bins which span the val-
ues from 0 to 100. For example, “==CDP25” is automatically expanded to 4 percentile bins:
>=CDP0&&<CDP25,>=CDP25&&<CDP50,>=CDP50&&<CDP75,>=CDP75&&<=CDP100

– When sample percentile thresholds of type SFP, SOP, SCP, or FBIAS are requested, MET recom-
putes the actual percentile that the threshold represents. If the requested percentile and actual
percentile differ by more than 5%, a warning message is printed. This may occur when the sample
size is small or the data values are not truly continuous.

– When percentile thresholds of type SFP, SOP, SCP, or USP are used, the actual threshold value
is appended to the FCST_THRESH and OBS_THRESH output columns. For example, if the 90-th
percentile of the current set of forecast values is 3.5, then the requested threshold “<=SFP90” is
written to the output as “<=SFP90(3.5)”.

– When parsing FCST_THRESH and OBS_THRESH columns, the Stat-Analysis tool ignores the ac-
tual percentile values listed in parentheses.

• Piecewise-Linear Function (currently used only by MODE):

– A list of (x, y) points enclosed in parenthesis ().

– The (x, y) points are NOT separated by commas.

• User-defined function of a single variable:

– Left side is a function name followed by variable name in parenthesis.

– Right side is an equation which includes basic math functions (+,-,*,/), built-in functions (listed
below), or other user-defined functions.

– Built-in functions include: sin, cos, tan, sind, cosd, tand, asin, acos, atan, asind, acosd, atand,
atan2, atan2d, arg, argd, log, exp, log10, exp10, sqrt, abs, min, max, mod, floor, ceil, step, nint,
sign

The context of a configuration entry matters. If an entry cannot be found in the expected dictionary, the MET
tools recursively search for that entry in the parent dictionaries, all the way up to the top-level configuration
file dictionary. If you’d like to apply the same setting across all cases, you can simply specify it once at the
top-level. Alternatively, you can specify a setting at the appropriate dictionary level to have finer control
over the behavior.

In order to make the configuration files more readable, several descriptive integer types have been defined
in the ConfigConstants file. These integer names may be used on the right-hand side for many configuration
file entries.

Each of the configurable MET tools expects a certain set of configuration entries. Examples of the MET
configuration files can be found in data/config and scripts/config.

When you pass a configuration file to a MET tool, the tool actually parses up to four different configuration
files in the following order:

43

MET User’s Guide, version 11.1.0-beta2

1. Reads share/met/config/ConfigConstants to define constants.

2. If the tool produces PostScript output, it reads share/met/config/ConfigMapData to define the map data
to be plotted.

3. Reads the default configuration file for the tool from share/met/config.

4. Reads the user-specified configuration file from the command line.

Many of the entries from step (3) are overwritten by the user-specified entries from step (4). Therefore, the
configuration file you pass in on the command line really only needs to contain entries that differ from the
defaults.

Any of the configuration entries may be overwritten by the user-specified configuration file. For example,
the map data to be plotted may be included in the user-specified configuration file and override the default
settings defined in the share/met/config/ConfigMapData file.

The configuration file language supports the use of environment variables. They are specified as
${ENV_VAR}, where ENV_VAR is the name of the environment variable. When scripting up many calls to
the MET tools, you may find it convenient to use them. For example, when applying the same configuration
to the output from multiple models, consider defining the model name as an environment variable which
the controlling script sets prior to verifying the output of each model. Setting MODEL to that environment
variable enables you to use one configuration file rather than maintaining many very similar ones.

An error in the syntax of a configuration file will result in an error from the MET tool stating the location of
the parsing error.

5.1 Runtime Environment Variables

5.1.1 User-Specified Environment Variables

When editing configuration files, environment variables may be used for setting the configurable parameters
if convenient. The configuration file parser expands environment variables to their full value before pro-
ceeding. Within the configuration file, environment variables must be specified in the form ${VAR_NAME}.

For example, using an environment variable to set the message_type (see below) parameter to use ADPUPA
and ADPSFC message types might consist of the following.

Setting the environment variable in a Bash Shell:

export MSG_TYP='"ADPUPA", "ADPSFC"'

Referencing that environment variable inside a MET configuration file:

message_type = [${MSG_TYP}];

In addition to supporting user-specified environment variables within configuration files, the environment
variables listed below have special meaning if set at runtime.

44 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.1.2 MET_AIRNOW_STATIONS

The MET_AIRNOW_STATIONS environment variable can be used to specify a file that will override the
default file. If set, it should be the full path to the file. The default table can be found in the installed
share/met/table_files/airnow_monitoring_site_locations_v2.dat. This file contains ascii column data that al-
lows lookups of latitude, longitude, and elevation for all AirNow stations based on stationId and/or AqSid.

Additional information and updated site locations can be found at the EPA AirNow website. While
some monitoring stations are permanent, others are temporary, and theirs locations can change. When
running the ascii2nc tool with the -format airnowhourly option, users should download the Monitor-
ing_Site_Locations_V2.dat data file data file corresponding to the date being processed and set the
MET_AIRNOW_STATIONS envrionment variable to define its location.

5.1.3 MET_NDBC_STATIONS

The MET_NDBC_STATIONS environment variable can be used to specify a file that will override the de-
fault file. If set it should be a full path to the file. The default table can be found in the installed
share/met/table_files/ndbc_stations.xml. This file contains XML content for all stations that allows lookups
of latitude, longitude, and, in some cases, elevation for all stations based on stationId.

This set of stations comes from 2 online sources: the active stations website and the complete stations web-
site. As these lists can change as a function of time, a script can be run to pull down the contents of both web-
sites and merge any changes with the existing stations file content, creating an updated stations file locally.
The MET_NDBC_STATIONS environment variable can be then set to refer to this newer stations file. Also, the
MET development team will periodically run this script and update share/met/table_files/ndbc_stations.xml.

To run this utility:

build_ndbc_stations_from_web.py <-d> <-p> <-o OUTPUT_FILE>

Usage: build_ndbc_stations_from_web.py [options]
Options:
-h, --help show this help message and exit
-d, --diagnostic Rerun using downlaoded files, skipping download step (optional,␣

→˓default: False)
-p, --prune Prune files that are no longer online (optional, default: False)
-o OUT_FILE, --out=OUT_FILE

Save the text into the named file (optional, default: merged.txt)

NOTE: The downloaded files are written to a subdirectory ndbc_temp_data which can be deleted once the
final output file is created.

5.1. Runtime Environment Variables 45

https://www.airnow.gov
https://test.airnowtech.org/
https://www.ndbc.noaa.gov/activestations.xml
https://www.airnow.gov
https://www.airnow.gov

MET User’s Guide, version 11.1.0-beta2

5.1.4 MET_BASE

The MET_BASE variable is defined in the code at compilation time as the path to the MET shared data.
These are things like the default configuration files, common polygons and color scales. MET_BASE may
be used in the MET configuration files when specifying paths and the appropriate path will be substituted
in. If MET_BASE is defined as an environment variable, its value will be used instead of the one defined at
compilation time.

5.1.5 MET_OBS_ERROR_TABLE

The MET_OBS_ERROR_TABLE environment variable can be set to specify the location of an ASCII
file defining observation error information. The default table can be found in the installed
share/met/table_files/obs_error_table.txt. This observation error logic is applied in Ensemble-Stat to perturb
ensemble member values and/or define observation bias corrections.

When processing point and gridded observations, Ensemble-Stat searches the table to find the entry defining
the observation error information. The table consists of 15 columns and includes a header row defining each
column. The special string “ALL” is interpreted as a wildcard in these files. The first 6 columns (OBS_VAR,
MESSAGE_TYPE, PB_REPORT_TYPE, IN_REPORT_TYPE, INSTRUMENT_TYPE, and STATION_ID) may be
set to a comma-separated list of strings to be matched. In addition, the strings in the OBS_VAR column are
interpreted as regular expressions when searching for a match. For example, setting the OBS_VAR column to
‘APCP_[0-9]+’ would match observations for both APCP_03 and APCP_24. The HGT_RANGE, VAL_RANGE,
and PRS_RANGE columns should either be set to “ALL” or “BEG,END” where BEG and END specify the
range of values to be used. The INST_BIAS_SCALE and INST_BIAS_OFFSET columns define instrument bias
adjustments which are applied to the observation values. The DIST_TYPE and DIST_PARM columns define
the distribution from which random perturbations should be drawn and applied to the ensemble member
values. See the obs_error description below for details on the supported error distributions. The last two
columns, MIN and MAX, define the bounds for the valid range of the bias-corrected observation values and
randomly perturbed ensemble member values. Values less than MIN are reset to the mimimum value and
values greater than MAX are reset to the maximum value. A value of NA indicates that the variable is
unbounded.

5.1.6 MET_GRIB_TABLES

The MET_GRIB_TABLES environment variable can be set to specify the location of custom GRIB tables. It
can either be set to a specific file name or to a directory containing custom GRIB tables files. These file
names must begin with a “grib1” or “grib2” prefix and end with a “.txt” suffix. Their format must match the
format used by the default MET GRIB table files, described below. The custom GRIB tables are read prior to
the default tables and their settings take precedence.

At runtime, the MET tools read default GRIB tables from the installed share/met/table_files directory, and
their file formats are described below:

GRIB1 table files begin with “grib1” prefix and end with a “.txt” suffix. The first line of the file must contain
“GRIB1”. The following lines consist of 4 integers followed by 3 strings:

Column 1: GRIB code (e.g. 11 for temperature)

46 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

Column 2: parameter table version number
Column 3: center id (e.g. 07 for US Weather Service- National Met. Center)
Column 4: subcenter id
Column 5: variable name
Column 6: variable description
Column 7: units

References:

Office Note 388 GRIB1
A Guide to the Code Form FM 92-IX Ext. GRIB Edition 1

GRIB2 table files begin with “grib2” prefix and end with a “.txt” suffix. The first line of the file must contain
“GRIB2”. The following lines consist of 8 integers followed by 3 strings.

Column 1: Section 0 Discipline
Column 2: Section 1 Master Tables Version Number
Column 3: Section 1 Master Tables Version Number, low range of tables
Column 4: Section 1 Master Table Version Number, high range of tables
Column 5: Section 1 originating center
Column 6: Local Tables Version Number
Column 7: Section 4 Template 4.0 Parameter category
Column 8: Section 4 Template 4.0 Parameter number
Column 9: variable name
Column 10: variable description
Column 11: units

References:

NCEP WMO GRIB2 Documentation

5.1. Runtime Environment Variables 47

http://www.nco.ncep.noaa.gov/pmb/docs/on388
http://www.wmo.int/pages/prog/www/WMOCodes/Guides/GRIB/GRIB1-Contents.html
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc

MET User’s Guide, version 11.1.0-beta2

5.1.7 OMP_NUM_THREADS

Introduction

There are a number of different ways of parallelizing code. OpenMP offers parallelism within a single
shared-memory workstation or supercomputer node. The programmer writes OpenMP directives into the
code to parallelize particular code regions.

When a parallelized code region is reached, which we shall hereafter call a parallel region, a number of
threads are spawned and work is shared among them. Running on different cores, this reduces the execution
time. At the end of the parallel region, the code returns to single-thread execution.

A limited number of code regions are parallelized in MET. As a consequence, there are limits to the overall
speed gains acheivable. Only the parallel regions of code will get faster with more threads, leaving the
remaining serial portions to dominate the runtime.

Not all top-level executables use parallelized code. If OpenMP is available, a log message will appear inviting
the user to increase the number of threads for faster runtimes.

Setting the number of threads

The number of threads is controlled by the environment variable OMP_NUM_THREADS . For example, on a
quad core machine, the user might choose to run on 4 threads:

export OMP_NUM_THREADS=4

Alternatively, the variable may be specified as a prefix to the executable itself. For example:

OMP_NUM_THREADS=4 <exec>

The case where this variable remains unset is handled inside the code, which defaults to a single thread.

There are choices when deciding how many threads to use. To perform a single run as fast as possible, it
would likely be appropriate to use as many threads as there are (physical) cores available on the specific
system. However, it is not a cast-iron guarantee that more threads will always translate into more speed.
In theory, there is a chance that running across multiple non-uniform memory access (NUMA) regions may
carry negative performance impacts. This has not been observed in practice, however.

A lower thread count is appropriate when time-to-solution is not so critical, because cores remain idle when
the code is not inside a parallel region. Fewer threads typically means better resource utilization.

Which code is parallelized?

Regions of parallelized code are:

• fractional_coverage (data_plane_util.cc)

Only the following top-level executables can presently benefit from OpenMP parallelization:

• grid_stat

• ensemble_stat

• grid_ens_prod

48 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

Thread Binding

It is normally beneficial to bind threads to particular cores, sometimes called affinitization. There are a few
reasons for this, but at the very least it guarantees that threads remain evenly distributed across the available
cores. Otherwise, the operating system may migrate threads between cores during a run.

OpenMP provides some environment variables to handle this: OMP_PLACES and OMP_PROC_BIND. We anticipate
that the effect of setting only OMP_PROC_BIND=true would be neutral-to-positive.

However, there are sometimes compiler-specific environment variables. Instead, thread affinitization is
sometimes handled by MPI launchers, since OpenMP is often used in MPI codes to reduce intra-node com-
munications.

Where code is running in a production context, it is worth being familiar with the binding / affinitization
method on the particular system and building it into any relevant scripting.

5.2 Settings common to multiple tools

5.2.1 exit_on_warning

The “exit_on_warning” entry in ConfigConstants may be set to true or false. If set to true and a MET tool
encounters a warning, it will immediately exit with bad status after writing the warning message.

exit_on_warning = FALSE;

5.2.2 nc_compression

The “nc_compression” entry in ConfigConstants defines the compression level for the NetCDF variables.
Setting this option in the config file of one of the tools overrides the default value set in ConfigConstants.
The environment variable MET_NC_COMPRESS overrides the compression level from configuration file. The
command line argument “-compress n” for some tools overrides it. The range is 0 to 9.

• 0 is to disable the compression.

• 1 to 9: Lower number is faster, higher number for smaller files.

WARNING: Selecting a high compression level may slow down the reading and writing of NetCDF files
within MET significantly.

nc_compression = 0;

5.2. Settings common to multiple tools 49

MET User’s Guide, version 11.1.0-beta2

5.2.3 output_precision

The “output_precision” entry in ConfigConstants defines the precision (number of significant decimal places)
to be written to the ASCII output files. Setting this option in the config file of one of the tools will override
the default value set in ConfigConstants.

output_precision = 5;

5.2.4 tmp_dir

The “tmp_dir” entry in ConfigConstants defines the directory for the temporary files. The directory must
exist and be writable. The environment variable MET_TMP_DIR overrides the default value at the config-
uration file. Some tools override the temporary directory by the command line argument “-tmp_dir <dire-
tory_name>”.

tmp_dir = "/tmp";

5.2.5 message_type_group_map

The “message_type_group_map” entry is an array of dictionaries, each containing a “key” string and “val”
string. This defines a mapping of message type group names to a comma-separated list of values. This map is
defined in the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify this map to define sets of message
types that should be processed together as a group. The “SURFACE” entry defines message types for which
surface verification logic should be applied. If not defined, the default values listed below are used.

mesage_type_group_map = [
{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; },
{ key = "ANYAIR"; val = "AIRCAR,AIRCFT"; },
{ key = "ANYSFC"; val = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; val = "ADPSFC,SFCSHP"; }

];

5.2.6 message_type_map

The “message_type_map” entry is an array of dictionaries, each containing a “key” string and “val” string.
This defines a mapping of input strings to output message types. This mapping is applied in ASCII2NC when
converting input little_r report types to output message types. This mapping is also supported in PBN2NC
as a way of renaming input PREPBUFR message types.

message_type_map = [
{ key = "FM-12 SYNOP"; val = "ADPSFC"; },
{ key = "FM-13 SHIP"; val = "SFCSHP"; },
{ key = "FM-15 METAR"; val = "ADPSFC"; },
{ key = "FM-18 BUOY"; val = "SFCSHP"; },

(continues on next page)

50 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

{ key = "FM-281 QSCAT"; val = "ASCATW"; },
{ key = "FM-32 PILOT"; val = "ADPUPA"; },
{ key = "FM-35 TEMP"; val = "ADPUPA"; },
{ key = "FM-88 SATOB"; val = "SATWND"; },
{ key = "FM-97 ACARS"; val = "AIRCFT"; }

];

5.2.7 model

The “model” entry specifies a name for the model being verified. This name is written to the MODEL column
of the ASCII output generated. If you’re verifying multiple models, you should choose descriptive model
names (no whitespace) to distinguish between their output. e.g. model = “GFS”;

model = "WRF";

5.2.8 desc

The “desc” entry specifies a user-specified description for each verification task. This string is written to the
DESC column of the ASCII output generated. It may be set separately in each “obs.field” verification task
entry or simply once at the top level of the configuration file. If you’re verifying the same field multiple times
with different quality control flags, you should choose description strings (no whitespace) to distinguish
between their output. e.g. desc = “QC_9”;

desc = "NA";

5.2.9 obtype

The “obtype” entry specifies a name to describe the type of verifying gridded observation used. This name
is written to the OBTYPE column in the ASCII output generated. If you’re using multiple types of verifying
observations, you should choose a descriptive name (no whitespace) to distinguish between their output.
When verifying against point observations the point observation message type value is written to the OBTYPE
column. Otherwise, the configuration file obtype value is written.

obtype = "ANALYS";

5.2. Settings common to multiple tools 51

MET User’s Guide, version 11.1.0-beta2

5.2.10 regrid

The “regrid” entry is a dictionary containing information about how to handle input gridded data files. The
“regrid” entry specifies regridding logic using the following entries:

• The “to_grid” entry may be set to NONE, FCST, OBS, a named grid, the path to a gridded data file
defining the grid, or an explicit grid specification string.

– to_grid = NONE; To disable regridding.

– to_grid = FCST; To regrid observations to the forecast grid.

– to_grid = OBS; To regrid forecasts to the observation grid.

– to_grid = “G218”; To regrid both to a named grid.

– to_grid = “path”; To regrid both to a grid defined by a file.

– to_grid = “spec”; To define a grid specification string, as described in Appendix B Map Projections,
Grids, and Polylines (page 489).

• The “vld_thresh” entry specifies a proportion between 0 and 1 to define the required ratio of valid
data points. When regridding, compute a ratio of the number of valid data points to the total number
of points in the neighborhood. If that ratio is less than this threshold, write bad data for the current
point.

• The “method” entry defines the regridding method to be used.

– Valid regridding methods:

* MIN for the minimum value

* MAX for the maximum value

* MEDIAN for the median value

* UW_MEAN for the unweighted average value

* DW_MEAN for the distance-weighted average value (weight = distance^-2)

* AW_MEAN for an area-weighted mean when regridding from high to low resolution grids
(width = 1)

* LS_FIT for a least-squares fit

* BILIN for bilinear interpolation (width = 2)

* NEAREST for the nearest grid point (width = 1)

* BUDGET for the mass-conserving budget interpolation

* FORCE to compare gridded data directly with no interpolation as long as the grid x and y
dimensions match.

* UPPER_LEFT for the upper left grid point (width = 1)

* UPPER_RIGHT for the upper right grid point (width = 1)

* LOWER_RIGHT for the lower right grid point (width = 1)

52 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

* LOWER_LEFT for the lower left grid point (width = 1)

* MAXGAUSS to compute the maximum value in the neighborhood and apply a Gaussian
smoother to the result

The BEST, GEOG_MATCH, and HIRA options are not valid for regridding.

• The “width” entry specifies a regridding width, when applicable. - width = 4; To regrid using a 4x4
box or circle with diameter 4.

• The “shape” entry defines the shape of the neighborhood. Valid values are “SQUARE” or “CIRCLE”

• The “gaussian_dx” entry specifies a delta distance for Gaussian smoothing. The default is 81.271.
Ignored if not Gaussian method.

• The “gaussian_radius” entry defines the radius of influence for Gaussian smoothing. The default is
120. Ignored if not Gaussian method.

• The “gaussian_dx” and “gaussian_radius” settings must be in the same units, such as kilometers or
degress. Their ratio (sigma = gaussian_radius / gaussian_dx) determines the Guassian weighting
function.

• The “convert”, “censor_thresh”, and “censor_val” entries are described below. When specified, these
operations are applied to the output of the regridding step. The conversion operation is applied first,
followed by the censoring operation. Note that these operations are limited in scope. They are only
applied if defined within the regrid dictionary itself. Settings defined at higher levels of config file
context are not applied.

regrid = {
to_grid = NONE;
method = NEAREST;
width = 1;
vld_thresh = 0.5;
shape = SQUARE;
gaussian_dx = 81.271;
gaussian_radius = 120;
convert(x) = x;
censor_thresh = [];
censor_val = [];

}

5.2.11 fcst

The “fcst” entry is a dictionary containing information about the field(s) to be verified. This dictionary may
include the following entries:

• The “field” entry is an array of dictionaries, each specifying a verification task. Each of these dictionar-
ies may include:

– The “name” entry specifies a name for the field.

– The “level” entry specifies level information for the field.

5.2. Settings common to multiple tools 53

MET User’s Guide, version 11.1.0-beta2

– Setting “name” and “level” is file-format specific. See below.

– The “prob” entry in the forecast dictionary defines probability information. It may either be set
as a boolean (i.e. TRUE or FALSE) or as a dictionary defining probabilistic field information.

When set as a boolean to TRUE, it indicates that the “fcst.field” data should be treated as proba-
bilities. For example, when verifying the probabilistic NetCDF output of Ensemble-Stat, one could
configure the Grid-Stat or Point-Stat tools as follows:

fcst = {
field = [{ name = "APCP_24_A24_ENS_FREQ_gt0.0";

level = "(*,*)";
prob = TRUE; }];

}

Setting “prob = TRUE” indicates that the “APCP_24_A24_ENS_FREQ_gt0.0” data should be pro-
cessed as probabilities.

When set as a dictionary, it defines the probabilistic field to be used. For example, when verifying
GRIB files containing probabilistic data, one could configure the Grid-Stat or Point-Stat tools as
follows:

fcst = {
field = [{ name = "PROB"; level = "A24";

prob = { name = "APCP"; thresh_lo = 2.54; } },
{ name = "PROB"; level = "P850";
prob = { name = "TMP"; thresh_hi = 273; } }];

}

The example above selects two probabilistic fields. In both, “name” is set to “PROB”, the GRIB
abbreviation for probabilities. The “level” entry defines the level information (i.e. “A24” for a
24-hour accumulation and “P850” for 850mb). The “prob” dictionary defines the event for which
the probability is defined. The “thresh_lo” (i.e. APCP > 2.54) and/or “thresh_hi” (i.e. TMP <
273) entries are used to define the event threshold(s).

Probability fields should contain values in the range [0, 1] or [0, 100]. However, when MET
encounters a probability field with a range [0, 100], it will automatically rescale it to be [0, 1]
before applying the probabilistic verification methods.

– Set “prob_as_scalar = TRUE” to override the processing of probability data. When the “prob”
entry is set as a dictionary to define the field of interest, setting “prob_as_scalar = TRUE” indicates
that this data should be processed as regular scalars rather than probabilities. For example, this
option can be used to compute traditional 2x2 contingency tables and neighborhood verification
statistics for probability data. It can also be used to compare two probability fields directly. When
this flag is set, probability values are automatically rescaled from the range [0, 100] to [0, 1].

– The “convert” entry is a user-defined function of a single variable for processing input data values.
Any input values that are not bad data are replaced by the value of this function. The convert
function is applied prior to regridding or thresholding. This function may include any of the
built-in math functions (e.g. sqrt, log10) described above. Several standard unit conversion func-
tions are already defined in data/config/ConfigConstants. Examples of user-defined conversion

54 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

functions include:

convert(x) = 2*x;
convert(x) = x^2;
convert(a) = log10(a);
convert(a) = a^10;
convert(t) = max(1, sqrt(abs(t)));
convert(x) = K_to_C(x); where K_to_C(x) is defined in

ConfigConstants

– The “censor_thresh” entry is an array of thresholds to be applied to the input data. The “cen-
sor_val” entry is an array of numbers and must be the same length as “censor_thresh”. These
arguments must appear together in the correct format (threshold and number). For each censor
threshold, any input values meeting the threshold criteria will be reset to the corresponding cen-
sor value. An empty list indicates that no censoring should be performed. The censoring logic
is applied prior to any regridding but after the convert function. All statistics are computed on
the censored data. These entries may be used to apply quality control logic by resetting data
outside of an expected range to the bad data value of -9999. These entries are not indicated in
the metadata of any output files, but the user can set the “desc” entry accordingly.

Examples of user-defined data censoring operations include:

censor_thresh = [>12000];
censor_val = [12000];

– Several configuration options are provided to override and correct the metadata read from the
input file. The supported options are listed below:

// Data attributes
set_attr_name = "string";
set_attr_level = "string";
set_attr_units = "string";
set_attr_long_name = "string";

// Time attributes
set_attr_init = "YYYYMMDD[_HH[MMSS]]";
set_attr_valid = "YYYYMMDD[_HH[MMSS]]";
set_attr_lead = "HH[MMSS]";
set_attr_accum = "HH[MMSS]";

// Grid definition (must match the actual data dimensions)
set_attr_grid = "named grid or grid specification string";

// Flags
is_precipitation = boolean;
is_specific_humidity = boolean;
is_u_wind = boolean;
is_v_wind = boolean;

(continues on next page)

5.2. Settings common to multiple tools 55

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

is_grid_relative = boolean;
is_wind_speed = boolean;
is_wind_direction = boolean;
is_prob = boolean;

– The “mpr_column” and “mpr_thresh” entries are arrays of strings and thresholds to specify which
matched pairs should be included in the statistics. These options apply to the Point-Stat and
Grid-Stat tools. They are parsed seperately for each “obs.field” array entry. The “mpr_column”
strings specify MPR column names (“FCST”, “OBS”, “CLIMO_MEAN”, “CLIMO_STDEV”, or
“CLIMO_CDF”), differences of columns (“FCST-OBS”), or the absolute value of those differ-
ences (“ABS(FCST-OBS)”). The number of “mpr_thresh” thresholds must match the number of
“mpr_column” entries, and the n-th threshold is applied to the n-th column. Any matched pairs
which do not meet any of the specified thresholds are excluded from the analysis. For example,
the following settings exclude matched pairs where the observation value differs from the forecast
or climatological mean values by more than 10:

mpr_column = ["ABS(OBS-FCST)", "ABS(OBS-CLIMO_MEAN)"];
mpr_thresh = [<=10, <=10];

– The “cat_thresh” entry is an array of thresholds to be used when computing categorical statistics.

– The “cnt_thresh” entry is an array of thresholds for filtering data prior to computing continuous
statistics and partial sums.

– The “cnt_logic” entry may be set to UNION, INTERSECTION, or SYMDIFF and controls the logic
for how the forecast and observed cnt_thresh settings are combined when filtering matched pairs
of forecast and observed values.

• The “file_type” entry specifies the input gridded data file type rather than letting the code deter-
mine it. MET determines the file type by checking for known suffixes and examining the file con-
tents. Use this option to override the code’s choice. The valid file_type values are listed the
“data/config/ConfigConstants” file and are described below. This entry should be defined within the
“fcst” and/or “obs” dictionaries. For example:

fcst = {
file_type = GRIB1; GRIB version 1
file_type = GRIB2; GRIB version 2
file_type = NETCDF_MET; NetCDF created by another MET tool
file_type = NETCDF_PINT; NetCDF created by running the p_interp

or wrf_interp utility on WRF output.
May be used to read unstaggered raw WRF
NetCDF output at the surface or a
single model level.

file_type = NETCDF_NCCF; NetCDF following the Climate Forecast
(CF) convention.

file_type = PYTHON_NUMPY; Run a Python script to load data into
a NumPy array.

file_type = PYTHON_XARRAY; Run a Python script to load data into
(continues on next page)

56 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

an xarray object.
}

• The “wind_thresh” entry is an array of thresholds used to filter wind speed values when computing
VL1L2 vector partial sums. Only those U/V pairs that meet this wind speed criteria will be included in
the sums. Setting this threshold to NA will result in all U/V pairs being used.

• The “wind_logic” entry may be set to UNION, INTERSECTION, or SYMDIFF and controls the logic
for how the forecast and observed wind_thresh settings are combined when filtering matched pairs of
forecast and observed wind speeds.

• The “eclv_points” entry specifies the economic cost/loss ratio points to be evaluated. For each cost/loss
ratio specified, the relative value will be computed and written to the ECLV output line. This entry may
either be specified as an array of numbers between 0 and 1 or as a single number. For an array, each
array entry will be evaluated. For a single number, all evenly spaced points between 0 and 1 will be
evaluated, where eclv_points defines the spacing. Cost/loss values are omitted for ratios of 0.0 and
1.0 since they are undefined.

• The “init_time” entry specifies the initialization time in YYYYMMDD[_HH[MMSS]] format. This entry
can be included in the “fcst” entry as shown below or included in the “field” entry if the user would
like to use different initialization times for different fields.

• The “valid_time” entry specifies the valid time in YYYYMMDD[_HH[MMSS]] format. This entry can
be included in the “fcst” entry as shown below or included in the “field” entry if the user would like to
use different valid times for different fields.

• The “lead_time” entry specifies the lead time in HH[MMSS] format. This entry can be included in the
“fcst” entry as shown below or included in the “field” entry if the user would like to use different lead
times for different fields.

It is only necessary to use the “init_time”, “valid_time”, and/or “lead_time” settings when verifying a file
containing data for multiple output times. For example, to verify a GRIB file containing data for many lead
times, you could use “lead_time” to specify the record to be verified.

File-format specific settings for the “field” entry:

• GRIB1 and GRIB2:

– For custom GRIB tables, see note about MET_GRIB_TABLES.

– The “name” entry specifies a GRIB code number or abbreviation.

* GRIB1 Product Definition Section

* GRIB2 Product Definition Section

– The “level” entry specifies a level type and value:

* ANNN for accumulation interval NNN

* ZNNN for vertical level NNN

* ZNNN-NNN for a range of vertical levels

* PNNN for pressure level NNN in hPa

5.2. Settings common to multiple tools 57

http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc

MET User’s Guide, version 11.1.0-beta2

* PNNN-NNN for a range of pressure levels in hPa

* LNNN for a generic level type

* RNNN for a specific GRIB record number

– The “GRIB_lvl_typ” entry is an integer specifying the level type.

– The “GRIB_lvl_val1” and “GRIB_lvl_val2” entries are floats specifying the first and second level
values.

– The “GRIB_ens” entry is a string specifying NCEP’s usage of the extended PDS for ensembles. Set
to “hi_res_ctl”, “low_res_ctl”, “+n”, or “-n”, for the n-th ensemble member.

– The “GRIB1_ptv” entry is an integer specifying the GRIB1 parameter table version number.

– The “GRIB1_code” entry is an integer specifying the GRIB1 code (wgrib kpds5 value).

– The “GRIB1_center” is an integer specifying the originating center.

– The “GRIB1_subcenter” is an integer specifying the originating subcenter.

– The “GRIB1_tri” is an integer specifying the time range indicator.

– The “GRIB2_mtab” is an integer specifying the master table number.

– The “GRIB2_ltab” is an integer specifying the local table number.

– The “GRIB2_disc” is an integer specifying the GRIB2 discipline code.

– The “GRIB2_parm_cat” is an integer specifying the parameter category code.

– The “GRIB2_parm” is an integer specifying the parameter code.

– The “GRIB2_pdt” is an integer specifying the product definition template (Table 4.0).

– The “GRIB2_process” is an integer specifying the generating process (Table 4.3).

– The “GRIB2_cntr” is an integer specifying the originating center.

– The “GRIB2_ens_type” is an integer specifying the ensemble type (Table 4.6).

– The “GRIB2_der_type” is an integer specifying the derived product type (Table 4.7).

– The “GRIB2_stat_type” is an integer specifying the statistical processing type (Table 4.10).

– The “GRIB2_perc_val” is an integer specifying the requested percentile value (0 to 100) to be
used. This applies only to GRIB2 product definition templates 4.6 and 4.10.

– The “GRIB2_ipdtmpl_index” and “GRIB2_ipdtmpl_val” entries are arrays of integers which specify
the product description template values to be used. The indices are 0-based. For example, use the
following to request a GRIB2 record whose 9-th and 27-th product description template values
are 1 and 2, respectively:

GRIB2_ipdtmpl_index=[8, 26]; GRIB2_ipdtmpl_val=[1, 2];

• NetCDF (from MET tools, CF-compliant, p_interp, and wrf_interp):

– The “name” entry specifies the NetCDF variable name.

– The “level” entry specifies the dimensions to be used:

58 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

* (i,. . . ,j,*,*) for a single field, where i,. . . ,j specifies fixed dimension values and , specifies the
two dimensions for the gridded field. @ specifies the vertical level value or time value instead
of offset, (i,. . . ,@NNN,*,*). For example:

field = [
{
name = "QVAPOR";
level = "(0,5,*,*)";

},
{
name = "TMP_P850_ENS_MEAN";
level = ["(*,*)"];

}
];

field = [
{
name = "QVAPOR";
level = "(@20220601_1200,@850,*,*)";

},
{
name = "TMP_P850_ENS_MEAN";
level = ["(*,*)"];

}
];

• Python (using PYTHON_NUMPY or PYTHON_XARRAY):

– The Python interface for MET is described in Appendix F of the MET User’s Guide.

– Two methods for specifying the Python command and input file name are supported. For tools
which read a single gridded forecast and/or observation file, both options work. However, only
the second option is supported for tools which read multiple gridded data files, such as Ensemble-
Stat, Series-Analysis, and MTD.

Option 1:

– On the command line, replace the path to the input gridded data file with the constant string
PYTHON_NUMPY or PYTHON_XARRAY.

– Specify the configuration “name” entry as the Python command to be executed to read the data.

– The “level” entry is not required for Python.

For example:

field = [
{ name = "read_ascii_numpy.py data/python/fcst.txt FCST"; }

];

Option 2:

5.2. Settings common to multiple tools 59

MET User’s Guide, version 11.1.0-beta2

– On the command line, leave the path to the input gridded data as is.

– Set the configuration “file_type” entry to the constant PYTHON_NUMPY or PYTHON_XARRAY.

– Specify the configuration “name” entry as the Python command to be executed to read the data,
but replace the input gridded data file with the constant MET_PYTHON_INPUT_ARG.

– The “level” entry is not required for Python.

For example:

file_type = PYTHON_NUMPY;
field = [

{ name = "read_ascii_numpy.py MET_PYTHON_INPUT_ARG FCST"; }
];

fcst = {
censor_thresh = [];
censor_val = [];
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;
eclv_points = 0.05;
message_type = ["ADPSFC"];
init_time = "20120619_12";
valid_time = "20120620_00";
lead_time = "12";

field = [
{
name = "APCP";
level = ["A03"];
cat_thresh = [>0.0, >=5.0];

}
];

}

5.2.12 obs

The “obs” entry specifies the same type of information as “fcst”, but for the observation data. It will often
be set to the same things as “fcst”, as shown in the example below. However, when comparing forecast and
observation files of different format types, this entry will need to be set in a non-trivial way. The length of
the “obs.field” array must match the length of the “fcst.field” array. For example:

obs = fcst;

or

60 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

fcst = {
censor_thresh = [];
censor_val = [];
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;

field = [
{

name = "PWAT";
level = ["L0"];
cat_thresh = [>2.5];

}
];

}

obs = {
censor_thresh = [];
censor_val = [];
mpr_column = [];
mpr_thresh = [];
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;

field = [
{

name = "IWV";
level = ["L0"];
cat_thresh = [>25.0];

}
];

}

• The “message_type” entry is an array of point observation message types to be used. This only applies
to the tools that verify against point observations. This may be specified once at the top-level “obs”
dictionary or separately for each “field” array element. In the example shown above, this is specified
in the “fcst” dictionary and copied to “obs”.

• Simplified vertical level matching logic is applied for surface message types. Observations for
the following message types are assumed to be at the surface, as defined by the default mes-
sage_type_group_map: ADPSFC, SFCSHP, MSONET

• The “message_type” would be placed in the “field” array element if more than one “message_type”
entry is desired within the config file. For example:

5.2. Settings common to multiple tools 61

MET User’s Guide, version 11.1.0-beta2

fcst = {
censor_thresh = [];
censor_val = [];
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;

field = [
{

message_type = ["ADPUPA"];
sid_inc = [];
sid_exc = [];
name = "TMP";
level = ["P250", "P500", "P700", "P850", "P1000"];
cat_thresh = [<=273.0];

},
{
message_type = ["ADPSFC"];
sid_inc = [];
sid_exc = ["KDEN", "KDET"];
name = "TMP";
level = ["Z2"];
cat_thresh = [<=273.0];

}
];

}

• The “sid_inc” entry is an array of station ID groups indicating which station ID’s should be included in
the verification task. If specified, only those station ID’s appearing in the list will be included. Note
that filtering by station ID may also be accomplished using the “mask.sid” option. However, when
using the “sid_inc” option, statistics are reported separately for each masking region.

• The “sid_exc” entry is an array of station ID groups indicating which station ID’s should be excluded
from the verification task.

• Each element in the “sid_inc” and “sid_exc” arrays is either the name of a single station ID or the full
path to a station ID group file name. A station ID group file consists of a name for the group followed
by a list of station ID’s. All of the station ID’s indicated will be concatenated into one long list of station
ID’s to be included or excluded.

• As with “message_type” above, the “sid_inc” and “sid_exc” settings can be placed in the in the “field”
array element to control which station ID’s are included or excluded for each verification task.

obs = fcst;

62 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.2.13 climo_mean

The “climo_mean” dictionary specifies climatology mean data to be read by the Grid-Stat, Point-Stat,
Ensemble-Stat, and Series-Analysis tools. It consists of several entires defining the climatology file names
and fields to be used.

• The “file_names” entry specifies one or more file names containing the gridded climatology data to be
used.

• The “field” entry is an array of dictionaries, specified the same way as those in the “fcst” and “obs”
dictionaries. If the array has length zero, not climatology data will be read and all climatology statistics
will be written as missing data. Otherwise, the array length must match the length of “field” in the
“fcst” and “obs” dictionaries.

• The “regrid” dictionary defines how the climatology data should be regridded to the verification do-
main.

• The “time_interp_method” entry specifies how the climatology data should be interpolated in time to
the forecast valid time:

• NEAREST for data closest in time

• UW_MEAN for average of data before and after

• DW_MEAN for linear interpolation in time of data before and after

• The “day_interval” entry is an integer specifying the spacing in days of the climatology data. Use 31 for
monthly data or 1 for daily data. Use “NA” if the timing of the climatology data should not be checked.

• The “hour_interval” entry is an integer specifying the spacing in hours of the climatology data for each
day. This should be set between 0 and 24, with 6 and 12 being common choices. Use “NA” if the timing
of the climatology data should not be checked.

• The “day_interval” and “hour_interval” entries replace the deprecated entries “match_month”,
“match_day”, and “time_step”.

climo_mean = {

file_name = ["/path/to/climatological/mean/files"];
field = [];

regrid = {
method = NEAREST;
width = 1;
vld_thresh = 0.5;

}

time_interp_method = DW_MEAN;
day_interval = 31;
hour_interval = 6;

}

5.2. Settings common to multiple tools 63

MET User’s Guide, version 11.1.0-beta2

5.2.14 climo_stdev

The “climo_stdev” dictionary specifies climatology standard deviation data to be read by the Grid-Stat, Point-
Stat, Ensemble-Stat, and Series-Analysis tools. The “climo_mean” and “climo_stdev” data define the clima-
tological distribution for each grid point, assuming normality. These climatological distributions are used in
two ways:

(1) To define climatological distribution percentile (CDP) thresholds which can be used as categorical
(cat_thresh), continuous (cnt_thresh), or wind speed (wind_thresh) thresholds.

(2) To subset matched pairs into climatological bins based on where the observation value falls within the
climatological distribution. See the “climo_cdf” dictionary.

This dictionary is identical to the “climo_mean” dictionary described above but points to files containing
climatological standard deviation values rather than means. In the example below, this dictionary is set by
copying over the “climo_mean” setting and then updating the “file_name” entry.

climo_stdev = climo_mean;
climo_stdev = {

file_name = ["/path/to/climatological/standard/deviation/files"];
}

5.2.15 climo_cdf

The “climo_cdf” dictionary specifies how the the climatological mean (“climo_mean”) and standard devia-
tion (“climo_stdev”) data are used to evaluate model performance relative to where the observation value
falls within the climatological distribution. This dictionary consists of the following entries:

(1) The “cdf_bins” entry defines the climatological bins either as an integer or an array of floats between
0 and 1.

(2) The “center_bins” entry may be set to TRUE or FALSE.

(3) The “write_bins” entry may be set to TRUE or FALSE.

(4) The “direct_prob” entry may be set to TRUE or FALSE.

MET uses the climatological mean and standard deviation to construct a normal PDF at each observation
location. The total area under the PDF is 1, and the climatological CDF value is computed as the area of the
PDF to the left of the observation value. Since the CDF is a value between 0 and 1, the CDF bins must span
that same range.

When “cdf_bins” is set to an array of floats, they explicitly define the climatological bins. The array must
begin with 0.0 and end with 1.0. For example:

cdf_bins = [0.0, 0.10, 0.25, 0.75, 0.90, 1.0];

When “cdf_bins” is set to an integer, it defines the number of bins to be used. The “center_bins” flag indicates
whether or not the bins should be centered on 0.5. An odd number of bins can be centered or uncentered
while an even number of bins can only be uncentered. For example:

64 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

4 uncentered bins (cdf_bins = 4; center_bins = FALSE;) yields:
0.0, 0.25, 0.50, 0.75, 1.0

5 uncentered bins (cdf_bins = 5; center_bins = FALSE;) yields:
0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0

5 centered bins (cdf_bins = 5; center_bins = TRUE;) yields:
0.0, 0.125, 0.375, 0.625, 0.875, 1.0

When multiple climatological bins are used for Point-Stat and Grid-Stat, statistics are computed separately
for each bin, and the average of the statistics across those bins is written to the output. When “write_bins”
is true, the statistics for each bin are also written to the output. The bin number is appended to the contents
of the VX_MASK output column.

Setting the number of bins to 1 effectively disables this logic by grouping all pairs into a single climatological
bin.

climo_cdf = {
cdf_bins = 11; or an array of floats
center_bins = TRUE; or FALSE
write_bins = FALSE; or TRUE
direct_prob = FALSE; or TRUE

}

5.2.16 climato_data

When specifying climatology data for probability forecasts, either supply a probabilistic “climo_mean” field
or non-probabilistic “climo_mean” and “climo_stdev” fields from which a normal approximation of the cli-
matological probabilities should be derived.

When “climo_mean” is set to a probability field with a range of [0, 1] and “climo_stdev” is unset, the MET
tools use the “climo_mean” probability values directly to compute Brier Skill Score (BSS).

When “climo_mean” and “climo_stdev” are both set to non-probability fields, the MET tools use the mean,
standard deviation, and observation event threshold to derive a normal approximation of the climatological
probabilities.

The “direct_prob” option controls the derivation logic. When “direct_prob” is true, the climatological prob-
ability is computed directly from the climatological distribution at each point as the area to the left of the
event threshold value. For greater-than or greater-than-or-equal-to thresholds, 1.0 minus the area is used.
When “direct_prob” is false, the “cdf_bins” values are sampled from climatological distribution. The prob-
ability is computed as the proportion of those samples which meet the threshold criteria. In this way, the
number of bins impacts the resolution of the climatological probabilities. These derived probability values
are used to compute the climatological Brier Score and Brier Skill Score.

The “seeps_p1_thresh” option controls the threshold of p1 (probability of being dry) values.

seeps_p1_thresh = >=0.1&&<=0.85;

5.2. Settings common to multiple tools 65

MET User’s Guide, version 11.1.0-beta2

5.2.17 mask_missing_flag

The “mask_missing_flag” entry specifies how missing data should be handled in the Wavelet-Stat and MODE
tools:

• “NONE” to perform no masking of missing data

• “FCST” to mask the forecast field with missing observation data

• “OBS” to mask the observation field with missing forecast data

• “BOTH” to mask both fields with missing data from the other

mask_missing_flag = BOTH;

5.2.18 obs_window

The “obs_window” entry is a dictionary specifying a beginning (“beg” entry) and ending (“end” entry) time
offset values in seconds. It defines the time window over which observations are retained for scoring. These
time offsets are defined relative to a reference time t, as [t+beg, t+end]. In PB2NC, the reference time is
the PREPBUFR files center time. In Point-Stat and Ensemble-Stat, the reference time is the forecast valid
time.

obs_window = {
beg = -5400;
end = 5400;

}

5.2.19 mask

The “mask” entry is a dictionary that specifies the verification masking regions to be used when computing
statistics. Each mask defines a geographic extent, and any matched pairs falling inside that area will be used
in the computation of statistics. Masking regions may be specified in the following ways:

• The “grid” entry is an array of named grids. It contains a comma-separated list of pre-defined NCEP
grids over which to perform verification. An empty list indicates that no masking grids should be
used. The standard NCEP grids are named “GNNN” where NNN indicates the three digit grid number.
Supplying a value of “FULL” indicates that the verification should be performed over the entire grid
on which the data resides. See: ON388 - TABLE B, GRID IDENTIFICATION (PDS Octet 7), MASTER
LIST OF NCEP STORAGE GRIDS, GRIB Edition 1 (FM92). The “grid” entry can be the gridded data
file defining grid.

• The “poly” entry contains a comma-separated list of files that define verification masking regions.
These masking regions may be specified in two ways: as a lat/lon polygon or using a gridded data file
such as the NetCDF output of the Gen-Vx-Mask tool.

– An ASCII file containing a lat/lon polygon. Latitude in degrees north and longitude in degrees
east. The first and last polygon points are connected. For example, “MET_BASE/poly/EAST.poly”
which consists of n points: “poly_name lat1 lon1 lat2 lon2. . . latn lonn”

66 Chapter 5. Configuration File Overview

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html

MET User’s Guide, version 11.1.0-beta2

Several masking polygons used by NCEP are predefined in the installed share/met/poly directory.
Creating a new polygon is as simple as creating a text file with a name for the polygon followed
by the lat/lon points which define its boundary. Adding a new masking polygon requires no
code changes and no recompiling. Internally, the lat/lon polygon points are converted into x/y
values in the grid. The lat/lon values for the observation points are also converted into x/y grid
coordinates. The computations performed to check whether the observation point falls within the
polygon defined is done in x/y grid space.

– The NetCDF output of the gen_vx_mask tool.

– Any gridded data file that MET can read may be used to define a verification masking region.
Users must specify a description of the field to be used from the input file and, optionally, may
specify a threshold to be applied to that field. Once this threshold is applied, any grid point where
the resulting field is 0, the mask is turned off. Any grid point where it is non-zero, the mask is
turned on. For example, “sample.grib {name = "TMP"; level = "Z2";} >273”

• The “sid” entry is an array of strings which define groups of observation station ID’s over which to
compute statistics. Each entry in the array is either a filename of a comma-separated list.

– For a filename, the strings are whitespace-separated. The first string is the mask “name” and the
remaining strings are the station ID’s to be used.

– For a comma-separated list, optionally use a colon to specify a name. For “MY_LIST:SID1,SID2”,
name = MY_LIST and values = SID1 and SID2.

– For a comma-separated list of length one with no name specified, the mask “name” and value are
both set to the single station ID string. For “SID1”, name = SID1 and value = SID1.

– For a comma-separated list of length greater than one with no name specified, the name is set to
MASK_SID and the values are the station ID’s to be used. For “SID1,SID2”, name = MASK_SID
and values = SID1 and SID2.

– The “name” of the station ID mask is written to the VX_MASK column of the MET output files.

• The “llpnt” entry is either a single dictionary or an array of dictionaries. Each dictionary contains
three entries, the “name” for the masking region, “lat_thresh”, and “lon_thresh”. The latitude and
longitude thresholds are applied directly to the point observation latitude and longitude values. Only
observations whose latitude and longitude values meet this threshold criteria are used. A threshold set
to “NA” always evaluates to true.

The masking logic for processing point observations in Point-Stat and Ensemble-Stat fall into two cateogries.
The “sid” and “llpnt” options apply directly to the point observations. Only those observations for the
specified station id’s are included in the “sid” masks. Only those observations meeting the latitude and
longitude threshold criteria are included in the “llpnt” masks.

The “grid” and “poly” mask options are applied to the grid points of the verification domain. Each grid point
is determined to be inside or outside the masking region. When processing point observations, their latitude
and longitude values are rounded to the nearest grid point of the verification domain. If the nearest grid
point is inside the mask, that point observation is included in the mask.

mask = {
grid = ["FULL"];

(continues on next page)

5.2. Settings common to multiple tools 67

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

poly = ["MET_BASE/poly/LMV.poly",
"MET_BASE/out/gen_vx_mask/CONUS_poly.nc",
"MET_BASE/sample_fcst/2005080700/wrfprs_ruc13_12.tm00_G212 \
{name = \"TMP\"; level = \"Z2\";} >273"

];
sid = ["CONUS.stations"];
llpnt = [{ name = "LAT30TO40";

lat_thresh = >=30&&<=40;
lon_thresh = NA; },

{ name = "BOX";
lat_thresh = >=20&&<=40;
lon_thresh = >=-110&&<=-90; }];

}

5.2.20 ci_alpha

The “ci_alpha” entry is an array of floats specifying the values for alpha to be used when computing confi-
dence intervals. Values of alpha must be between 0 and 1. The confidence interval computed is 1 minus the
alpha value. Therefore, an alpha value of 0.05 corresponds to a 95% confidence interval.

ci_alpha = [0.05, 0.10];

5.2.21 boot

The “boot” entry defines the parameters to be used in calculation of bootstrap confidence intervals. The
interval variable indicates what method should be used for computing bootstrap confidence intervals:

• The “interval” entry specifies the confidence interval method:

– “BCA” for the BCa (bias-corrected percentile) interval method is highly accurate but computation-
ally intensive.

– “PCTILE” uses the percentile method which is somewhat less accurate but more efficient.

• The “rep_prop” entry specifies a proportion between 0 and 1 to define the replicate sample size to
be used when computing percentile intervals. The replicate sample size is set to boot_rep_prop * n,
where n is the number of raw data points.

When computing bootstrap confidence intervals over n sets of matched pairs, the size of the subsample,
m, may be chosen less than or equal to the size of the sample, n. This variable defines the size of m as
a proportion relative to the size of n. A value of 1 indicates that the size of the subsample, m, should
be equal to the size of the sample, n.

• The “n_rep” entry defines the number of subsamples that should be taken when computing bootstrap
confidence intervals. This variable should be set large enough so that when confidence intervals are
computed multiple times for the same set of data, the intervals do not change much. Setting this
variable to zero disables the computation of bootstrap confidence intervals, which may be necessary

68 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

to run MET in realtime or near-realtime over large domains since bootstrapping is computationally ex-
pensive. Setting this variable to 1000 indicates that bootstrap confidence interval should be computed
over 1000 subsamples of the matched pairs.

• The “rng” entry defines the random number generator to be used in the computation of bootstrap
confidence intervals. Subsamples are chosen at random from the full set of matched pairs. The ran-
domness is determined by the random number generator specified. Users should refer to detailed
documentation of the GNU Scientific Library for a listing of the random number generators available
for use.

• The “seed” entry may be set to a specific value to make the computation of bootstrap confidence
intervals fully repeatable. When left empty the random number generator seed is chosen automatically
which will lead to slightly different bootstrap confidence intervals being computed each time the data
is run. Specifying a value here ensures that the bootstrap confidence intervals will be reproducable
over multiple runs on the same computing platform.

boot = {
interval = PCTILE;
rep_prop = 1.0;
n_rep = 0;
rng = "mt19937";
seed = "";

}

5.2.22 interp

The “interp” entry is a dictionary that specifies what interpolation or smoothing (for the Grid-Stat tool)
methods should be applied. This dictionary may include the following entries:

• The “field” entry specifies to which field(s) the interpolation method should be applied. This does not
apply when doing point verification with the Point-Stat or Ensemble-Stat tools:

– “FCST” to interpolate/smooth the forecast field.

– “OBS” to interpolate/smooth the observation field.

– “BOTH” to interpolate/smooth both the forecast and the observation.

• The “vld_thresh” entry specifies a number between 0 and 1. When performing interpolation over some
neighborhood of points the ratio of the number of valid data points to the total number of points in
the neighborhood is computed. If that ratio is less than this threshold, the matched pair is discarded.
Setting this threshold to 1, which is the default, requires that the entire neighborhood must contain
valid data. This variable will typically come into play only along the boundaries of the verification
region chosen.

• The “shape” entry may be set to SQUARE or CIRCLE to specify the shape of the smoothing area.

• The “type” entry is an array of dictionaries, each specifying one or more interpolation methods and
widths. Interpolation is performed over an N by N box centered on each point, where N is the width
specified. Each of these dictionaries must include:

5.2. Settings common to multiple tools 69

https://www.gnu.org/software/gsl/doc/html/rng.html

MET User’s Guide, version 11.1.0-beta2

– The “width” entry is an array of integers to specify the size of the interpolation area. The area
is either a square or circle containing the observation point. The width value specifies the width
of the square or diameter of the circle. A width value of 1 is interpreted as the nearest neighbor
model grid point to the observation point. For squares, a width of 2 defines a 2 x 2 box of grid
points around the observation point (the 4 closest model grid points), while a width of 3 defines
a 3 x 3 box of grid points around the observation point, and so on. For odd widths in grid-to-point
comparisons (i.e. Point-Stat), the interpolation area is centered on the model grid point closest
to the observation point. For grid-to-grid comparisons (i.e. Grid-Stat), the width must be odd.

– The “method” entry is an array of interpolation procedures to be applied to the points in the box:

* MIN for the minimum value

* MAX for the maximum value

* MEDIAN for the median value

* UW_MEAN for the unweighted average value

* DW_MEAN for the distance-weighted average value where weight = distance^-2

* LS_FIT for a least-squares fit

* BILIN for bilinear interpolation (width = 2)

* NEAREST for the nearest grid point (width = 1)

* BEST for the value closest to the observation

* UPPER_LEFT for the upper left grid point (width = 1)

* UPPER_RIGHT for the upper right grid point (width = 1)

* LOWER_RIGHT for the lower right grid point (width = 1)

* LOWER_LEFT for the lower left grid point (width = 1)

* GAUSSIAN for the Gaussian kernel

* MAXGAUSS for the maximum value followed by a Gaussian smoother

* GEOG_MATCH for the nearest grid point where the land/sea mask and geography criteria
are satisfied

* HIRA for all neighborhood points to define a spatial ensemble (only in Ensemble-Stat)

The BUDGET, FORCE, GAUSSIAN, and MAXGAUSS methods are not valid for interpolating to
point locations. For grid-to-grid comparisons, the only valid smoothing methods are MIN, MAX,
MEDIAN, UW_MEAN, and GAUSSIAN, and MAXGAUSS.

– If multiple “method” and “width” options are specified, all possible permutations of their values
are applied.

interp = {
field = BOTH;
vld_thresh = 1.0;
shape = SQUARE;

(continues on next page)

70 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

type = [
{

method = [NEAREST];
width = [1];

}
];

}

5.2.23 land_mask

The “land_mask” dictionary defines the land/sea mask field used when verifying at the surface. The “flag”
entry enables/disables this logic. When enabled, the “message_type_group_map” dictionary must contain
entries for “LANDSF” and “WATERSF”. For point observations whose message type appears in the “LANDSF”
entry, only use forecast grid points where land = TRUE. For point observations whose message type appears
in the “WATERSF” entry, only use forecast grid points where land = FALSE. If the “file_name” entry is left
empty, the land/sea is assumed to exist in the input forecast file. Otherwise, the specified file(s) are searched
for the data specified in the “field” entry. The “regrid” settings specify how this field should be regridded to
the verification domain. Lastly, the “thresh” entry is the threshold which defines land (threshold is true) and
water (threshold is false).

The “land_mask.flag” entry may be set separately in each “obs.field” entry.

land_mask = {
flag = FALSE;
file_name = [];
field = { name = "LAND"; level = "L0"; }
regrid = { method = NEAREST; width = 1; }
thresh = eq1;

}

5.2.24 topo_mask

The “topo_mask” dictionary defines the model topography field used when verifying at the surface. The
flag entry enables/disables this logic. When enabled, the “message_type_group_map” dictionary must con-
tain an entry for “SURFACE”. This logic is applied to point observations whose message type appears in
the “SURFACE” entry. Only use point observations where the topo minus station elevation difference meets
the “use_obs_thresh” threshold entry. For the observations kept, when interpolating forecast data to the
observation location, only use forecast grid points where the topo minus station difference meets the “in-
terp_fcst_thresh” threshold entry. If the “file_name” is left empty, the topography data is assumed to exist in
the input forecast file. Otherwise, the specified file(s) are searched for the data specified in the “field” entry.
The “regrid” settings specify how this field should be regridded to the verification domain.

The “topo_mask.flag” entry may be set separately in each “obs.field” entry.

5.2. Settings common to multiple tools 71

MET User’s Guide, version 11.1.0-beta2

topo_mask = {
flag = FALSE;
file_name = [];
field = { name = "TOPO"; level = "L0"; }
regrid = { method = BILIN; width = 2; }
use_obs_thresh = ge-100&&le100;
interp_fcst_thresh = ge-50&&le50;

}

5.2.25 hira

The “hira” entry is a dictionary that is very similar to the “interp” and “nbrhd” entries. It specifies informa-
tion for applying the High Resolution Assessment (HiRA) verification logic in Point-Stat. HiRA is analogous
to neighborhood verification but for point observations. The HiRA logic interprets the forecast values sur-
rounding each point observation as an ensemble forecast. These ensemble values are processed in two
ways. First, the ensemble continuous statistics (ECNT) and ranked probability score (RPS) line types are
computed directly from the ensemble values. Second, for each categorical threshold specified, a fractional
coverage value is computed as the ratio of the nearby forecast values that meet the threshold criteria. Point-
Stat evaluates those fractional coverage values as if they were a probability forecast. When applying HiRA,
users should enable the matched pair (MPR), probabilistic (PCT, PSTD, PJC, or PRC), or ensemble statistics
(ECNT or PRS) line types in the output_flag dictionary. The number of probabilistic HiRA output lines is
determined by the number of categorical forecast thresholds and HiRA neighborhood widths chosen. This
dictionary may include the following entries:

• The “flag” entry is a boolean which toggles “hira” on (TRUE) and off (FALSE).

• The “width” entry specifies the neighborhood size. Since HiRA applies to point observations, the width
may be even or odd.

• The “vld_thresh” entry is as described above.

• The “cov_thresh” entry is an array of probabilistic thresholds used to populate the Nx2 probabilistic
contingency table written to the PCT output line and used for computing probabilistic statistics.

• The “shape” entry defines the shape of the neighborhood. Valid values are “SQUARE” or “CIRCLE”

• The “prob_cat_thresh” entry defines the thresholds which define ensemble probabilities from which
to compute the ranked probability score output. If left empty but climatology data is provided, the
climo_cdf thresholds will be used instead. If left empty but no climatology data is provided, the
obs.cat_thresh thresholds will be used instead.

hira = {
flag = FALSE;

width = [2, 3, 4, 5];
vld_thresh = 1.0;
cov_thresh = [==0.25];
shape = SQUARE;
prob_cat_thresh = [];

}

72 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.2.26 output_flag

The “output_flag” entry is a dictionary that specifies what verification methods should be applied to the
input data. Options exist for each output line type from the MET tools. Each line type may be set to one of:

• “NONE” to skip the corresponding verification method

• “STAT” to write the verification output only to the “.stat” output file

• “BOTH” to write to the “.stat” output file as well the optional “_type.txt” file, a more readable ASCII
file sorted by line type.

output_flag = {
fho = NONE; Forecast, Hit, Observation Rates
ctc = NONE; Contingency Table Counts
cts = NONE; Contingency Table Statistics
mctc = NONE; Multi-category Contingency Table Counts
mcts = NONE; Multi-category Contingency Table Statistics
cnt = NONE; Continuous Statistics
sl1l2 = NONE; Scalar L1L2 Partial Sums
sal1l2 = NONE; Scalar Anomaly L1L2 Partial Sums when climatological data

is supplied
vl1l2 = NONE; Vector L1L2 Partial Sums
val1l2 = NONE; Vector Anomaly L1L2 Partial Sums when climatological data

is supplied
pct = NONE; Contingency Table Counts for Probabilistic Forecasts
pstd = NONE; Contingency Table Statistics for Probabilistic Forecasts

with Dichotomous outcomes
pjc = NONE; Joint and Conditional Factorization for Probabilistic

Forecasts
prc = NONE; Receiver Operating Characteristic for Probabilistic

Forecasts
eclv = NONE; Economic Cost/Loss Value derived from CTC and PCT lines
mpr = NONE; Matched Pair Data
nbrctc = NONE; Neighborhood Contingency Table Counts
nbrcts = NONE; Neighborhood Contingency Table Statistics
nbrcnt = NONE; Neighborhood Continuous Statistics
isc = NONE; Intensity-Scale
ecnt = NONE; Ensemble Continuous Statistics
rps = NONE; Ranked Probability Score Statistics
rhist = NONE; Rank Histogram
phist = NONE; Probability Integral Transform Histogram
orank = NONE; Observation Rank
ssvar = NONE; Spread Skill Variance
grad = NONE; Gradient statistics (S1 score)

}

5.2. Settings common to multiple tools 73

MET User’s Guide, version 11.1.0-beta2

5.2.27 nc_pairs_flag

The “nc_pairs_flag” can be set either to a boolean value or a dictionary in either Grid-Stat, Wavelet-Stat or
MODE. The dictionary (with slightly different entries for the various tools . . . see the default config files)
has individual boolean settings turning on or off the writing out of the various fields in the netcdf output file
for the tool. Setting all dictionary entries to false means the netcdf file will not be generated.

“nc_pairs_flag” can also be set to a boolean value. In this case, a value of true means to just accept the
default settings (which will turn on the output of all the different fields). A value of false means no netcdf
output will be generated.

nc_pairs_flag = {
latlon = TRUE;
raw = TRUE;
diff = TRUE;
climo = TRUE;
climo_cdp = FALSE;
weight = FALSE;
nbrhd = FALSE;
fourier = FALSE;
gradient = FALSE;
distance_map = FLASE;
apply_mask = TRUE;

}

5.2.28 nc_pairs_var_name

The “nc_pairs_var_name” entry specifies a string for each verification task in Grid-Stat. This string is parsed
from each “obs.field” dictionary entry and is used to construct variable names for the NetCDF matched pairs
output file. The default value of an empty string indicates that the “name” and “level” strings of the input
data should be used. If the input data “level” string changes for each run of Grid-Stat, using this option to
define a constant string may make downstream processing more convenient.

For example:

nc_pairs_var_name = “TMP”;

nc_pairs_var_name = "";

74 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.2.29 nc_pairs_var_suffix

The “nc_pairs_var_suffix” entry is similar to the “nc_pairs_var_name” entry described above. It is also parsed
from each “obs.field” dictionary entry. However, it defines a suffix to be appended to the output variable
name. This enables the output variable names to be made unique. For example, when verifying height for
multiple level types but all with the same level value, use this option to customize the output variable names.

For example:

nc_pairs_var_suffix = “TROPO”; (for the tropopause height)
nc_pairs_var_suffix = “FREEZING”; (for the freezing level height)

NOTE: This option was previously named “nc_pairs_var_str”, which is now deprecated.

nc_pairs_var_suffix = "";

5.2.30 ps_plot_flag

The “ps_plot_flag” entry is a boolean value for Wavelet-Stat and MODE indicating whether a PostScript plot
should be generated summarizing the verification.

ps_plot_flag = TRUE;

5.2.31 grid_weight_flag

The “grid_weight_flag” specifies how grid weighting should be applied during the computation of continuous
statistics and partial sums. It is meant to account for grid box area distortion and is often applied to global
Lat/Lon grids. It is only applied for grid-to-grid verification in Grid-Stat and Ensemble-Stat and is not applied
for grid-to-point verification. Three grid weighting options are currently supported:

• “NONE” to disable grid weighting using a constant weight (default).

• “COS_LAT” to define the weight as the cosine of the grid point latitude. This an approximation for grid
box area used by NCEP and WMO.

• “AREA” to define the weight as the true area of the grid box (km^2).

The weights are ultimately computed as the weight at each grid point divided by the sum of the weights for
the current masking region.

grid_weight_flag = NONE;

5.2. Settings common to multiple tools 75

MET User’s Guide, version 11.1.0-beta2

5.2.32 hss_ec_value

The “hss_ec_value” entry is a floating point number used in the computation of the HSS_EC statistic in
the CTS and MCTS line types. It specifies the expected correct (EC) rate by chance for multi-category
contingency tables. If set to its default value of NA, it will automatically be replaced with 1.0 divided by the
CTC or MCTC table dimension. For example, for a 2x2 CTC table, the default hss_ec_value is 1.0 / 2 = 0.5.
For a 4x4 MCTC table, the default hss_ec_value is 1.0 / 4 = 0.25.

If set, it must greater than or equal to 0.0 and less than 1.0. A value of 0.0 produces an HSS_EC statistic
equal to the Accuracy statistic.

hss_ec_value = NA;

5.2.33 rank_corr_flag

The “rank_corr_flag” entry is a boolean to indicate whether Kendall’s Tau and Spearman’s Rank Correlation
Coefficients (in the CNT line type) should be computed. Computing them over large datasets is computa-
tionally intensive and slows down the runtime significantly.

rank_corr_flag = FALSE;

5.2.34 duplicate_flag

The “duplicate_flag” entry specifies how to handle duplicate point observations in Point-Stat and Ensemble-
Stat:

• “NONE” to use all point observations (legacy behavior)

• “UNIQUE” only use a single observation if two or more observations match. Matching observations are
determined if they contain identical latitude, longitude, level, elevation, and time information. They
may contain different observation values or station IDs

The reporting mechanism for this feature can be activated by specifying a verbosity level of three or higher.
The report will show information about where duplicates were detected and which observations were used
in those cases.

duplicate_flag = NONE;

5.2.35 obs_summary

The “obs_summary” entry specifies how to compute statistics on observations that appear at a single location
(lat,lon,level,elev) in Point-Stat and Ensemble-Stat. Eight techniques are currently supported:

• “NONE” to use all point observations (legacy behavior)

• “NEAREST” use only the observation that has the valid time closest to the forecast valid time

• “MIN” use only the observation that has the lowest value

76 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

• “MAX” use only the observation that has the highest value

• “UW_MEAN” compute an unweighted mean of the observations

• “DW_MEAN” compute a weighted mean of the observations based on the time of the observation

• “MEDIAN” use the median observation

• “PERC” use the Nth percentile observation where N = obs_perc_value

The reporting mechanism for this feature can be activated by specifying a verbosity level of three or higher.
The report will show information about where duplicates were detected and which observations were used
in those cases.

obs_summary = NONE;

5.2.36 obs_perc_value

Percentile value to use when obs_summary = PERC

obs_perc_value = 50;

5.2.37 obs_quality_inc

The “obs_quality_inc” entry specifies the quality flag values that are to be retained and used for verification.
An empty list signifies that all point observations should be used, regardless of their quality flag value.
The quality flag values will vary depending on the original source of the observations. The quality flag
values to retain should be specified as an array of strings, even if the values themselves are numeric. Note
“obs_quality_inc” replaces the older option “obs_quality”.

obs_quality_inc = ["1", "2", "3", "9"];

5.2.38 obs_quality_exc

The “obs_quality_exc” entry specifies the quality flag values that are to be ignored and not used for veri-
fication. An empty list signifies that all point observations should be used, regardless of their quality flag
value. The quality flag values will vary depending on the original source of the observations. The quality
flag values to ignore should be specified as an array of strings, even if the values themselves are numeric.

obs_quality_exc = ["1", "2", "3", "9"];

5.2. Settings common to multiple tools 77

MET User’s Guide, version 11.1.0-beta2

5.2.39 met_data_dir

The “met_data_dir” entry specifies the location of the internal MET data sub-directory which contains data
files used when generating plots. It should be set to the installed share/met directory so the MET tools can
locate the static data files they need at run time.

met_data_dir = "MET_BASE";

5.2.40 many_plots

The “fcst_raw_plot” entry is a dictionary used by Wavelet-Stat and MODE containing colortable plotting
information for the plotting of the raw forecast field:

• The “color_table” entry specifies the location and name of the colortable file to be used.

• The “plot_min” and “plot_max” entries specify the range of data values. If they are both set to 0, the
MET tools will automatically rescale the colortable to the range of values present in the data. If they
are not both set to 0, the MET tools will rescale the colortable using their values.

• When applicable, the “colorbar_flag” enables the creation of a colorbar for this plot.

fcst_raw_plot = {
color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;
colorbar_flag = TRUE;

}

The “obs_raw_plot”, “wvlt_plot”, and “object_plot” entries are dictionaries similar to the “fcst_raw_plot”
described above.

5.2.41 output_prefix

The “output_prefix” entry specifies a string to be included in the output file name. The MET statistics tools
construct output file names that include the tool name and timing information. You can use this setting to
modify the output file name and avoid naming conflicts for multiple runs of the same tool.

output_prefix = "";

78 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.2.42 version

The “version” entry specifies the version number of the configuration file. The configuration file version
number should match the version number of the MET code being run. This value should generally not be
modified.

version = "VN.N";

5.2.43 time_summary

This feature was implemented to allow additional processing of observations with high temporal resolution.
The “flag” entry toggles the “time_summary” on (TRUE) and off (FALSE). Obs may be summarized across
the user specified time period defined by the “beg” and “end” entries. The “step” entry defines the time
between intervals in seconds. The “width” entry specifies the summary interval in seconds. It may either be
set as an integer number of seconds for a centered time interval or a dictionary with beginning and ending
time offsets in seconds.

For example:

beg = "00";
end = "235959";
step = 300;
width = 600;
width = { beg = -300; end = 300; }

This example does a 10-minute time summary every 5 minutes throughout the day. The first interval will
be from 23:55:00 the previous day through 00:04:59 of the current day. The second interval will be from
0:00:00 through 00:09:59. And so on.

The two “width” settings listed above are equivalent. Both define a centered 10-minute time interval. Use the
“beg” and “end” entries to define uncentered time intervals. The following example requests observations
for one hour prior:

width = { beg = -3600; end = 0; }

The summaries will only be calculated for the specified GRIB codes or observation variable (“obs_var”)
names.

When determining which observations fall within a time interval, data for the beginning timestamp is in-
cluded while data for the ending timestamp is excluded. Users may need to adjust the “beg” and “end”
settings in the “width” dictionary to include the desired observations in each time interval.

The supported time summaries are “min” (minimum), “max” (maximum), “range”, “mean”, “stdev” (stan-
dard deviation), “median”, “sum”, and “p##” (percentile, with the desired percentile value specified in place
of ##).

The “vld_freq” and “vld_thresh” options may be used to require that a certain ratio of observations must be
present and contain valid data within the time window in order for a summary value to be computed. The
“vld_freq” entry defines the expected observation frequency in seconds. For example, when summarizing
1-minute data (vld_freq = 60) over a 30 minute time window, setting “vld_thresh = 0.5” requires that at

5.2. Settings common to multiple tools 79

MET User’s Guide, version 11.1.0-beta2

least 15 of the 30 expected observations be present and valid for a summary value to be written. The default
“vld_thresh = 0.0” setting will skip over this logic.

When using the “sum” option, users should specify “vld_thresh = 1.0” to avoid missing data values from
affecting the resulting sum value.

The variable names are saved to NetCDF file if they are given instead of grib_codes which are not available
for non GRIB input. The “obs_var” option was added and works like “grib_code” option (string value VS. int
value). They are inclusive (union). All variables are included if both options are empty. Note: grib_code 11
is equivalent to obs_var “TMP”.

time_summary = {
flag = FALSE;
beg = "000000";
end = "235959";
step = 300;
width = 600;
width = { beg = -300; end = 300; }
grib_code = [11, 204, 211];
obs_var = [];
type = ["min", "max", "range", "mean", "stdev", "median", "p80"];
vld_freq = 0;
vld_thresh = 0.0;

}

5.3 Settings specific to individual tools

5.3.1 EnsembleStatConfig_default

5.3.1.1 ens

The “ens” entry is a dictionary that specifies the fields for which ensemble products should be generated.
This is very similar to the “fcst” and “obs” entries. This dictionary may include the following entries:

• The “censor_thresh” and “censor_val” entries are described above.

• The “ens_thresh” entry specifies a proportion between 0 and 1 to define the required ratio of valid
input ensemble member files. If the ratio of valid input ensemble files to expected ones is too low, the
tool will error out.

• The “vld_thresh” entry specifies a proportion between 0 and 1 to define the required ratio of valid data
points. When computing ensemble products, if the ratio of valid data values is too low, the ensemble
product will be set to bad data for that point.

• The “field” entry is as described above. However, in this case, the cat_thresh entry is used for calcu-
lating probabilities of exceeding the given threshold. In the default shown below, the probability of
accumulated precipitation > 0.0 mm and > 5.0 mm will be calculated from the member accumulated
precipitation fields and stored as an ensemble field.

80 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

ens = {
censor_thresh = [];
censor_val = [];
ens_thresh = 1.0;
vld_thresh = 1.0;

field = [
{

name = "APCP";
level = "A03";
cat_thresh = [>0.0, >=5.0];

}
];

}

5.3.1.2 nbrhd_prob

The nbrhd_prob dictionary defines the neighborhoods used to compute NEP and NMEP output. The neigh-
borhood shape is a SQUARE or CIRCLE centered on the current point, and the width array specifies the
width of the square or diameter of the circle as an odd integer. The vld_thresh entry is a number between 0
and 1 specifying the required ratio of valid data in the neighborhood for an output value to be computed.

If ensemble_flag.nep is set to TRUE, NEP output is created for each combination of the categorical threshold
(cat_thresh) and neighborhood width specified.

nbrhd_prob = {
width = [5];
shape = CIRCLE;
vld_thresh = 0.0;

}

5.3.1.3 nmep_smooth

Similar to the interp dictionary, the nmep_smooth dictionary includes a type array of dictionaries to define
one or more methods for smoothing the NMEP data. Setting the interpolation method to nearest neighbor
(NEAREST) effectively disables this smoothing step.

If ensemble_flag.nmep is set to TRUE, NMEP output is created for each combination of the categorical thresh-
old (cat_thresh), neighborhood width (nbrhd_prob.width), and smoothing method (nmep_smooth.type)
specified.

nmep_smooth = {
vld_thresh = 0.0;
shape = CIRCLE;
gaussian_dx = 81.27;

(continues on next page)

5.3. Settings specific to individual tools 81

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

gaussian_radius = 120;
type = [

{
method = GAUSSIAN;
width = 1;

}
];

}

5.3.1.4 fcst, obs

The fcst and obs entries define the fields for which Ensemble-Stat should compute rank histograms, proba-
bility integral transform histograms, spread-skill variance, relative position histograms, economic value, and
other statistics.

The “ens_ssvar_bin_size” entry sets the width of the variance bins. Smaller bin sizes provide the user with
more flexibility in how data are binned during analysis. The actual variance of the ensemble data will
determine the number of bins written to the SSVAR output lines.

The “ens_phist_bin_size” is set to a value between 0 and 1. The number of bins for the probability integral
transform histogram in the PHIST line type is defined as the ceiling of 1.0 / ens_phist_bin_size. For example,
a bin size of 0.05 results in 20 PHIST bins.

The “prob_cat_thresh” entry is an array of thresholds to be applied in the computation of the ranked proba-
bility score. If left empty, but climatology data is provided, the climo_cdf thresholds will be used instead.

fcst = {
message_type = ["ADPUPA"];
ens_ssvar_bin_size = 1;
ens_phist_bin_size = 0.05;
prob_cat_thresh = [];

field = [
{

name = "APCP";
level = ["A03"];

}
];

}

82 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.3.1.5 nc_var_str

The “nc_var_str” entry specifies a string for each ensemble field and verification task in Ensemble-Stat. This
string is parsed from each “ens.field” and “obs.field” dictionary entry and is used to customize the variable
names written to the NetCDF output file. The default is an empty string, meaning that no customization is
applied to the output variable names. When the Ensemble-Stat config file contains two fields with the same
name and level value, this entry is used to make the resulting variable names unique. e.g. nc_var_str =
“MIN”;

nc_var_str = "";

5.3.1.6 obs_thresh

The “obs_thresh” entry is an array of thresholds for filtering observation values prior to applying ensemble
verification logic. They specify the values to be included in the verification, not excluded. The default setting
of NA, which always evaluates to true, means that all observations should be used. Verification output will
be computed separately for each threshold specified. This option may be set separately for each obs.field
entry.

obs_thresh = [NA];

5.3.1.7 skip_const

Setting “skip_const” to true tells Ensemble-Stat to exclude pairs where all the ensemble members and the
observation have a constant value. For example, exclude points with zero precipitation amounts from all
output line types. This option may be set separately for each obs.field entry. When set to false, constant
points are included and the observation rank is chosen at random.

skip_const = FALSE;

5.3.1.8 obs_error

Observation error options

Set dist_type to NONE to use the observation error table instead. May be set separately in each “obs.field”
entry. The obs_error dictionary controls how observation error information should be handled. Observation
error information can either be specified directly in the configuration file or by parsing information from an
external table file. By default, the MET_BASE/data/table_files/obs_error_table.txt file is read but this may be
overridden by setting the $MET_OBS_ERROR_TABLE environment variable at runtime.

The flag entry toggles the observation error logic on (TRUE) and off (FALSE). When flag is TRUE, random
observation error perturbations are applied to the ensemble member values. No perturbation is applied to
the observation values but the bias scale and offset values, if specified, are applied.

The dist_type entry may be set to NONE, NORMAL, EXPONENTIAL, CHISQUARED, GAMMA, UNIFORM, or
BETA. The default value of NONE indicates that the observation error table file should be used rather than
the configuration file settings.

5.3. Settings specific to individual tools 83

MET User’s Guide, version 11.1.0-beta2

The dist_parm entry is an array of length 1 or 2 specifying the parameters for the distribution selected in
dist_type. The NORMAL, EXPONENTIAL, and CHISQUARED distributions are defined by a single parameter.
The GAMMA, UNIFORM, and BETA distributions are defined by two parameters. See the GNU Scientific
Library Reference Manual for more information on these distributions.

The inst_bias_scale and inst_bias_offset entries specify bias scale and offset values that should be applied to
observation values prior to perturbing them. These entries enable bias-correction on the fly.

Defining the observation error information in the configuration file is convenient but limited. If defined
this way, the random perturbations for all points in the current verification task are drawn from the same
distribution. Specifying an observation error table file instead (by setting dist_type = NONE;) provides much
finer control, enabling the user to define observation error distribution information and bias-correction logic
separately for each observation variable name, message type, PREPBUFR report type, input report type,
instrument type, station ID, range of heights, range of pressure levels, and range of values.

obs_error = {
flag = FALSE; TRUE or FALSE
dist_type = NONE; Distribution type
dist_parm = []; Distribution parameters
inst_bias_scale = 1.0; Instrument bias scale adjustment
inst_bias_offset = 0.0; Instrument bias offset adjustment
min = NA; Valid range of data
max = NA;

}

5.3.1.9 ensemble_flag

The “ensemble_flag” entry is a dictionary of boolean value indicating which ensemble products should be
generated:

• “mean” for the simple ensemble mean

• “stdev” for the ensemble standard deviation

• “minus” for the mean minus one standard deviation

• “plus” for the mean plus one standard deviation

• “min” for the ensemble minimum

• “max” for the ensemble maximum

• “range” for the range of ensemble values

• “vld_count” for the number of valid ensemble members

• “frequency” for the ensemble relative frequency meeting a threshold

• “nep” for the neighborhood ensemble probability

• “nmep” for the neighborhood maximum ensemble probability

• “rank” to write the rank for the gridded observation field to separate NetCDF output file.

84 Chapter 5. Configuration File Overview

https://www.gnu.org/software/gsl/manual
https://www.gnu.org/software/gsl/manual

MET User’s Guide, version 11.1.0-beta2

• “weight” to write the grid weights specified in grid_weight_flag to the rank NetCDF output file.

ensemble_flag = {
mean = TRUE;
stdev = TRUE;
minus = TRUE;
plus = TRUE;
min = TRUE;
max = TRUE;
range = TRUE;
vld_count = TRUE;
frequency = TRUE;
nep = FALSE;
nmep = FALSE;
rank = TRUE;
weight = FALSE;

}

5.3.1.10 rng

See: Random Number Generator Performance used for random assignment of ranks when they are tied.

rng = {
type = "mt19937";
seed = "";

}

5.3.2 MODEAnalysisConfig_default

MODE line options are used to create filters that determine which MODE output lines are read in and
processed. The MODE line options are numerous. They fall into seven categories: toggles, multiple set string
options, multiple set integer options, integer max/min options, date/time max/min options, floating-point
max/min options, and miscellaneous options. In order to be applied, the options must be uncommented
(i.e. remove the “//” marks) before running. These options are described in subsequent sections. Please
note that this configuration file is processed differently than the other config files.

Toggles: The MODE line options described in this section are shown in pairs. These toggles represent
parameters that can have only one (or none) of two values. Any of these toggles may be left unspecified.
However, if neither option for toggle is indicated, the analysis will produce results that combine data from
both toggles. This may produce unintended results.

This toggle indicates whether forecast or observed lines should be used for analysis.

fcst = FALSE;
obs = FALSE;

This toggle indicates whether single object or object pair lines should be used.

5.3. Settings specific to individual tools 85

https://www.gnu.org/software/gsl/doc/html/rng.html#performance

MET User’s Guide, version 11.1.0-beta2

single = FALSE;
pair = FALSE;

This toggle indicates whether simple object or object cluster object lines should be used.

simple = FALSE;
cluster = FALSE;

This toggle indicates whether matched or unmatched object lines should be used.

matched = FALSE;
unmatched = FALSE;

Multiple-set string options: The following options set various string attributes. They can be set multiple
times on the command line but must be separated by spaces. Each of these options must be indicated as a
string. String values that include spaces may be used by enclosing the string in quotation marks.

This options specifies which model to use

// model = [];

These two options specify thresholds for forecast and observations objects to be used in the analysis, respec-
tively.

// fcst_thr = [];
// obs_thr = [];

These options indicate the names of variables to be used in the analysis for forecast and observed fields.

// fcst_var = [];
// obs_var = [];

These options indicate vertical levels for forecast and observed fields to be used in the analysis.

// fcst_lev = [];
// obs_lev = [];

Multiple-set integer options: The following options set various integer attributes. Each of the following
options may only be indicated as an integer.

These options are integers of the form HH[MMSS] specifying the lead_time.

// fcst_lead = [];
//obs_lead = [];

These options are integers of the form HH[MMSS] specifying the valid hour.

// fcst_valid_hour = [];
// obs_valid_hour = [];

86 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

These options are integers of the form HH[MMSS] specifying the model initialization hour.

// fcst_init_hour = [];
// obs_init_hour = [];

These options are integers of the form HHMMSS specifying the accumulation time.

// fcst_accum = [];
// obs_accum = [];

These options indicate the convolution radius used for forecast of observed objects, respectively.

// fcst_rad = [];
// obs_rad = [];

Integer max/min options: These options set limits on various integer attributes. Leaving a maximum value
unset means no upper limit is imposed on the value of the attribute. The option works similarly for minimum
values.

These options are used to indicate minimum/maximum values for the area attribute to be used in the
analysis.

// area_min = 0;
// area_max = 0;

These options are used to indicate minimum/maximum values accepted for the area thresh. The area thresh
is the area of the raw field inside the object that meets the threshold criteria.

// area_thresh_min = 0;
// area_thresh_max = 0;

These options refer to the minimum/maximum values accepted for the intersection area attribute.

// intersection_area_min = 0;
// intersection_area_max = 0;

These options refer to the minimum/maximum union area values accepted for analysis.

// union_area_min = 0;
// union_area_max = 0;

These options refer to the minimum/maximum values for symmetric difference for objects to be used in the
analysis.

// symmetric_diff_min = 0;
// symmetric_diff_max = 0;

Date/time max/min options: These options set limits on various date/time attributes. The values can
be specified in one of three ways: First, the options may be indicated by a string of the form YYYM-
MDD_HHMMSS. This specifies a complete calendar date and time. Second, they may be indicated by a

5.3. Settings specific to individual tools 87

MET User’s Guide, version 11.1.0-beta2

string of the form YYYYMMMDD_HH. Here, the minutes and seconds are assumed to be zero. The third way
of indicating date/time attributes is by a string of the form YYYMMDD. Here, hours, minutes, and seconds
are assumed to be zero.

These options indicate minimum/maximum values for the forecast valid time.

// fcst_valid_min = "";
// fcst_valid_max = "";

These options indicate minimum/maximum values for the observation valid time.

// obs_valid_min = "";
// obs_valid_max = "";

These options indicate minimum/maximum values for the forecast initialization time.

// fcst_init_min = "";
// fcst_init_max = "";

These options indicate minimum/maximum values for the observation initialization time.

// obs_init_min = "";
// obs_init_max = "";

Floating-point max/min options: Setting limits on various floating-point attributes. One may specify these
as integers (i.e., without a decimal point), if desired. The following pairs of options indicate minimum and
maximum values for each MODE attribute that can be described as a floating- point number. Please refer to
“The MODE Tool” section on attributes in the MET User’s Guide for a description of these attributes.

// centroid_x_min = 0.0;
// centroid_x_max = 0.0;

// centroid_y_min = 0.0;
// centroid_y_max = 0.0;

// centroid_lat_min = 0.0;
// centroid_lat_max = 0.0;

// centroid_lon_min = 0.0;
// centroid_lon_max = 0.0;

// axis_ang_min = 0.0;
// axis_ang_max = 0.0;

// length_min = 0.0;
// length_max = 0.0;

// width_min = 0.0;
// width_max = 0.0;

(continues on next page)

88 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

// aspect_ratio_min = 0.0;
// aspect_ratio_max = 0.0;

// curvature_min = 0.0;
// curvature_max = 0.0;

// curvature_x_min = 0.0;
// curvature_x_max = 0.0;

// curvature_y_min = 0.0;
// curvature_y_max = 0.0;

// complexity_min = 0.0;
// complexity_max = 0.0;

// intensity_10_min = 0.0;
// intensity_10_max = 0.0;

// intensity_25_min = 0.0;
// intensity_25_max = 0.0;

// intensity_50_min = 0.0;
// intensity_50_max = 0.0;

// intensity_75_min = 0.0;
// intensity_75_max = 0.0;

// intensity_90_min = 0.0;
// intensity_90_max = 0.0;

// intensity_user_min = 0.0;
// intensity_user_max = 0.0;

// intensity_sum_min = 0.0;
// intensity_sum_max = 0.0;

// centroid_dist_min = 0.0;
// centroid_dist_max = 0.0;

// boundary_dist_min = 0.0;
// boundary_dist_max = 0.0;

// convex_hull_dist_min = 0.0;
// convex_hull_dist_max = 0.0;

(continues on next page)

5.3. Settings specific to individual tools 89

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

// angle_diff_min = 0.0;
// angle_diff_max = 0.0;

// area_ratio_min = 0.0;
// area_ratio_max = 0.0;

// intersection_over_area_min = 0.0;
// intersection_over_area_max = 0.0;

// complexity_ratio_min = 0.0;
// complexity_ratio_max = 0.0;

// percentile_intensity_ratio_min = 0.0;
// percentile_intensity_ratio_max = 0.0;

// interest_min = 0.0;
// interest_max = 0.0;

5.3.3 MODEConfig_default

5.3.3.1 quilt

The “quilt” entry is a boolean to indicate whether all permutations of convolution radii and thresholds
should be run. If set to false, the number of forecast and observation convolution radii and thresholds
must all match. One configuration of MODE will be run for each group of settings in those lists. If set to
true, the number of forecast and observation convolution radii must match and the number of forecast and
observation convolution thresholds must match. For N radii and M thresholds, NxM configurations of MODE
will be run.

quilt = false;

5.3.3.2 fcst, obs

The object definition settings for MODE are contained within the “fcst” and “obs” entries:

• The “censor_thresh” and “censor_val” entries are described above. The entries replace the previously
supported “raw_thresh” entry.

• The “conv_radius” entry specifies the convolution radius in grid squares. The larger the convolution
radius, the smoother the objects. Multiple convolution radii may be specified as an array. For example:

conv_radius = [5, 10, 15];

• The “conv_thresh” entry specifies the convolution threshold used to define MODE objects. The lower
the threshold, the larger the objects. Multiple convolution thresholds may be specified as an array. For
example:

90 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

conv_thresh = [>=5.0, >=10.0, >=15.0];

• The “vld_thresh” entry is described above.

• The “filter_attr_name” and “filter_attr_thresh” entries are arrays of the same length which specify
object filtering criteria. By default, no object filtering criteria is defined.

The “filter_attr_name” entry is an array of strings specifying the MODE output header column names
for the object attributes of interest, such as “AREA”, “LENGTH”, “WIDTH”, and “INTENSITY_50”. In
addition, “ASPECT_RATIO” specifies the aspect ratio (width/length), “INTENSITY_101” specifies the
mean intensity value, and “INTENSITY_102” specifies the sum of the intensity values.

The “filter_attr_thresh” entry is an array of thresholds for the object attributes. Any simple objects not
meeting all of these filtering criteria are discarded.

Note that the “area_thresh” and “inten_perc_thresh” entries form earlier versions of MODE are re-
placed by these options and are now deprecated.

• The “merge_thresh” entry specifies a lower convolution threshold used when the double-threshold
merging method is applied. The number of merge thresholds must match the number of convolution
thresholds. Multiple merge thresholds may be specified as an array. For example:

merge_thresh = [>=1.0, >=2.0, >=3.0];

• The “merge_flag” entry specifies the merging methods to be applied:

– “NONE” for no merging

– “THRESH” for the double-threshold merging method. Merge objects that would be part of the
same object at the lower threshold.

– “ENGINE” for the fuzzy logic approach comparing the field to itself

– “BOTH” for both the double-threshold and engine merging methods

fcst = {
field = {

name = "APCP";
level = "A03";

}

censor_thresh = [];
censor_val = [];
conv_radius = 60.0/grid_res; in grid squares
conv_thresh = >=5.0;
vld_thresh = 0.5;
filter_attr_name = [];
filter_attr_thresh = [];
merge_thresh = >=1.25;
merge_flag = THRESH;

}

5.3. Settings specific to individual tools 91

MET User’s Guide, version 11.1.0-beta2

5.3.3.3 grid_res

The “grid_res” entry is the nominal spacing for each grid square in kilometers. The variable is not used
directly in the code, but subsequent variables in the configuration files are defined in terms of it. Therefore,
setting the appropriately will help ensure that appropriate default values are used for these variables.

grid_res = 4;

5.3.3.4 match_flag

The “match_flag” entry specifies the matching method to be applied:

• “NONE” for no matching between forecast and observation objects

• “MERGE_BOTH” for matching allowing additional merging in both fields. If two objects in one field
match the same object in the other field, those two objects are merged.

• “MERGE_FCST” for matching allowing only additional forecast merging

• “NO_MERGE” for matching with no additional merging in either field

match_flag = MERGE_BOTH;

5.3.3.5 max_centroid_dist

The “max_centroid_dist” entry specifies the maximum allowable distance in grid squares between the cen-
troids of objects for them to be compared. Setting this to a reasonable value speeds up the runtime enabling
MODE to skip unreasonable object comparisons.

max_centroid_dist = 800.0/grid_res;

5.3.3.6 weight

The weight variables control how much weight is assigned to each pairwise attribute when computing a total
interest value for object pairs. The weights need not sum to any particular value but must be non-negative.
When the total interest value is computed, the weighted sum is normalized by the sum of the weights listed.

weight = {
centroid_dist = 2.0;
boundary_dist = 4.0;
convex_hull_dist = 0.0;
angle_diff = 1.0;
area_ratio = 1.0;
int_area_ratio = 2.0;
complexity_ratio = 0.0;
inten_perc_ratio = 0.0;

(continues on next page)

92 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

inten_perc_value = 50;
}

5.3.3.7 interest_function

The set of interest function variables listed define which values are of interest for each pairwise attribute
measured. The interest functions may be defined as a piecewise linear function or as an algebraic expression.
A piecewise linear function is defined by specifying the corner points of its graph. An algebraic function may
be defined in terms of several built-in mathematical functions.

interest_function = {

centroid_dist = (
(0.0, 1.0)
(60.0/grid_res, 1.0)
(600.0/grid_res, 0.0)

);

boundary_dist = (
(0.0, 1.0)
(400.0/grid_res, 0.0)

);

convex_hull_dist = (
(0.0, 1.0)
(400.0/grid_res, 0.0)

);

angle_diff = (
(0.0, 1.0)
(30.0, 1.0)
(90.0, 0.0)

);

corner = 0.8;
ratio_if = (

(0.0, 0.0)
(corner, 1.0)
(1.0, 1.0)

);

area_ratio = ratio_if;

int_area_ratio = (
(0.00, 0.00)

(continues on next page)

5.3. Settings specific to individual tools 93

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

(0.10, 0.50)
(0.25, 1.00)
(1.00, 1.00)

);

complexity_ratio = ratio_if;

inten_perc_ratio = ratio_if;
}

5.3.3.8 total_interest_thresh

The total_interest_thresh variable should be set between 0 and 1. This threshold is applied to the total
interest values computed for each pair of objects and is used in determining matches.

total_interest_thresh = 0.7;

5.3.3.9 print_interest_thresh

The print_interest_thresh variable determines which pairs of object attributes will be written to the output
object attribute ASCII file. The user may choose to set the print_interest_thresh to the same value as the
total_interest_thresh, meaning that only object pairs that actually match are written to the output file. When
set to zero, all object pair attributes will be written as long as the distance between the object centroids is
less than the max_centroid_dist variable.

print_interest_thresh = 0.0;

5.3.3.10 plot_valid_flag

When applied, the plot_valid_flag variable indicates that only the region containing valid data after masking
is applied should be plotted. TRUE indicates the entire domain should be plotted; FALSE indicates only the
region containing valid data after masking should be plotted.

plot_valid_flag = FALSE;

94 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.3.3.11 plot_gcarc_flag

When applied, the plot_gcarc_flag variable indicates that the edges of polylines should be plotted using great
circle arcs as opposed to straight lines in the grid.

plot_gcarc_flag = FALSE;

5.3.3.12 ct_stats_flag

The ct_stats_flag can be set to TRUE or FALSE to produce additional output, in the form of contingency table
counts and statistics.

ct_stats_flag = TRUE;

5.3.3.13 shift_right

When MODE is run on global grids, this parameter specifies how many grid squares to shift the grid to
the right. MODE does not currently connect objects from one side of a global grid to the other, potentially
causing objects straddling that longitude to be cut in half. Shifting the grid by some amount enables the user
to control where that longitude cut line occurs. This option provides a very specialized case of automated
regridding. The much more flexible “regrid” option may be used instead.

shift_right = 0;

5.3.4 PB2NCConfig_default

The PB2NC tool filters out observations from PREPBUFR or BUFR files using the following criteria:

(1) by message type: supply a list of PREPBUFR message types to retain

(2) by station id: supply a list of observation stations to retain

(3) by valid time: supply the beginning and ending time offset values in the obs_window entry described
above.

(4) by location: use the “mask” entry described below to supply either an NCEP masking grid, a masking
lat/lon polygon or a file to a mask lat/lon polygon

(5) by elevation: supply min/max elevation values

(6) by report type: supply a list of report types to retain using pb_report_type and in_report_type entries
described below

(7) by instrument type: supply a list of instrument type to retain

(8) by vertical level: supply beg/end vertical levels using the level_range entry described below

(9) by variable type: supply a list of observation variable types to retain using the obs_bufr_var entry
described below

5.3. Settings specific to individual tools 95

MET User’s Guide, version 11.1.0-beta2

(10) by quality mark: supply a quality mark threshold

(11) Flag to retain values for all quality marks, or just the first quality mark (highest): use the
event_stack_flag described below

(12) by data level category: supply a list of category types to retain.

0 - Surface level (mass reports only)

1 - Mandatory level (upper-air profile reports)

2 - Significant temperature level (upper-air profile reports)

2 - Significant temperature and winds-by-pressure level (future combined mass and wind upper-air
reports)

3 - Winds-by-pressure level (upper-air profile reports)

4 - Winds-by-height level (upper-air profile reports)

5 - Tropopause level (upper-air profile reports)

6 - Reports on a single level (e.g., aircraft, satellite-wind, surface wind, precipitable water retrievals,
etc.)

7 - Auxiliary levels generated via interpolation from spanning levels (upper-air profile reports)

5.3.4.1 message_type

In the PB2NC tool, the “message_type” entry is an array of message types to be retained. An empty list
indicates that all should be retained.

List of valid message types:
ADPUPA AIRCAR AIRCFT ADPSFC ERS1DA GOESND GPSIPW
MSONET PROFLR QKSWND RASSDA SATEMP SATWND SFCBOG
SFCSHP SPSSMI SYNDAT VADWND

For example:

message_type[] = [“ADPUPA”, “AIRCAR”];

Current Table A Entries in PREPBUFR mnemonic table

message_type = [];

96 Chapter 5. Configuration File Overview

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

MET User’s Guide, version 11.1.0-beta2

5.3.4.2 station_id

The “station_id” entry is an array of station ids to be retained or the filename which contains station ids.
An array of station ids contains a comma-separated list. An empty list indicates that all stations should be
retained.

For example: station_id = [“KDEN”];

station_id = [];

5.3.4.3 elevation_range

The “elevation_range” entry is a dictionary which contains “beg” and “end” entries specifying the range of
observing locations elevations to be retained.

elevation_range = {
beg = -1000;
end = 100000;

}

5.3.4.4 pb_report_type

The “pb_report_type” entry is an array of PREPBUFR report types to be retained. The numeric
“pb_report_type” entry allows for further stratification within message types. An empty list indicates that all
should be retained.

See: Code table for PREPBUFR report types used by Regional NAM GSI analyses

For example:

Report Type 120 is for message type ADPUPA but is only RAWINSONDE
Report Type 132 is for message type ADPUPA but is only FLIGHT-LEVEL RECON
and PROFILE DROPSONDE

pb_report_type = [];

5.3. Settings specific to individual tools 97

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm

MET User’s Guide, version 11.1.0-beta2

5.3.4.5 in_report_type

The “in_report_type” entry is an array of input report type values to be retained. The numeric
“in_report_type” entry provides additional stratification of observations. An empty list indicates that all
should be retained.

See: Code table for input report types

For example:

Input Report Type 11 Fixed land RAOB and PIBAL by block and station number
Input Report Type 12 Fixed land RAOB and PIBAL by call letters

in_report_type = [];

5.3.4.6 instrument_type

The “instrument_type” entry is an array of instrument types to be retained. An empty list indicates that all
should be retained.

instrument_type = [];

5.3.4.7 level_range

The “level_range” entry is a dictionary which contains “beg” and “end” entries specifying the range of vertical
levels (1 to 255) to be retained.

level_range = {
beg = 1;
end = 255;

}

5.3.4.8 level_category

The “level_category” entry is an array of integers specifying which level categories should be retained:

0 = Surface level (mass reports only)

1 = Mandatory level (upper-air profile reports)

98 Chapter 5. Configuration File Overview

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_6.htm

MET User’s Guide, version 11.1.0-beta2

2 = Significant temperature level (upper-air profile reports)

2 = Significant temperature and winds-by-pressure level (future combined mass
and wind upper-air reports)

3 = Winds-by-pressure level (upper-air profile reports)

4 = Winds-by-height level (upper-air profile reports)

5 = Tropopause level (upper-air profile reports)

6 = Reports on a single level (For example: aircraft, satellite-wind,
surface wind, precipitable water retrievals, etc.)

7 = Auxiliary levels generated via interpolation from spanning levels
(upper-air profile reports)

An empty list indicates that all should be retained.

See: Current Table A Entries in PREPBUFR mnemonic table

level_category = [];

5.3.4.9 obs_bufr_var

The “obs_bufr_var” entry is an array of strings containing BUFR variable names to be retained or derived.
This replaces the “obs_grib_code” setting from earlier versions of MET. Run PB2NC on your data with the
“-index” command line option to see the list of available observation variables.

Observation variables that can be derived begin with “D_”:
D_DPT for Dew point Temperature in K
D_WDIR for Wind Direction
D_WIND for Wind Speed in m/s
D_RH for Relative Humidity in %
D_MIXR for Humidity Mixing Ratio in kg/kg

5.3. Settings specific to individual tools 99

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

MET User’s Guide, version 11.1.0-beta2

D_PRMSL for Pressure Reduced to Mean Sea Level in Pa

obs_bufr_var = ["QOB", "TOB", "ZOB", "UOB", "VOB"];

5.3.4.10 obs_bufr_map

Mapping of input BUFR variable names to output variables names. The default PREPBUFR map,
obs_prepbufr_map, is appended to this map. Users may choose to rename BUFR variables to match the
naming convention of the forecast the observation is used to verify.

obs_bufr_map = [];

5.3.4.11 obs_prepbufr_map

Default mapping for PREPBUFR. Replace input BUFR variable names with GRIB abbreviations in the output.
This default map is appended to obs_bufr_map. This should not typically be overridden. This default
mapping provides backward-compatibility for earlier versions of MET which wrote GRIB abbreviations to
the output.

obs_prepbufr_map = [
{ key = "POB"; val = "PRES"; },
{ key = "QOB"; val = "SPFH"; },
{ key = "TOB"; val = "TMP"; },
{ key = "ZOB"; val = "HGT"; },
{ key = "UOB"; val = "UGRD"; },
{ key = "VOB"; val = "VGRD"; },
{ key = "D_DPT"; val = "DPT"; },
{ key = "D_WDIR"; val = "WDIR"; },
{ key = "D_WIND"; val = "WIND"; },
{ key = "D_RH"; val = "RH"; },
{ key = "D_MIXR"; val = "MIXR"; },
{ key = "D_PRMSL"; val = "PRMSL"; }

];

100 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.3.4.12 quality_mark_thresh

The “quality_mark_thresh” entry specifies the maximum quality mark value to be retained. Observations
with a quality mark LESS THAN OR EQUAL TO this threshold will be retained, while observations with a
quality mark GREATER THAN this threshold will be discarded.

See Code table for observation quality markers

quality_mark_thresh = 2;

5.3.4.13 event_stack_flag

The “event_stack_flag” entry is set to “TOP” or “BOTTOM” to specify whether observations should be drawn
from the top of the event stack (most quality controlled) or the bottom of the event stack (most raw).

event_stack_flag = TOP;

5.3.5 SeriesAnalysisConfig_default

5.3.5.1 block_size

Computation may be memory intensive, especially for large grids. The “block_size” entry sets the number of
grid points to be processed concurrently (i.e. in one pass through a time series). Smaller values require less
memory but increase the number of passes through the data. If set less than or equal to 0, it is automatically
reset to the number of grid points, and they are all processed concurrently.

block_size = 1024;

5.3.5.2 vld_thresh

Ratio of valid matched pairs to total length of series for a grid point. If valid threshold is exceeded at that
grid point the statistics are computed and stored. If not, a bad data flag is stored. The default setting requires
all data in the series to be valid.

vld_thresh = 1.0;

5.3.5.3 output_stats

Statistical output types need to be specified explicitly. Refer to User’s Guide for available output types. To
keep output file size reasonable, it is recommended to process a few output types at a time, especially if the
grid is large.

5.3. Settings specific to individual tools 101

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_7.htm

MET User’s Guide, version 11.1.0-beta2

output_stats = {
fho = [];
ctc = [];
cts = [];
mctc = [];
mcts = [];
cnt = ["RMSE", "FBAR", "OBAR"];
sl1l2 = [];
pct = [];
pstd = [];
pjc = [];
prc = [];

}

5.3.6 STATAnalysisConfig_default

5.3.6.1 jobs

The “jobs” entry is an array of STAT-Analysis jobs to be performed. Each element in the array contains the
specifications for a single analysis job to be performed. The format for an analysis job is as follows:

-job job_name
OPTIONAL ARGS

Where “job_name” is set to one of the following:

• “filter”

To filter out the STAT or TCMPR lines matching the job filtering criteria specified below and using
the optional arguments below. The output STAT lines are written to the file specified using the “-
dump_row” argument. Required Args: -dump_row

• “summary”

To compute summary information for a set of statistics. The summary output includes the mean, stan-
dard deviation, percentiles (0th, 10th, 25th, 50th, 75th, 90th, and 100th), range, and inter-quartile
range. Also included are columns summarizing the computation of WMO mean values. Both un-
weighted and weighted mean values are reported, and they are computed using three types of logic:

– simple arithmetic mean (default)

102 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

– square root of the mean of the statistic squared (applied to columns listed in “wmo_sqrt_stats”)

– apply fisher transform (applied to columns listed in “wmo_fisher_stats”)

The columns of data to be summarized are specified in one of two ways:

• Specify the -line_type option once and specify one or more column names.

• Format the -column option as LINE_TYPE:COLUMN.

Use the -derive job command option to automatically derive statistics on the fly from input
contingency tables and partial sums.

Use the -column_union TRUE/FALSE job command option to compute summary statistics across
the union of input columns rather than processing them separately.

For TCStat, the “-column” argument may be set to:

• “TRACK” for track, along-track, and cross-track errors.

• “WIND” for all wind radius errors.

• “TI” for track and maximum wind intensity errors.

• “AC” for along-track and cross-track errors.

• “XY” for x-track and y-track errors.

• “col” for a specific column name.

• “col1-col2” for a difference of two columns.

• “ABS(col or col1-col2)” for the absolute value.

Required Args: -line_type, -column

Optional Args:

-by column_name to specify case information
-out_alpha to override default alpha value of 0.05
-derive to derive statistics on the fly
-column_union to summarize multiple columns

• “aggregate”

To aggregate the STAT data for the STAT line type specified using the “-line_type” argument. The
output of the job will be in the same format as the input line type specified. The following line types
may be aggregated:

5.3. Settings specific to individual tools 103

MET User’s Guide, version 11.1.0-beta2

-line_type FHO, CTC, MCTC,
SL1L2, SAL1L2, VL1L2, VAL1L2,
PCT, NBRCNT, NBRCTC, GRAD,
ISC, ECNT, RPS, RHIST, PHIST, RELP, SSVAR

Required Args: -line_type

• “aggregate_stat”

To aggregate the STAT data for the STAT line type specified using the “-line_type” argument. The output
of the job will be the line type specified using the “-out_line_type” argument. The valid combinations
of “-line_type” and “-out_line_type” are listed below.

-line_type FHO, CTC, -out_line_type CTS, ECLV
-line_type MCTC -out_line_type MCTS
-line_type SL1L2, SAL1L2, -out_line_type CNT
-line_type VL1L2 -out_line_type VCNT
-line_type VL1L2, VAL1L2, -out_line_type WDIR (wind direction)
-line_type PCT, -out_line_type PSTD, PJC, PRC, ECLV
-line_type NBRCTC, -out_line_type NBRCTS
-line_type ORANK, -out_line_type ECNT, RPS, RHIST, PHIST,

RELP, SSVAR
-line_type MPR, -out_line_type FHO, CTC, CTS,

MCTC, MCTS, CNT,
SL1L2, SAL1L2,
VL1L2, VCNT,
PCT, PSTD, PJC, PRC, ECLV,
WDIR (wind direction)

Required Args: -line_type, -out_line_type

Additional Required Args for -line_type MPR:

-out_thresh or -out_fcst_thresh and -out_obs_thresh
When -out_line_type FHO, CTC, CTS, MCTC, MCTS,

PCT, PSTD, PJC, PRC

Additional Optional Args for -line_type MPR:

-mask_grid, -mask_poly, -mask_sid
-out_thresh or -out_fcst_thresh and -out_obs_thresh
-out_cnt_logic
-out_wind_thresh or -out_fcst_wind_thresh and
-out_obs_wind_thresh

(continues on next page)

104 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

-out_wind_logic
When -out_line_type WDIR

Additional Optional Arg for:

-line_type ORANK -out_line_type PHIST, SSVAR ...
-out_bin_size

Additional Optional Args for:

-out_line_type ECLV ...
-out_eclv_points

• “ss_index”

The skill score index job can be configured to compute a weighted average of skill scores derived from
a configurable set of variables, levels, lead times, and statistics. The skill score index is computed using
two models, a forecast model and a reference model. For each statistic in the index, a skill score is
computed as:

SS = 1 - (S[model]*S[model])/(S[reference]*S[reference])

Where S is the statistic.

Next, a weighted average is computed over all the skill scores.

Lastly, an index value is computed as:

Index = sqrt(1/(1-SS[avg]))

Where SS[avg] is the weighted average of skill scores.

Required Args:

Exactly 2 entries for -model, the forecast model and reference
For each term of the index:
-fcst_var, -fcst_lev, -fcst_lead, -line_type, -column, -weight
Where -line_type is CNT or CTS and -column is the statistic.
Optionally, specify other filters for each term, -fcst_thresh.

• “go_index”

The GO Index is a special case of the skill score index consisting of a predefined set of variables, levels,
lead times, statistics, and weights.

For lead times of 12, 24, 36, and 48 hours, it contains RMSE for:

- Wind Speed at the surface(b), 850(a), 400(a), 250(a) mb
- Dew point Temperature at the surface(b), 850(b), 700(b), 400(b) mB
- Temperature at the surface(b), 400(a) mB
- Height at 400(a) mB

(continues on next page)

5.3. Settings specific to individual tools 105

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

- Sea Level Pressure(b)
Where (a) means weights of 4, 3, 2, 1 for the lead times, and

(b) means weights of 8, 6, 4, 2 for the lead times.

Required Args: None

• “ramp”

The ramp job operates on a time-series of forecast and observed values and is analogous to the RIRW
(Rapid Intensification and Weakening) job supported by the tc_stat tool. The amount of change from
one time to the next is computed for forecast and observed values. Those changes are thresholded to
define events which are used to populate a 2x2 contingency table.

Required Args:

-ramp_thresh (-ramp_thresh_fcst or -ramp_thresh_obs)
For DYDT, threshold for the amount of change required to
define an event.
For SWING, threshold the slope.

-swing_width val
Required for the swinging door algorithm width.

Optional Args:

-ramp_type str
Overrides the default ramp definition algorithm to be used.
May be set to DYDT (default) or SWING for the swinging door
algorithm.

-line_type str
Overrides the default input line type, MPR.

-out_line_type str
Overrides the default output line types of CTC and CTS.
Set to CTC,CTS,MPR for all possible output types.

-column fcst_column,obs_column
Overrides the default forecast and observation columns
to be used, FCST and OBS.

-ramp_time HH[MMSS] (-ramp_time_fcst or -ramp_time_obs)
Overrides the default ramp time interval, 1 hour.

-ramp_exact true/false (-ramp_exact_fcst or -ramp_exact_obs)
Defines ramps using an exact change (true, default) or maximum
change in the time window (false).

-ramp_window width in HH[MMSS] format
-ramp_window beg end in HH[MMSS] format

Defines a search time window when attempting to convert misses
(continues on next page)

106 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

to hits and false alarms to correct negatives. Use 1 argument
to define a symmetric time window or 2 for an asymmetric
window. Default window is 0 0, requiring an exact match.

Job command FILTERING options to further refine the STAT data:

Each optional argument may be used in the job specification multiple times unless otherwise indicated.
When multiple optional arguments of the same type are indicated, the analysis will be performed over
their union:

"-model name"
"-fcst_lead HHMMSS"
"-obs_lead HHMMSS"
"-fcst_valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-obs_valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-obs_valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_init_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_init_end YYYYMMDD[_HH[MMSS]]" (use once)
"-obs_init_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-obs_init_end YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_init_hour HH[MMSS]"
"-obs_init_hour HH[MMSS]"
"-fcst_valid_hour" HH[MMSS]
"-obs_valid_hour" HH[MMSS]
"-fcst_var name"
"-obs_var name"
"-fcst_lev name"
"-obs_lev name"
"-obtype name"
"-vx_mask name"
"-interp_mthd name"
"-interp_pnts n"
"-fcst_thresh t"
"-obs_thresh t"
"-cov_thresh t"
"-thresh_logic UNION, or, ||

INTERSECTION, and, &&
SYMDIFF, symdiff, *

"-alpha a"
"-line_type type"
"-column name"
"-weight value"

Job command FILTERING options that may be used only when -line_type has been listed once. These
options take two arguments: the name of the data column to be used and the min, max, or exact value
for that column. If multiple column eq/min/max/str/exc options are listed, the job will be performed

5.3. Settings specific to individual tools 107

MET User’s Guide, version 11.1.0-beta2

on their intersection:

"-column_min col_name value" e.g. -column_min BASER 0.02
"-column_max col_name value"
"-column_eq col_name value"
"-column_thresh col_name threshold" e.g. -column_thresh FCST '>273'
"-column_str col_name string" separate multiple filtering strings

with commas
"-column_str_exc col_name string" separate multiple filtering strings

with commas

Job command options to DEFINE the analysis job. Unless otherwise noted, these options may only be
used ONCE per analysis job:

"-dump_row path"

"-mask_grid name"
"-mask_poly file"
"-mask_sid file|list" see description of "sid" entry above

"-out_line_type name"
"-out_thresh value" sets both -out_fcst_thresh and -out_obs_thresh
"-out_fcst_thresh value" multiple for multi-category contingency tables

and probabilistic forecasts
"-out_obs_thresh value" multiple for multi-category contingency tables
"-out_cnt_logic value"

"-out_wind_thresh value"
"-out_fcst_wind_thresh value"
"-out_obs_wind_thresh value"
"-out_wind_logic value"

"-out_bin_size value"

"-out_eclv_points value" see description of "eclv_points" config file
entry

"-out_alpha value"

"-boot_interval value"
"-boot_rep_prop value"
"-n_boot_rep value"
"-boot_rng value"
"-boot_seed value"

108 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

"-hss_ec_value value"
"-rank_corr_flag value"
"-vif_flag value"

For aggregate and aggregate_stat job types:

"-out_stat path" to write a .stat output file for the job
including the .stat header columns. Multiple
values for each header column are written as
a comma-separated list.

"-set_hdr col_name value" may be used multiple times to explicity
specify what should be written to the header
columns of the output .stat file.

When using the “-by” job command option, you may reference those columns in the “-set_hdr” job
command options. For example, when computing statistics separately for each station, write the station
ID string to the VX_MASK column of the output .stat output file:

-job aggregate_stat -line_type MPR -out_line_type CNT \
-by OBS_SID -set_hdr VX_MASK OBS_SID -stat_out out.stat
When using mulitple "-by" options, use "CASE" to reference the full string:
-by FCST_VAR,OBS_SID -set_hdr DESC CASE -stat_out out.stat

jobs = [
"-job filter -line_type SL1L2 -vx_mask DTC165 \
-dump_row job_filter_SL1L2.stat",

"-job summary -line_type CNT -alpha 0.050 -fcst_var TMP \
-dump_row job_summary_ME.stat -column ME",

"-job aggregate -line_type SL1L2 -vx_mask DTC165 -vx_mask DTC166 \
-fcst_var TMP -dump_row job_aggregate_SL1L2_dump.stat \
-out_stat job_aggregate_SL1L2_out.stat \
-set_hdr VX_MASK CONUS",

"-job aggregate_stat -line_type SL1L2 -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP \
-dump_row job_aggregate_stat_SL1L2_CNT_in.stat",

"-job aggregate_stat -line_type MPR -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcat_var TMP -dump_row job_aggregate_stat_MPR_CNT_in.stat",

"-job aggregate -line_type CTC -fcst_thresh <300.000 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP -dump_row job_aggregate_CTC_in.stat",

"-job aggregate_stat -line_type CTC -out_line_type CTS \
-fcst_thresh <300.000 -vx_mask DTC165 -vx_mask DTC166 -fcst_var TMP \
-dump_row job_aggregate_stat_CTC_CTS_in.stat",

"-job aggregate -line_type MCTC -column_eq N_CAT 4 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var APCP_24 -dump_row job_aggregate_MCTC_in.stat",

"-job aggregate_stat -line_type MCTC -out_line_type MCTS \
-column_eq N_CAT 4 -vx_mask DTC165 -vx_mask DTC166 -fcst_var APCP_24 \
-dump_row job_aggregate_stat_MCTC_MCTS_in.stat",

(continues on next page)

5.3. Settings specific to individual tools 109

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

"-job aggregate -line_type PCT -vx_mask DTC165 -vx_mask DTC166 \
-dump_row job_aggregate_PCT_in.stat",

"-job aggregate_stat -line_type PCT -out_line_type PSTD -vx_mask DTC165 \
-vx_mask DTC166 -dump_row job_aggregate_stat_PCT_PSTD_in.stat",

"-job aggregate -line_type ISC -fcst_thresh >0.000 -vx_mask TILE_TOT \
-fcst_var APCP_12 -dump_row job_aggregate_ISC_in.stat",

"-job aggregate -line_type RHIST -obtype MC_PCP -vx_mask HUC4_1605 \
-vx_mask HUC4_1803 -dump_row job_aggregate_RHIST_in.stat",

"-job aggregate -line_type SSVAR -obtype MC_PCP -vx_mask HUC4_1605 \
-vx_mask HUC4_1803 -dump_row job_aggregate_SSVAR_in.stat",

"-job aggregate_stat -line_type ORANK -out_line_type RHIST -obtype ADPSFC \
-vx_mask HUC4_1605 -vx_mask HUC4_1803 \
-dump_row job_aggregate_stat_ORANK_RHIST_in.stat"

];

List of statistics by the logic that should be applied when computing their WMO mean value in the summary
job. Each entry is a line type followed by the statistic name. Statistics using the default arithemtic mean
method do not need to be listed.

wmo_sqrt_stats = [];
wmo_fisher_stats = [];

The “vif_flag” entry is a boolean to indicate whether a variance inflation factor should be computed when
aggregating a time series of contingency table counts or partial sums. The VIF is used to adjust the normal
confidence intervals computed for the aggregated statistics.

vif_flag = FALSE;

5.3.7 WaveletStatConfig_default

5.3.7.1 grid_decomp_flag

The “grid_decomp_flag” entry specifies how the grid should be decomposed in Wavelet-Stat into dyadic
(2^n x 2^n) tiles:

• “AUTO” to tile the input data using tiles of dimension n by n where n is the largest integer power of 2
less than the smallest dimension of the input data. Center as many tiles as possible with no overlap.

• “TILE” to use the tile definition specified below.

• “PAD” to pad the input data out to the nearest integer power of 2.

grid_decomp_flag = AUTO;

110 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.3.7.2 tile

The “tile” entry is a dictionary that specifies how tiles should be defined in Wavelet-Stat when the
“grid_decomp_flag” is set to “TILE”:

• The “width” entry specifies the dimension for all tiles and must be an integer power of 2.

• The “location” entry is an array of dictionaries where each element consists of an “x_ll” and “y_ll” entry
specifying the lower-left (x,y) coordinates of the tile.

tile = {
width = 0;
location = [

{
x_ll = 0;
y_ll = 0;

}
];

}

5.3.7.3 wavelet

The “wavelet” entry is a dictionary in Wavelet-Stat that specifies how the wavelet decomposition should be
performed:

• The “type” entry specifies which wavelet should be used.

• The “member” entry specifies the wavelet shape. See: Discrete Wavelet Transforms (DWT) initializa-
tion

• Valid combinations of the two are listed below:

– “HAAR” for Haar wavelet (member = 2)

– “HAAR_CNTR” for Centered-Haar wavelet (member = 2)

– “DAUB” for Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16, 18, 20)

– “DAUB_CNTR” for Centered-Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16, 18, 20)

– “BSPLINE” for Bspline wavelet (member = 103, 105, 202, 204, 206, 208, 301, 303, 305, 307,
309)

– “BSPLINE_CNTR” for Centered-Bspline wavelet (member = 103, 105, 202, 204, 206, 208, 301,
303, 305, 307, 309)

wavelet = {
type = HAAR;
member = 2;

}

5.3. Settings specific to individual tools 111

https://www.gnu.org/software/gsl/doc/html/dwt.html#initialization
https://www.gnu.org/software/gsl/doc/html/dwt.html#initialization

MET User’s Guide, version 11.1.0-beta2

5.3.7.4 obs_raw_wvlt_object_plots

The “obs_raw_plot”, “wvlt_plot”, and “object_plot” entries are dictionaries similar to the “fcst_raw_plot”
described in the “Settings common to multiple tools” section.

5.3.8 WWMCARegridConfig_default

5.3.8.1 to_grid

Please see the description of the “to_grid” entry in the “regrid” dictionary above.

5.3.8.2 NetCDF output information

Supply the NetCDF output information. For example:

variable_name = "Cloud_Pct";
units = "percent";
long_name = "cloud cover percent";
level = "SFC";

variable_name = "";
units = "";
long_name = "";
level = "";

5.3.8.3 max_minutes (pixel age)

Maximum pixel age in minutes

max_minutes = 120;

5.3.8.4 swap_endian

The WWMCA pixel age data is stored in binary data files in 4-byte blocks. The swap_endian option indicates
whether the endian-ness of the data should be swapped after reading.

swap_endian = TRUE;

112 Chapter 5. Configuration File Overview

MET User’s Guide, version 11.1.0-beta2

5.3.8.5 write_pixel_age

By default, wwmca_regrid writes the cloud percent data specified on the command line to the output file.
This option writes the pixel age data, in minutes, to the output file instead.

write_pixel_age = FALSE;

5.3. Settings specific to individual tools 113

MET User’s Guide, version 11.1.0-beta2

114 Chapter 5. Configuration File Overview

Chapter 6

Tropical Cyclone Configuration Options

See Section 5 for a description of the configuration file syntax.

6.1 Configuration settings common to multiple tools

6.1.1 storm_id

Specify a comma-separated list of storm id’s to be used:

2-letter basin, 2-digit cyclone number, 4-digit year

An empty list indicates that all should be used.

For example:

storm_id = [“AL092011”];

This may also be set using basin, cyclone, and timing information below.

storm_id = [];

115

MET User’s Guide, version 11.1.0-beta2

6.1.2 basin

Specify a comma-separated list of basins to be used. Expected format is a 2-letter basin identifier. An empty
list indicates that all should be used.

Valid basins: WP, IO, SH, CP, EP, AL, SL

For example:

basin = [“AL”, “EP”];

basin = [];

6.1.3 cyclone

Specify a comma-separated list of cyclone numbers (01-99) to be used. An empty list indicates that all
should be used.

For example:

cyclone = [“01”, “02”, “03”];

cyclone = [];

6.1.4 storm_name

Specify a comma-separated list of storm names to be used. An empty list indicates that all should be used.

For example:

storm_name = [“KATRINA”];

116 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

storm_name = [];

6.1.5 init_beg end inc exc

Specify a model initialization time window in YYYYMMDD[_HH[MMSS]] format or provide a list of specific
initialization times to include (inc) or exclude (exc). Tracks whose initial time meets the specified criteria
will be used. An empty string indicates that all times should be used.

In TC-Stat, the -init_beg, -init_end, init_inc and -int_exc job command options can be used to further refine
these selections.

For example:

init_beg = “20100101”;
init_end = “20101231”;
init_inc = [“20101231_06”];
init_exc = [“20101231_00”];

init_beg = "";
init_end = "";
init_inc = [];
init_exc = [];

6.1.6 valid_beg end inc exc

Specify a model valid time window YYYYMMDD[_HH[MMSS]] format or provide a list of specific valid times
to include (inc) or exclude (exc). If a time window is specified, only tracks for which all points are contained
within the window will be used. If valid times to include or exclude are specified, tracks will be subset down
to the points which meet that criteria. Empty begin/end time strings and empty include/exclude lists indicate
that all valid times should be used.

In TC-Stat, the -valid_beg, -valid_end, valid_inc and -valid_exc job command options can be used to
further refine these selections.

For example:

valid_beg = “20100101”;
valid_end = “20101231_12”;
valid_inc = [“20101231_06”];
valid_exc = [“20101231_00”];

6.1. Configuration settings common to multiple tools 117

MET User’s Guide, version 11.1.0-beta2

valid_beg = "";
valid_end = "";
valid_inc = [];
valid_exc = [];

6.1.7 init_hour

Specify a comma-separated list of model initialization hours to be used in HH[MMSS] format. An empty list
indicates that all hours should be used.

For example:

init_hour = [“00”, “06”, “12”, “18”];

init_hour = [];

6.1.8 lead_req

Specify the required lead time in HH[MMSS] format. Tracks that contain all of these required times will be
used. If a track has additional lead times, it will be retained. An empty list indicates that no lead times are
required to determine which tracks are to be used; all lead times will be used.

lead_req = [];

6.1.9 version

Indicate the version number for the contents of this configuration file. The value should generally not be
modified.

version = "VN.N";

6.2 Settings specific to individual tools

6.2.1 TCPairsConfig_default

6.2.1.1 model

The “model” entry specifies an array of model names to be verified. If verifying multiple models, choose
descriptive model names (no whitespace) to distinguish between their output.

118 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

For example:

model = [“AHW4”, “AHWI”];

model = [];

6.2.1.2 init_mask, valid_mask

Specify lat/lon polylines defining masking regions to be applied. Tracks whose initial location falls within
init_mask will be used. Tracks for which all locations fall within valid_mask will be used.

For example:

init_mask = “MET_BASE/poly/EAST.poly”;

init_mask = "";
valid_mask = "";

6.2.1.3 check_dup

Specify whether the code should check for duplicate ATCF lines when building tracks. Setting this to FALSE
makes the parsing of tracks quicker.

For example:

check_dup = FALSE;

check_dup = FALSE;

6.2. Settings specific to individual tools 119

MET User’s Guide, version 11.1.0-beta2

6.2.1.4 interp12

Specify whether special processing should be performed for interpolated model names ending in ‘I’ (e.g.
AHWI). Search for corresponding tracks whose model name ends in ‘2’ (e.g. AHW2) and apply the following
logic:

• “NONE” to do nothing.

• “FILL” to create a copy of ‘2’ track and rename it as ‘I’ only when the ‘I’ track does not already exist.

• “REPLACE” to create a copy of the ‘2’ track and rename it as ‘I’ in all cases, replacing any ‘I’ tracks that
may already exist.

interp12 = REPLACE;

6.2.1.5 consensus

Specify how consensus forecasts should be defined:

name = consensus model name
members = array of consensus member model names
required = array of TRUE/FALSE for each member if empty, default is FALSE
min_req = minimum number of members required for the consensus

For example:

consensus = [
{

name = “CON1”;
members = [“MOD1”, “MOD2”, “MOD3”];
required = [TRUE, FALSE, FALSE];
min_req = 2;

}
];

consensus = [];

120 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

6.2.1.6 lag_time

Specify a comma-separated list of forecast lag times to be used in HH[MMSS] format. For each ADECK track
identified, a lagged track will be derived for each entry listed.

For example:

lag_time = [“06”, “12”];

lag_time = [];

6.2.1.7 best

Specify comma-separated lists of CLIPER/SHIFOR baseline forecasts to be derived from the BEST and oper-
ational tracks, as defined by the best_technique and oper_technique settings.

Derived from BEST tracks:
BCLP, BCS5, BCD5, BCLA

Derived from OPER tracks:
OCLP, OCS5, OCD5, OCDT

For example:

best_technique = [“BEST”];

best_technique = ["BEST"];
best_baseline = [];
oper_technique = ["CARQ"];
oper_baseline = [];

6.2. Settings specific to individual tools 121

MET User’s Guide, version 11.1.0-beta2

6.2.1.8 anly_track

Analysis tracks consist of multiple track points with a lead time of zero for the same storm. An analysis track
may be generated by running model analysis fields through a tracking algorithm. Specify which datasets
should be searched for analysis track data by setting this to NONE, ADECK, BDECK, or BOTH. Use BOTH to
create pairs using two different analysis tracks.

For example:

anly_track = BDECK;

anly_track = BDECK;

6.2.1.9 match_points

Specify whether only those track points common to both the ADECK and BDECK tracks should be written
out.

For example:

match_points = FALSE;

match_points = FALSE;

6.2.1.10 dland_file

Specify the NetCDF output of the gen_dland tool containing a gridded representation of the minimum dis-
tance to land.

dland_file = "MET_BASE/tc_data/dland_nw_hem_tenth_degree.nc";

122 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

6.2.1.11 watch_warn

Specify watch/warning information. Specify an ASCII file containing watch/warning information to be
used. At each track point, the most severe watch/warning status in effect, if any, will be written to the
output. Also specify a time offset in seconds to be added to each watch/warning time processed. NHC applies
watch/warning information to all track points occurring 4 hours (-14400 second) prior to the watch/warning
time.

watch_warn = {
file_name = "MET_BASE/tc_data/wwpts_us.txt";
time_offset = -14400;

}

6.2.1.12 basin_map

The basin_map entry defines a mapping of input names to output values. Whenever the basin string matches
“key” in the input ATCF files, it is replaced with “val”. This map can be used to modify basin names to make
them consistent across the ATCF input files.

Many global modeling centers use ATCF basin identifiers based on region (e.g., ‘SP’ for South Pacific Ocean,
etc.), however the best track data provided by the Joint Typhoon Warning Center (JTWC) use just one basin
identifier ‘SH’ for all of the Southern Hemisphere basins. Additionally, some modeling centers may report
basin identifiers separately for the Bay of Bengal (BB) and Arabian Sea (AB) whereas JTWC uses ‘IO’.

The basin mapping allows MET to map the basin identifiers to the expected values without having to modify
your data. For example, the first entry in the list below indicates that any data entries for ‘SI’ will be
matched as if they were ‘SH’. In this manner, all verification results for the Southern Hemisphere basins will
be reported together as one basin.

An empty list indicates that no basin mapping should be used. Use this if you are not using JTWC best tracks
and you would like to match explicitly by basin or sub-basin. Note that if your model data and best track
do not use the same basin identifier conventions, using an empty list for this parameter will result in missed
matches.

basin_map = [
{ key = "SI"; val = "SH"; },
{ key = "SP"; val = "SH"; },
{ key = "AU"; val = "SH"; },
{ key = "AB"; val = "IO"; },
{ key = "BB"; val = "IO"; }

];

6.2. Settings specific to individual tools 123

MET User’s Guide, version 11.1.0-beta2

6.2.2 TCStatConfig_default

6.2.2.1 amodel, bmodel

Stratify by the AMODEL or BMODEL columns. Specify comma-separated lists of model names to be used for
all analyses performed. May add to this list using the “-amodel” and “-bmodel” job command options.

For example:

amodel = [“AHW4”];
bmodel = [“BEST”];

amodel = [];
bmodel = [];

6.2.2.2 init valid_hour lead req

Stratify by the initialization and valid hours and lead time. Specify a comma-separated list of initialization
hours, valid hours, and lead times in HH[MMSS] format. May add using the “-init_hour”, “-valid_hour”,
“-lead”, and “-lead_req” job command options.

For example:

init_hour = [“00”];
valid_hour = [“12”];
lead = [“24”, “36”];
lead_req = [“72”, “84”, “96”, “108”];

init_hour = [];
valid_hour = [];
lead = [];
lead_req = [];

124 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

6.2.2.3 init_mask, valid_mask

Stratify by the contents of the INIT_MASK and VALID_MASK columns. Specify a comma-separated list of
strings for these options. May add using the “-init_mask” and “-valid_mask” job command options.

For example:

init_mask = [“AL_BASIN”, “EP_BASIN”];

init_mask = [];
valid_mask = [];

6.2.2.4 line_type

Stratify by the LINE_TYPE column. May add using the “-line_type” job command option.

For example:

line_type = [“TCMPR”];

line_type = [];

6.2.2.5 track_watch_warn

Stratify by checking the watch/warning status for each track point common to both the ADECK and BDECK
tracks. If the watch/warning status of any of the track points appears in the list, retain the entire track.
Individual watch/warning status by point may be specified using the -column_str options below, but this
option filters by the track maximum. May add using the “-track_watch_warn” job command option. The
value “ALL” matches HUWARN, TSWARN, HUWATCH, and TSWATCH.

For example:

track_watch_warn = [“HUWATCH”, “HUWARN”];

track_watch_warn = [];

6.2. Settings specific to individual tools 125

MET User’s Guide, version 11.1.0-beta2

6.2.2.6 column_thresh_name_and_val

Stratify by applying thresholds to numeric data columns. Specify a comma-separated list of columns names
and thresholds to be applied. May add using the “-column_thresh name thresh” job command options.

For example:

column_thresh_name = [“ADLAND”, “BDLAND”];
column_thresh_val = [>200, >200];

column_thresh_name = [];
column_thresh_val = [];

6.2.2.7 column_str_name, column_str_val

Stratify by performing string matching on non-numeric data columns. Specify a comma-separated list of
columns names and values to be included in the analysis. May add using the “-column_str name string” job
command options.

For example:

column_str_name = [“LEVEL”, “LEVEL”];
column_str_val = [“HU”, “TS”];

column_str_name = [];
column_str_val = [];

6.2.2.8 column_str_name val

Stratify by performing string matching on non-numeric data columns. Specify a comma-separated list of
columns names and values to be excluded from the analysis. May add using the “-column_str_exc name
string” job command options.

For example:

column_str_exc_name = [“LEVEL”];
column_str_exc_val = [“TD”];

126 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

column_str_exc_name = [];
column_str_exc_val = [];

6.2.2.9 init_thresh_name, init_thresh_val

Just like the column_thresh options above, but apply the threshold only when lead = 0. If lead = 0 value
does not meet the threshold, discard the entire track. May add using the “-init_thresh name thresh” job
command options.

For example:

init_thresh_name = [“ADLAND”];
init_thresh_val = [>200];

init_thresh_name = [];
init_thresh_val = [];

6.2.2.10 init_str_name, init_str_val

Just like the column_str options above, but apply the string matching only when lead = 0. If lead = 0 string
does not match, discard the entire track. May add using the “-init_str name thresh” job command options.

For example:

init_str_name = [“LEVEL”];
init_str_val = [“HU”];

init_str_name = [];
init_str_val = [];

6.2. Settings specific to individual tools 127

MET User’s Guide, version 11.1.0-beta2

6.2.2.11 init_str_exc_name and _exc_val

Just like the column_str_exc options above, but apply the string matching only when lead = 0. If lead =
0 string does match, discard the entire track. May add using the “-init_str_exc name thresh” job command
options.

For example:

init_str_exc_name = [“LEVEL”];
init_str_exc_val = [“HU”];

init_str_exc_name = [];
init_str_exc_val = [];

6.2.2.12 water_only

Stratify by the ADECK and BDECK distances to land. Once either the ADECK or BDECK track encounters
land, discard the remainder of the track.

For example:

water_only = FALSE;

water_only = FALSE;

6.2.2.13 rirw

Specify whether only those track points for which rapid intensification or weakening of the maximum wind
speed occurred in the previous time step should be retained.

The NHC considers a 24-hour change >=30 kts to constitute rapid intensification or weakening.

May modify using the following job command options:

“-rirw_track”
“-rirw_time” for both or “-rirw_time_adeck” and “-rirw_time_bdeck”
“-rirw_exact” for both or “-rirw_exact_adeck” and “-rirw_exact_bdeck”
“-rirw_thresh” for both or “-rirw_thresh_adeck” and “-rirw_thresh_bdeck”

128 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

rirw = {
track = NONE; Specify which track types to search (NONE, ADECK,

BDECK, or BOTH)
adeck = {

time = "24"; Rapid intensification/weakening time period in HHMMSS
format.

exact = TRUE; Use the exact or maximum intensity difference over the
time period.

thresh = >=30.0; Threshold for the intensity change.
}
bdeck = adeck; Copy settings to the BDECK or specify different logic.

}

6.2.2.14 landfall beg end

Specify whether only those track points occurring near landfall should be retained, and define the landfall
retention window as a time string in HH[MMSS] format (or as an integer number of seconds) offset from
the landfall time. Landfall is defined as the last BDECK track point before the distance to land switches from
positive to 0 or negative.

May modify using the “-landfall_window” job command option, which automatically sets -landfall to TRUE.

The “-landfall_window” job command option takes 1 or 2 arguments in HH[MMSS] format. Use 1 argument
to define a symmetric time window. For example, “-landfall_window 06” defines the time window +/- 6
hours around the landfall time. Use 2 arguments to define an asymmetric time window. For example,
“-landfall_window 00 12” defines the time window from the landfall event to 12 hours after.

For example:

landfall = FALSE;
landfall_beg = “-24”; (24 hours prior to landfall)
landfall_end = “00”;

landfall = FALSE;
landfall_beg = "-24";
landfall_end = "00";

6.2. Settings specific to individual tools 129

MET User’s Guide, version 11.1.0-beta2

6.2.2.15 event_equal

Specify whether only those cases common to all models in the dataset should be retained. May modify using
the “-event_equal” job command option.

For example:

event_equal = FALSE;

event_equal = FALSE;

6.2.2.16 event_equal_lead

Specify lead times that must be present for a track to be included in the event equalization logic.

event_equal_lead = ["12", "24", "36"];

6.2.2.17 out_int_mask

Apply polyline masking logic to the location of the ADECK track at the initialization time. If it falls outside
the mask, discard the entire track. May modify using the “-out_init_mask” job command option.

For example:

out_init_mask = “”;

out_init_mask = "";

6.2.2.18 out_valid_mask

Apply polyline masking logic to the location of the ADECK track at the valid time. If it falls outside the mask,
discard only the current track point. May modify using the “-out_valid_mask” job command option.

For example:

out_valid_mask = “”;

130 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

out_valid_mask = "";

6.2.2.19 job

The “jobs” entry is an array of TCStat jobs to be performed. Each element in the array contains the specifi-
cations for a single analysis job to be performed. The format for an analysis job is as follows:

-job job_name
OPTIONAL ARGS

Where “job_name” is set to one of the following:

• “filter”

To filter out the TCST lines matching the job filtering criteria specified above and using the optional
arguments below. The output TCST lines are written to the file specified using the “-dump_row”
argument.

Required Args: -dump_row

To further refine the TCST data: Each optional argument may be used in the job specification multiple
times unless otherwise indicated. When multiple optional arguments of the same type are indicated,
the analysis will be performed over their union.

"-amodel name"
"-bmodel name"
"-lead HHMMSS"
"-valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-valid_inc YYYYMMDD[_HH[MMSS]]" (use once)
"-valid_exc YYYYMMDD[_HH[MMSS]]" (use once)
"-init_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-init_end YYYYMMDD[_HH[MMSS]]" (use once)
"-init_inc YYYYMMDD[_HH[MMSS]]" (use once)
"-init_exc YYYYMMDD[_HH[MMSS]]" (use once)
"-init_hour HH[MMSS]"
"-valid_hour HH[MMSS]
"-init_mask name"
"-valid_mask name"
"-line_type name"
"-track_watch_warn name"
"-column_thresh name thresh"
"-column_str name string"
"-column_str_exc name string"

(continues on next page)

6.2. Settings specific to individual tools 131

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

"-init_thresh name thresh"
"-init_str name string"
"-init_str_exc name string"

Additional filtering options that may be used only when -line_type has been listed only once. These
options take two arguments: the name of the data column to be used and the min, max, or exact value
for that column. If multiple column eq/min/max/str options are listed, the job will be performed on
their intersection:

"-column_min col_name value" For example: -column_min TK_ERR 100.00
"-column_max col_name value"
"-column_eq col_name value"
"-column_str col_name string" separate multiple filtering strings

with commas
"-column_str_exc col_name string" separate multiple filtering strings

with commas

Required Args: -dump_row

• “summary”

To compute the mean, standard deviation, and percentiles (0th, 10th, 25th, 50th, 75th, 90th, and
100th) for the statistic specified using the “-line_type” and “-column” arguments. For TCStat, the
“-column” argument may be set to:

– “TRACK” for track, along-track, and cross-track errors.

– “WIND” for all wind radius errors.

– “TI” for track and maximum wind intensity errors.

– “AC” for along-track and cross-track errors.

– “XY” for x-track and y-track errors.

– “col” for a specific column name.

– “col1-col2” for a difference of two columns.

– “ABS(col or col1-col2)” for the absolute value.

Use the -column_union TRUE/FALSE job command option to compute summary statistics across the
union of input columns rather than processing them separately.

Required Args: -line_type, -column

Optional Args:

132 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

-by column_name to specify case information
-out_alpha to override default alpha value
-column_union to summarize multiple columns

• “rirw”

To define rapid intensification/weakening contingency table using the ADECK and BDECK RI/RW set-
tings and the matching time window and output contingency table counts and statistics.

Optional Args:

-rirw_window width in HH[MMSS] format to define a symmetric time window
-rirw_window beg end in HH[MMSS] format to define an asymmetric time window
Default search time window is 0 0, requiring exact match
-rirw_time or -rirw_time_adeck and -rirw_time_bdeck to override defaults
-rirw_exact or -rirw_exact_adeck and -rirw_exact_bdeck to override defaults
-rirw_thresh or -rirw_thresh_adeck and -rirw_thresh_bdeck to override
defaults
-by column_name to specify case information
-out_alpha to override default alpha value
-out_line_type to specify output line types (CTC, CTS, and MPR)

Note that the “-dump_row path” option results in 4 files being created:

path_FY_OY.tcst, path_FY_ON.tcst, path_FN_OY.tcst, and
path_FN_ON.tcst, containing the TCST lines that were hits, false
alarms, misses, and correct negatives, respectively. These files
may be used as input for additional TC-Stat analysis.

• “probrirw”

To define an Nx2 probabilistic contingency table by reading the PROBRIRW line type, binning the
forecast probabilities, and writing output probabilistic counts and statistics.

Required Args:

-probrirw_thresh to define the forecast probabilities to be
evaluated (For example: -probrirw_thresh 30)

Optional Args:

-probrirw_exact TRUE/FALSE to verify against the exact (for example:
BDELTA column) or maximum (for example: BDELTA_MAX column) intensity
change in the BEST track

-probrirw_bdelta_thresh to define BEST track change event
threshold (For example: -probrirw_bdelta_thresh >=30)

(continues on next page)

6.2. Settings specific to individual tools 133

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

-probrirw_prob_thresh to define output probability thresholds
(for example: -probrirw_prob_thresh ==0.1)

-by column_name to specify case information
-out_alpha to override default alpha value
-out_line_type to specify output line types (PCT, PSTD, PRC, and PJC)

For the PROBRIRW line type, PROBRIRW_PROB is a derived column name. For example, the following
options select 30 kt probabilities and match probability values greater than 0:

-probrirw_thresh 30 -column_thresh PROBRIRW_PROB >0

For example:

jobs = [
“-job filter -amodel AHW4 -dumprow ./tc_filter_job.tcst”,
“-job filter -column_min TK_ERR 100.000
-dumprow ./tc_filter_job.tcst”,
“-job summary -line_type TCMPR -column AC
-dumprow ./tc_summary_job.tcst”,
“-job rirw -amodel AHW4 -dump_row ./tc_rirw_job”]

jobs = [];

6.2.3 TCGenConfig_default

6.2.3.1 init_freq

Model initialization frequency in hours, starting at 0.

init_freq = 6;

134 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

6.2.3.2 lead_window

Lead times in hours to be searched for genesis events.

lead_window = {
beg = 24;
end = 120;

}

6.2.3.3 min_duration

Minimum track duration for genesis event in hours.

min_duration = 12;

6.2.3.4 fcst_genesis

Forecast genesis event criteria. Defined as tracks reaching the specified intensity category, maximum wind
speed threshold, and minimum sea-level pressure threshold. The forecast genesis time is the valid time of
the first track point where all of these criteria are met.

fcst_genesis = {
vmax_thresh = NA;
mslp_thresh = NA;

}

6.2.3.5 best_genesis

BEST track genesis event criteria. Defined as tracks reaching the specified intensity category, maximum wind
speed threshold, and minimum sea-level pressure threshold. The BEST track genesis time is the valid time
of the first track point where all of these criteria are met.

best_genesis = {
technique = "BEST";
category = ["TD", "TS"];
vmax_thresh = NA;
mslp_thresh = NA;

}

6.2. Settings specific to individual tools 135

MET User’s Guide, version 11.1.0-beta2

6.2.3.6 oper_genesis

Operational track genesis event criteria. Defined as tracks reaching the specified intensity category, maxi-
mum wind speed threshold, and minimum sea-level pressure threshold. The operational track genesis time
is valid time of the first track point where all of these criteria are met.

oper_genesis = {
technique = "CARQ";
category = ["DB", "LO", "WV"];
vmax_thresh = NA;
mslp_thresh = NA;

}

6.2.3.7 filter

Filter is an array of dictionaries containing the track filtering options listed below. If empty, a single filter is
defined using the top-level settings.

filter = [];

6.2.3.8 desc

Description written to output DESC column

desc = "NA";

6.2.3.9 model

Forecast ATCF ID’s If empty, all ATCF ID’s found will be processed. Statistics will be generated separately for
each ATCF ID.

model = [];

6.2.3.10 init_beg, init_end

Forecast and operational initialization time window

init_beg = "";
init_end = "";

136 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 11.1.0-beta2

6.2.3.11 valid_beg, valid_end

Forecast, BEST, and operational valid time window

valid_beg = "";
valid_end = "";

6.2.3.12 lead

Forecast and operational lead times in hours

lead = [];

6.2.3.13 vx_mask

Spatial masking region (path to gridded data file or polyline file)

vx_mask = "";

6.2.3.14 dland_thresh

Distance to land threshold

dland_thresh = NA;

6.2.3.15 genesis_window

Genesis matching time window, in hours relative to the forecast genesis time

genesis_window = {
beg = -24;
end = 24;

}

6.2.3.16 genesis_radius

Genesis matching search radius in km.

genesis_radius = 300;

6.2. Settings specific to individual tools 137

MET User’s Guide, version 11.1.0-beta2

6.2.3.17 ci_alpha

Confidence interval alpha value

ci_alpha = 0.05;

6.2.3.18 output_flag

Statistical output types

output_flag = {
fho = NONE;
ctc = BOTH;
cts = BOTH;
pct = NONE;
pstd = NONE;
pjc = NONE;
prc = NONE;
genmpr = NONE;

}

138 Chapter 6. Tropical Cyclone Configuration Options

Chapter 7

Re-Formatting of Point Observations

There are several formats of point observations that may be preprocessed using the suite of reformatting
tools in MET. These include PrepBUFR data from NCEP, SURFRAD data from NOAA, AERONET data from
NASA, MADIS data from NOAA, little_r from WRF simulations, and user-defined data in a generic ASCII
format. These steps are represented by the first columns in the MET flowchart depicted in Section 1. The
software tools used to reformat point data are described in this section.

7.1 PB2NC tool

This section describes how to configure and run the PB2NC tool. The PB2NC tool is used to stratify the
contents of an input PrepBUFR point observation file and reformat it into NetCDF format for use by other
MET tools. The PB2NC tool must be run on the input PrepBUFR point observation file prior to performing
verification with the MET statistics tools.

7.1.1 pb2nc usage

The usage statement for the PB2NC tool is shown below:

Usage: pb2nc
prepbufr_file
netcdf_file
config_file
[-pbfile PrepBUFR_file]
[-valid_beg time]
[-valid_end time]
[-nmsg n]
[-dump path]
[-index]
[-log file]
[-v level]
[-compress level]

139

MET User’s Guide, version 11.1.0-beta2

pb2nc has both required and optional arguments.

7.1.1.1 Required arguments for pb2nc

1. The prepbufr_file argument is the input PrepBUFR file to be processed.

2. The netcdf_file argument is the output NetCDF file to be written.

3. The config_file argument is the configuration file to be used. The contents of the configuration file are
discussed below.

7.1.1.2 Optional arguments for pb2nc

1. The -pbfile prepbufr_file option is used to pass additional input PrepBUFR files.

2. The -valid_beg time option in YYYYMMDD[_HH[MMSS]] format sets the beginning of the retention time
window.

3. The -valid_end time option in YYYYMMDD[_HH[MMSS]] format sets the end of the retention time
window.

4. The -nmsg num_messages option may be used for testing purposes. This argument indicates that only
the first “num_messages” PrepBUFR messages should be processed rather than the whole file. This option
is provided to speed up testing because running the PB2NC tool can take a few minutes for each file. Most
users will not need this option.

5. The -dump path option may be used to dump the entire contents of the PrepBUFR file to several ASCII
files written to the directory specified by “path”. The user may use this option to view a human-readable
version of the input PrepBUFR file, although writing the contents to ASCII files can be slow.

6. The -index option shows the available variables with valid data from the BUFR input. It collects the
available variable list from BUFR input and checks the existence of valid data and directs the variable names
with valid data to the screen. The NetCDF output won’t be generated.

7. The -log file option directs output and errors to the specified log file. All messages will be written to
that file as well as standard out and error. Thus, users can save the messages without having to redirect the
output on the command line. The default behavior is no log file.

8. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing the
verbosity above 1 will increase the amount of logging.

9. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from the
configuration file or the environment variable MET_NC_COMPRESS. Setting the compression level to 0 will
make no compression for the NetCDF output. Lower number is for fast compression and higher number is
for better compression.

An example of the pb2nc calling sequence is shown below:

140 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

pb2nc sample_pb.blk \
sample_pb.nc \
PB2NCConfig

In this example, the PB2NC tool will process the input sample_pb.blk file applying the configuration speci-
fied in the PB2NCConfig file and write the output to a file named sample_pb.nc.

7.1.2 pb2nc configuration file

The default configuration file for the PB2NC tool named PB2NCConfig_default can be found in the installed
share/met/config directory. The version used for the example run in Section 3.10 is available in scripts/config.
It is recommended that users make a copy of configuration files prior to modifying their contents.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

obs_window = { beg = -5400; end = 5400; }
mask = { grid = ""; poly = ""; }
tmp_dir = "/tmp";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

message_type = [];

Each PrepBUFR message is tagged with one of eighteen message types as listed in the Section 5 file. The
message_type refers to the type of observation from which the observation value (or ‘report’) was derived.
The user may specify a comma-separated list of message types to be retained. Providing an empty list
indicates that all message types should be retained.

message_type_map = [{ key = "AIRCAR"; val = "AIRCAR_PROFILES"; }];

The message_type_map entry is an array of dictionaries, each containing a key string and val string. This
defines a mapping of input PrepBUFR message types to output message types. This provides a method for
renaming input PrepBUFR message types.

message_type_group_map = [
{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; },
{ key = "ANYAIR"; val = "AIRCAR,AIRCFT"; },
{ key = "ANYSFC"; val = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; val = "ADPSFC,SFCSHP"; }

];

7.1. PB2NC tool 141

MET User’s Guide, version 11.1.0-beta2

The message_type_group_map entry is an array of dictionaries, each containing a key string and val string.
This defines a mapping of message type group names to a comma-separated list of values. This map is
defined in the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify this map to define sets of message
types that should be processed together as a group. The SURFACE entry must be present to define message
types for which surface verification logic should be applied.

station_id = [];

Each PrepBUFR message has a station identification string associated with it. The user may specify a comma-
separated list of station IDs to be retained. Providing an empty list indicates that messages from all station
IDs will be retained. It can be a file name containing a list of stations.

elevation_range = { beg = -1000; end = 100000; }

The beg and end variables are used to stratify the elevation (in meters) of the observations to be retained.
The range shown above is set to -1000 to 100000 meters, which essentially retains every observation.

pb_report_type = [];
in_report_type = [];
instrument_type = [];

The pb_report_type, in_report_type, and instrument_type variables are used to specify comma-separated
lists of PrepBUFR report types, input report types, and instrument types to be retained, respectively. If
left empty, all PrepBUFR report types, input report types, and instrument types will be retained. See the
following for more details:

Code table for PrepBUFR report types used by Regional NAM GSI analyses.

PrepBUFR Code table for input report types.

level_range = { beg = 1; end = 255; }
level_category = [];

The beg and end variables are used to stratify the model level of observations to be retained. The range
shown above is 1 to 255.

The level_category variable is used to specify a comma-separated list of PrepBUFR data level categories to
retain. An empty string indicates that all level categories should be retained. Accepted values and their
meanings are described in Table 7.1. See the following for more details:

PrepBUFR mnemonic table.

142 Chapter 7. Re-Formatting of Point Observations

https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_6.htm
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

MET User’s Guide, version 11.1.0-beta2

Table 7.1: Values for the level_category option.

Level category value Description
0 Surface level
1 Mandatory level
2 Significant temperature level
3 Winds-by-pressure level
4 Winds-by-height level
5 Tropopause level
6 Reports on a single level
7 Auxiliary levels generated via interpolation from spanning levels

obs_bufr_var = ['QOB', 'TOB', 'ZOB', 'UOB', 'VOB'];

Each PrepBUFR message will likely contain multiple observation variables. The obs_bufr_var variable is
used to specify which observation variables should be retained or derived. The observation variable names
are retrieved from the BUFR table embedded within the file. Users can run PB2NC with the -index command
line argument to list out the variable names present in the file, and those names can be listed in this setting.
If the list is empty, all BUFR variables present in the file are retained. This setting replaces the deprecated
obs_grib_code.

The example obs_bufr_var setting above retains observations of QOB, TOB, ZOB, UOB, and VOB for specific
humidity, temperature, height, and the u and v components of winds. Observations of those types are
reported at the corresponding POB pressure level. In addition, PB2NC can derive several other variables
from these observations. By convention, all observations that are derivable are named with a D_ prefix:

• D_DPT for dew point (from POB and QOB)

• D_WDIR for wind direction (from UOB and VOB)

• D_WIND for wind speed (from UOB and VOB)

• D_RH for relative humidity (from POB, QOB, and TOB)

• D_MIXR for mixing ratio (from QOB)

• D_PRMSL for pressure reduced to mean sea level (from POB, TOB, and ZOB)

• D_PBL for planetary boundary layer height (from POB, QOB, TOB, ZOB, UOB, and VOB)

• D_CAPE for convective available potential energy (from POB, QOB, and TOB)

• D_MLCAPE for mixed layer convective available potential energy (from POB, QOB, and TOB)

In BUFR, lower quality mark values indicate higher quality observations. The quality marks for derived
observations are computed as the maximum of the quality marks for its components. For example, D_DPT
derived from POB with quality mark 1 and QOB with quality mark 2 is assigned a quality mark value of 2.
D_PBL, D_CAPE, and D_MLCAPE are derived using data from multiple vertical levels. Their quality marks
are computed as the maximum of their components over all vertical levels.

7.1. PB2NC tool 143

MET User’s Guide, version 11.1.0-beta2

obs_bufr_map = [
{ key = 'POB'; val = 'PRES'; },
{ key = 'QOB'; val = 'SPFH'; },
{ key = 'TOB'; val = 'TMP'; },
{ key = 'ZOB'; val = 'HGT'; },
{ key = 'UOB'; val = 'UGRD'; },
{ key = 'VOB'; val = 'VGRD'; },
{ key = 'D_DPT'; val = 'DPT'; },
{ key = 'D_WDIR'; val = 'WDIR'; },
{ key = 'D_WIND'; val = 'WIND'; },
{ key = 'D_RH'; val = 'RH'; },
{ key = 'D_MIXR'; val = 'MIXR'; },
{ key = 'D_PRMSL'; val = 'PRMSL'; },
{ key = 'D_PBL'; val = 'PBL'; },
{ key = 'D_CAPE'; val = 'CAPE'; }
{ key = 'D_MLCAPE'; val = 'MLCAPE'; }
];

The BUFR variable names are not shared with other forecast data. This map is used to convert the BUFR
name to the common name, like GRIB2. It allows to share the configuration for forecast data with PB2NC
observation data. If there is no mapping, the BUFR variable name will be saved to output NetCDF file.

quality_mark_thresh = 2;

Each observation has a quality mark value associated with it. The quality_mark_thresh is used to stratify
out which quality marks will be retained. The value shown above indicates that only observations with
quality marks less than or equal to 2 will be retained.

event_stack_flag = TOP;

A PrepBUFR message may contain duplicate observations with different quality mark values. The
event_stack_flag indicates whether to use the observations at the top of the event stack (observation values
have had more quality control processing applied) or the bottom of the event stack (observation values have
had no quality control processing applied). The flag value of TOP listed above indicates the observations
with the most amount of quality control processing should be used, the BOTTOM option uses the data
closest to raw values.

time_summary = {
flag = FALSE;
raw_data = FALSE;
beg = "000000";
end = "235959";
step = 300;

(continues on next page)

144 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

width = 600;
// width = { beg = -300; end = 300; }
grib_code = [];
obs_var = ["TMP", "WDIR", "RH"];
type = ["min", "max", "range", "mean", "stdev", "median", "p80"];
vld_freq = 0;
vld_thresh = 0.0;
}

The time_summary dictionary enables additional processing for observations with high temporal resolution.
The flag entry toggles the time_summary on (TRUE) and off (FALSE). If the raw_data flag is set to TRUE,
then both the individual observation values and the derived time summary value will be written to the
output. If FALSE, only the summary values are written. Observations may be summarized across the user
specified time period defined by the beg and end entries in HHMMSS format. The step entry defines the
time between intervals in seconds. The width entry specifies the summary interval in seconds. It may either
be set as an integer number of seconds for a centered time interval or a dictionary with beginning and ending
time offsets in seconds.

This example listed above does a 10-minute time summary (width = 600;) every 5 minutes (step = 300;)
throughout the day (beg = “000000”; end = 235959”;). The first interval will be from 23:55:00 the previous
day through 00:04:59 of the current day. The second interval will be from 0:00:00 through 00:09:59. And
so on.

The two width settings listed above are equivalent. Both define a centered 10-minute time interval. Use the
beg and end entries to define uncentered time intervals. The following example requests observations for
one hour prior:

width = { beg = -3600; end = 0; }

The summaries will only be calculated for the observations specified in the grib_code or obs_var entries.
The grib_code entry is an array of integers while the obs_var entries is an array of strings. The supported
summaries are min (minimum), max (maximum), range, mean, stdev (standard deviation), median and
p## (percentile, with the desired percentile value specified in place of ##). If multiple summaries are
selected in a single run, a string indicating the summary method applied will be appended to the output
message type.

The vld_freq and vld_thresh entries specify the required ratio of valid data for an output time summary
value to be computed. This option is only applied when these entries are set to non-zero values. The vld_freq
entry specifies the expected frequency of observations in seconds. The width of the time window is divided
by this frequency to compute the expected number of observations for the time window. The actual number
of valid observations is divided by the expected number to compute the ratio of valid data. An output time
summary value will only be written if that ratio is greater than or equal to the vld_thresh entry. Detailed
information about which observations are excluded is provided at debug level 4.

The quality mark for time summaries is always reported by PB2NC as bad data. Time summaries are com-
puted by several MET point pre-processing tools using common library code. While BUFR quality marks are
integers, the quality flags for other point data formats (MADIS NetCDF, for example) are stored as strings.
MET does not currently contain logic to determine which quality flag strings are better or worse. Note how-
ever that any point observation whose quality mark does not meet the quality_mark_thresh criteria is not

7.1. PB2NC tool 145

MET User’s Guide, version 11.1.0-beta2

used in the computation of time summaries.

7.1.3 pb2nc output

Each NetCDF file generated by the PB2NC tool contains the dimensions and variables shown in Table 7.2
and Table 7.3.

Table 7.2: NetCDF file dimensions for pb2n output

pb2nc NetCDF DIMEN-
SIONS
NetCDF Dimension Description
mxstr, mxstr2, mxstr3 Maximum string lengths (16, 40, and 80)
nobs Number of PrepBUFR observations in the file (UNLIMITED)
nhdr, npbhdr Number of PrepBUFR messages in the file (variable)
nhdr_typ, nhdr_sid,
nhdr_vld

Number of unique header message type, station ID, and valid time strings
(variable)

nobs_qty Number of unique quality control strings (variable)
obs_var_num Number of unique observation variable types (variable)

146 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

Table 7.3: NetCDF variables in pb2nc output

pb2nc NetCDF
VARIABLES
NetCDF Variable Dimension Description
obs_qty nobs Integer value of the n_obs_qty dimension for the observation quality

control string.
obs_hid nobs Integer value of the nhdr dimension for the header arrays with

which this observation is associated.
obs_vid nobs Integer value of the obs_var_num dimension for the observation

variable name, units, and description.
obs_lvl nobs Floating point pressure level in hPa or accumulation interval.
obs_hgt nobs Floating point height in meters above sea level.
obs_val nobs Floating point observation value.
hdr_typ nhdr Integer value of the nhdr_typ dimension for the message type string.
hdr_sid nhdr Integer value of the nhdr_sid dimension for the station ID string.
hdr_vld nhdr Integer value of the nhdr_vld dimension for the valid time string.
hdr_lat, hdr_lon nhdr Floating point latitude in degrees north and longitude in degrees

east.
hdr_elv nhdr Floating point elevation of observing station in meters above sea

level.
hdr_prpt_typ npbhdr Integer PrepBUFR report type value.
hdr_irpt_typ npbhdr Integer input report type value.
hdr_inst_typ npbhdr Integer instrument type value.
hdr_typ_table nhdr_typ, mxstr2 Lookup table containing unique message type strings.
hdr_sid_table nhdr_sid, mxstr2 Lookup table containing unique station ID strings.
hdr_vld_table nhdr_vld,

mxstr
Lookup table containing unique valid time strings in YYYYM-
MDD_HHMMSS UTC format.

obs_qty_table nobs_qty,
mxstr

Lookup table containing unique quality control strings.

obs_var obs_var_num,
mxstr

Lookup table containing unique observation variable names.

obs_unit obs_var_num,
mxstr2

Lookup table containing a units string for the unique observation
variable names in obs_var.

obs_desc obs_var_num,
mxstr3

Lookup table containing a description string for the unique observa-
tion variable names in obs_var.

7.2 ASCII2NC tool

This section describes how to run the ASCII2NC tool. The ASCII2NC tool is used to reformat ASCII point
observations into the NetCDF format expected by the Point-Stat tool. For those users wishing to verify
against point observations that are not available in PrepBUFR format, the ASCII2NC tool provides a way
of incorporating those observations into MET. If the ASCII2NC tool is used to perform a reformatting step,
no configuration file is needed. However, for more complex processing, such as summarizing time series
observations, a configuration file may be specified. For details on the configuration file options, see Section

7.2. ASCII2NC tool 147

MET User’s Guide, version 11.1.0-beta2

5 and example configuration files distributed with the MET code.

While initial versions of the ASCII2NC tool only supported a simple 11 column ASCII point observation
format, support for several additional formats has been added. It currently supports point observation data
in the following formats:

• Default 11 column MET point observation format, as described in Table 7.4

• little_r format

• SURFace RADiation (SURFRAD) and Integrated Surface Irradiance Study (ISIS) formats

• Western Wind and Solar Integration Study (WWSIS) format. WWSIS data are available by request
from National Renewable Energy Laboratory (NREL) in Boulder, CO.

• AirNow DailyData_v2, AirNow HourlyData, and AirNow HourlyAQObs formats. See the
MET_AIRNOW_STATIONS (page 45) environment variable.

• National Data Buoy (NDBC) Standard Meteorlogical Data format. See the MET_NDBC_STATIONS
(page 45) environment variable.

• AErosol RObotic NEtwork (AERONET) versions 2 and 3 format

• Python embedding of point observations, as described in Section 36.4.2. See example below in Section
7.2.2.

The default ASCII point observation format consists of one row of data per observation value. Each row of
data consists of 11 columns as shown in Table 7.4.

Table 7.4: Input MET ascii2nc point observation format

ascii2nc ASCII Point Observation Format
Col-
umn

Name Description

1 Message_Type Text string containing the observation message type as described in the previ-
ous section on the PB2NC tool (max 40 characters).

2 Station_ID Text string containing the station id (max 40 characters).
3 Valid_Time Text string containing the observation valid time in YYYYMMDD_HHMMSS

format.
4 Lat Latitude in degrees north of the observing location.
5 Lon Longitude in degrees east of the observation location.
6 Elevation Elevation in msl of the observing location.
7 GRIB_Code or

Variable_Name
Integer GRIB code value or variable name (max 40 characters) corresponding
to this observation type.

8 Level Pressure level in hPa or accumulation interval in hours for the observation
value.

9 Height Height in msl or agl of the observation value.
10 QC_String Quality control value (max 16 characters).
11 Observa-

tion_Value
Observation value in units consistent with the GRIB code definition.

148 Chapter 7. Re-Formatting of Point Observations

https://www2.mmm.ucar.edu/wrf/users/wrfda/OnlineTutorial/Help/littler.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/
https://www.epa.gov/outdoor-air-quality-data
https://www.ndbc.noaa.gov/measdes.shtml
http://aeronet.gsfc.nasa.gov/

MET User’s Guide, version 11.1.0-beta2

7.2.1 ascii2nc usage

Once the ASCII point observations have been formatted as expected, the ASCII file is ready to be processed
by the ASCII2NC tool. The usage statement for ASCII2NC tool is shown below:

Usage: ascii2nc
ascii_file1 [ascii_file2 ... ascii_filen]
netcdf_file
[-format ASCII_format]
[-config file]
[-mask_grid string]
[-mask_poly file]
[-mask_sid file|list]
[-log file]
[-v level]
[-compress level]

ascii2nc has two required arguments and can take several optional ones.

7.2.1.1 Required arguments for ascii2nc

1. The ascii_file argument is the ASCII point observation file(s) to be processed. If using Python embed-
ding with “-format python” provides a quoted string containing the Python script to be run followed
by any command line arguments that script takes.

2. The netcdf_file argument is the NetCDF output file to be written.

7.2.1.2 Optional arguments for ascii2nc

3. The -format ASCII_format option may be set to “met_point”, “little_r”, “surfrad”, “wwsis”,
“airnowhourlyaqobs”, “airnowhourly”, “airnowdaily_v2”, “ndbc_standard”, “aeronet”, “aeronetv2”,
“aeronetv3”, or “python”. If passing in ISIS data, use the “surfrad” format flag.

4. The -config file option is the configuration file for generating time summaries.

5. The -mask_grid string option is a named grid or a gridded data file to filter the point observations
spatially.

6. The -mask_poly file option is a polyline masking file to filter the point observations spatially.

7. The -mask_sid file|list option is a station ID masking file or a comma-separated list of station ID’s to
filter the point observations spatially. See the description of the “sid” entry in Section 5.

8. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

9. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity above 1 will increase the amount of logging.

7.2. ASCII2NC tool 149

MET User’s Guide, version 11.1.0-beta2

10. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the ascii2nc calling sequence is shown below:

ascii2nc sample_ascii_obs.txt \
sample_ascii_obs.nc

In this example, the ASCII2NC tool will reformat the input sample_ascii_obs.txt file into NetCDF format
and write the output to a file named sample_ascii_obs.nc.

7.2.2 ascii2nc configuration file

The default configuration file for the ASCII2NC tool named Ascii2NcConfig_default can be found in the
installed share/met/config directory. It is recommended that users make a copy of this file prior to modifying
its contents.

The ASCII2NC configuration file is optional and only necessary when defining time summaries or message
type mapping for little_r data. The contents of the default ASCII2NC configuration file are described below.

version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

time_summary = { ... }

The time_summary feature was implemented to allow additional processing of observations with high
temporal resolution, such as SURFRAD data every 5 minutes. This option is described in Section 7.1.2.

message_type_map = [
{ key = "FM-12 SYNOP"; val = "ADPSFC"; },
{ key = "FM-13 SHIP"; val = "SFCSHP"; },
{ key = "FM-15 METAR"; val = "ADPSFC"; },
{ key = "FM-18 BUOY"; val = "SFCSHP"; },
{ key = "FM-281 QSCAT"; val = "ASCATW"; },
{ key = "FM-32 PILOT"; val = "ADPUPA"; },
{ key = "FM-35 TEMP"; val = "ADPUPA"; },
{ key = "FM-88 SATOB"; val = "SATWND"; },
{ key = "FM-97 ACARS"; val = "AIRCFT"; }

];

This entry is an array of dictionaries, each containing a key string and val string which define a mapping of
input strings to output message types. This mapping is currently only applied when converting input little_r
report types to output message types.

150 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

7.2.3 ascii2nc output

The NetCDF output of the ASCII2NC tool is structured in the same way as the output of the PB2NC tool
described in Section 7.1.3.

“obs_vid” variable is replaced with “obs_gc” when the GRIB code is given instead of the variable names.
In this case, the global variable “use_var_id” does not exist or set to false (use_var_id = “false” ;). Three
variables (obs_var, obs_units, and obs_desc) related with variable names are not added.

7.3 MADIS2NC tool

This section describes how to run the MADIS2NC tool. The MADIS2NC tool is used to reformat Meteorolog-
ical Assimilation Data Ingest System (MADIS) point observations into the NetCDF format expected by the
MET statistics tools. An optional configuration file controls the processing of the point observations. The
MADIS2NC tool supports many of the MADIS data types, as listed in the usage statement below. Support for
additional MADIS data types may be added in the future based on user feedback.

7.3.1 madis2nc usage

The usage statement for the MADIS2NC tool is shown below:

Usage: madis2nc
madis_file [madis_file2 ... madis_filen]
out_file
-type str
[-config file]
[-qc_dd list]
[-lvl_dim list]
[-rec_beg n]
[-rec_end n]
[-mask_grid string]
[-mask_poly file]
[-mask_sid file|list]
[-log file]
[-v level]
[-compress level]

madis2nc has required arguments and can also take optional ones.

7.3. MADIS2NC tool 151

http://madis.noaa.gov
http://madis.noaa.gov

MET User’s Guide, version 11.1.0-beta2

7.3.1.1 Required arguments for madis2nc

1. The madis_file argument is one or more input MADIS point observation files to be processed.

2. The out_file argument is the NetCDF output file to be written.

3. The argument -type str is a type of MADIS observations (metar, raob, profiler, maritime, mesonet or
acarsProfiles).

7.3.1.2 Optional arguments for madis2nc

4. The -config file option specifies the configuration file to generate summaries of the fields in the ASCII
files.

5. The -qc_dd list option specifies a comma-separated list of QC flag values to be ac-
cepted(Z,C,S,V,X,Q,K,G,B).

6. The -lvl_dim list option specifies a comma-separated list of vertical level dimensions to be processed.

7. To specify the exact records to be processed, the -rec_beg n specifies the index of the first MADIS
record to process and -rec_end n specifies the index of the last MADIS record to process. Both are
zero-based.

8. The -mask_grid string option specifies a named grid or a gridded data file for filtering the point
observations spatially.

9. The -mask_poly file option defines a polyline masking file for filtering the point observations spatially.

10. The -mask_sid file|list option is a station ID masking file or a comma-separated list of station ID’s for
filtering the point observations spatially. See the description of the “sid” entry in Section 5.

11. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

12. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

13. The -compress level option specifies the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. Setting the compression level to 0 will make no compression
for the NetCDF output. Lower number is for fast compression and higher number is for better com-
pression.

An example of the madis2nc calling sequence is shown below:

madis2nc sample_madis_obs.nc \
sample_madis_obs_met.nc -log madis.log -v 3

In this example, the MADIS2NC tool will reformat the input sample_madis_obs.nc file into NetCDF format
and write the output to a file named sample_madis_obs_met.nc. Warnings and error messages will be written
to the madis.log file, and the verbosity level of logging is three.

152 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

7.3.2 madis2nc configuration file

The default configuration file for the MADIS2NC tool named Madis2NcConfig_default can be found in the
installed share/met/config directory. It is recommended that users make a copy of this file prior to modifying
its contents.

The MADIS2NC configuration file is optional and only necessary when defining time summaries. The con-
tents of the default MADIS2NC configuration file are described below.

version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

time_summary = { ... }

The time_summary dictionary is described in Section 7.1.2.

7.3.3 madis2nc output

The NetCDF output of the MADIS2NC tool is structured in the same way as the output of the PB2NC tool
described in Section 7.1.3.

“obs_vid” variable is replaced with “obs_gc” when the GRIB code is given instead of the variable names.
In this case, the global variable “use_var_id” does not exist or set to false (use_var_id = “false” ;). Three
variables (obs_var, obs_units, and obs_desc) related with variable names are not added.

7.4 LIDAR2NC tool

The LIDAR2NC tool creates a NetCDF point observation file from a CALIPSO HDF data file. Not all of the
data present in the CALIPSO file is reproduced in the output, however. Instead, the output focuses mostly
on information about clouds (as opposed to aerosols) as seen by the satellite along its ground track.

7.4.1 lidar2nc usage

The usage statement for LIDAR2NC tool is shown below:

Usage: lidar2nc
lidar_file
-out out_file
[-log file]
[-v level]
[-compress level]

Unlike most of the MET tools, lidar2nc does not use a config file. Currently, the options needed to run
lidar2nc are not complex enough to require one.

7.4. LIDAR2NC tool 153

MET User’s Guide, version 11.1.0-beta2

7.4.1.1 Required arguments for lidar2nc

1. The lidar_file argument is the input HDF lidar data file to be processed. Currently, CALIPSO files are
supported but support for additional file types will be added in future releases.

2. The out_file argument is the NetCDF output file to be written.

7.4.1.2 Optional arguments for lidar2nc

3. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

4. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity above 1 will increase the amount of logging.

5. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

7.4.2 lidar2nc output

Each observation type in the lidar2nc output is assigned a GRIB code. These are outlined in Table 7.5. GRIB
codes were assigned to these fields arbitrarily, with GRIB codes in the 600s denoting individual bit fields
taken from the feature classification flag field in the CALIPSO file.

We will not give a detailed description of each CALIPSO data product that lidar2nc reads. Users should refer
to existing CALIPSO documentation for this information. We will, however, give some explanation of how
the cloud layer base and top information is encoded in the lidar2nc NetCDF output file.

Layer_Base gives the elevation in meters above ground level of the cloud base for each cloud level at each
observation location. Similarly, Layer_Top gives the elevation of the top of each cloud layer. Note that if
there are multiple cloud layers at a particular location, then there will be more than one base (or top) given
for that location. For convenience, Min_Base and Max_Top give, respectively, the base elevation for the
bottom cloud layer, and the top elevation for the top cloud layer. For these data types, there will be only one
value per observation location regardless of how many cloud layers there are at that location.

154 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

Table 7.5: lidar2nc GRIB codes and their meaning, units, and
abbreviations

GRIB Code Meaning Units Abbreviation
500 Number of Cloud Layers NA NLayers
501 Cloud Layer Base AGL m Layer_Base
502 Cloud Layer Top AGL m Layer_Top
503 Cloud Opacity % Opacity
504 CAD Score NA CAD_Score
505 Minimum Cloud Base AGL m Min_Base
506 Maximum Cloud Top AGL m Max_Top
600 Feature Type NA Feature_Type
601 Ice/Water Phase NA Ice_Water_Phase
602 Feature Sub-Type NA Feature_Sub_Type
603 Cloud/Aerosol/PSC Type QA NA Cloud_Aerosol_PSC_Type_QA
604 Horizontal Averaging NA Horizontal_Averaging

7.5 IODA2NC tool

This section describes the IODA2NC tool which is used to reformat IODA (Interface for Observation Data
Access) point observations from the Joint Center for Satellite Data Assimilation (JCSDA) into the NetCDF
format expected by the MET statistics tools. An optional configuration file controls the processing of the
point observations. The IODA2NC tool reads NetCDF point observation files created by the IODA Converters.
Support for interfacing with data from IODA may be added in the future based on user feedback.

7.5.1 ioda2nc usage

The usage statement for the IODA2NC tool is shown below:

Usage: ioda2nc
ioda_file
netcdf_file
[-config config_file]
[-obs_var var]
[-iodafile ioda_file]
[-valid_beg time]
[-valid_end time]
[-nmsg n]
[-log file]
[-v level]
[-compress level]

ioda2nc has required arguments and can also take optional ones.

7.5. IODA2NC tool 155

http://jcsda.org
https://github.com/JCSDA-internal/ioda-converters

MET User’s Guide, version 11.1.0-beta2

7.5.1.1 Required arguments for ioda2nc

1. The ioda_file argument is an input IODA NetCDF point observation file to be processed.

2. The netcdf_file argument is the NetCDF output file to be written.

7.5.1.2 Optional arguments for ioda2nc

3. The -config config_file is a IODA2NCConfig file to filter the point observations and define time sum-
maries.

4. The -obs_var var_list setting is a comma-separated list of variables to be saved from input the input
file (by defaults, saves “all”).

5. The -iodafile ioda_file option specifies additional input IODA observation files to be processed.

6. The -valid_beg time and -valid_end time options in YYYYMMDD[_HH[MMSS]] format overrides the
retention time window from the configuration file.

7. The -nmsg n indicates the number of IODA records to process.

8. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

9. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity above 1 will increase the amount of logging.

10. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the ioda2nc calling sequence is shown below:

ioda2nc \
ioda.NC001007.2020031012.nc ioda2nc.2020031012.nc \
-config IODA2NCConfig -v 3 -lg run_ioda2nc.log

In this example, the IODA2NC tool will reformat the data in the input ioda.NC001007.2020031012.nc file
and write the output to a file named ioda2nc.2020031012.nc. The data to be processed is specified by
IODA2NCConfig, log messages will be written to the ioda2nc.log file, and the verbosity level is three.

156 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

7.5.2 ioda2nc configuration file

The default configuration file for the IODA2NC tool named IODA2NcConfig_default can be found in the
installed share/met/config directory. It is recommended that users make a copy of this file prior to modifying
its contents.

The IODA2NC configuration file is optional and only necessary when defining filtering the input observations
or defining time summaries. The contents of the default IODA2NC configuration file are described below.

obs_window = { beg = -5400; end = 5400; }
mask = { grid = ""; poly = ""; }
tmp_dir = "/tmp";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

message_type = [];
message_type_group_map = [];
message_type_map = [];
station_id = [];
elevation_range = { ... };
level_range = { ... };
obs_var = [];
quality_mark_thresh = 0;
time_summary = { ... }

The configuration options listed above are supported by other point observation pre-processing tools and
are described in Section 7.1.2.

obs_name_map = [];

This entry is an array of dictionaries, each containing a key string and val string which define a mapping of
input IODA variable names to output variable names. The default IODA map, obs_var_map, is appended to
this map.

metadata_map = [
{ key = "message_type"; val = "msg_type,station_ob"; },
{ key = "station_id"; val = "station_id,report_identifier"; },
{ key = "pressure"; val = "air_pressure,pressure"; },
{ key = "height"; val = "height,height_above_mean_sea_level"; },
{ key = "elevation"; val = "elevation,station_elevation"; }
];

7.5. IODA2NC tool 157

MET User’s Guide, version 11.1.0-beta2

This entry is an array of dictionaries, each containing a key string and val string which define a mapping of
metadata for IODA data files.

obs_to_qc_map = [
{ key = "wind_from_direction"; val = "eastward_wind,northward_wind"; },
{ key = "wind_speed"; val = "eastward_wind,northward_wind"; }
];

This entry is an array of dictionaries, each containing a key string and val string which define a mapping of
QC variable name for IODA data files.

missing_thresh = [<=-1e9, >=1e9, ==-9999];

The missing_thresh option is an array of thresholds. Any data values which meet any of these thresholds
are interpreted as being bad, or missing, data.

7.5.3 ioda2nc output

The NetCDF output of the IODA2NC tool is structured in the same way as the output of the PB2NC tool
described in Section 7.1.3.

7.6 Point2Grid tool

The Point2Grid tool reads point observations from a MET NetCDF point obseravtion file, via python embed-
ding, or from GOES-16/17 input files in NetCDF format (especially, Aerosol Optical Depth) and creates a
gridded NetCDF file. Future development may add support for additional input types.

7.6.1 point2grid usage

The usage statement for the Point2Grid tool is shown below:

Usage: point2grid
input_filename
to_grid
output_filename
-field string
[-config file]
[-qc flags]
[-adp adp_file_name]
[-method type]
[-gaussian_dx n]
[-gaussian_radius n]

(continues on next page)

158 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

[-prob_cat_thresh string]
[-vld_thresh n]
[-name list]
[-log file]
[-v level]
[-compress level]

7.6.1.1 Required arguments for point2grid

1. The input_filename argument indicates the name of the input file to be processed. The input can
be a MET NetCDF point observation file generated by other MET tools or a NetCDF AOD dataset
from GOES16/17. Python embedding for point observations is also supported, as described in Section
36.4.2.

The MET point observation NetCDF file name as input_filename argument is equivalent with
“PYTHON_NUMPY=MET_BASE/python/examples/read_met_point_obs.py netcdf_filename”.

2. The to_grid argument defines the output grid as: (1) a named grid, (2) the path to a gridded data file,
or (3) an explicit grid specification string.

3. The output_filename argument is the name of the output NetCDF file to be written.

4. The -field string argument is a string that defines the data to be regridded. It may be used multiple
times. If -adp option is given (for AOD data from GOES16/17), the name consists with the variable
name from the input data file and the variable name from ADP data file (for example, “AOD_Smoke”
or “AOD_Dust”: getting AOD variable from the input data and applying smoke or dust variable from
ADP data file).

7.6.1.2 Optional arguments for point2grid

5. The -config file option is the configuration file to be used.

6. The -qc flags option specifies a comma-separated list of quality control (QC) flags, for example “0,1”.
This should only be applied if grid_mapping is set to “goes_imager_projection” and the QC variable
exists.

7. The -adp adp_file_name option provides an additional Aerosol Detection Product (ADP) information
on aerosols, dust, and smoke. This option is ignored if the requested variable is not AOD (“AOD_Dust”
or “AOD_Smoke”) from GOES16/17. The gridded data is filtered by the presence of dust/smoke. If -qc
options are given, it’s applied to QC of dust/smoke, too (First filtering with AOD QC values and the
second filtering with dust/smoke QC values).

8. The -method type option specifies the regridding method. The default method is UW_MEAN.

9. The -gaussian_dx n option defines the distance interval for Gaussian smoothing. The default is 81.271
km. Ignored if the method is not GAUSSIAN or MAXGAUSS.

10. The -gaussian_radius n option defines the radius of influence for Gaussian interpolation. The default
is 120. Ignored if the method is not GAUSSIAN or MAXGAUSS.

7.6. Point2Grid tool 159

MET User’s Guide, version 11.1.0-beta2

11. The -prob_cat_thresh string option sets the threshold to compute the probability of occurrence. The
default is set to disabled. This option is relevant when calculating practically perfect forecasts.

12. The -vld_thresh n option sets the required ratio of valid data for regridding. The default is 0.5.

13. The -name list option specifies a comma-separated list of output variable names for each field speci-
fied.

14. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

15. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity above 1 will increase the amount of logging.

16. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

Only 4 interpolation methods are applied to the field variables; MIN/MAX/MEDIAN/UW_MEAN. The GAUS-
SIAN method is applied to the probability variable only. Unlike regrad_data_plane, MAX method is applied
to the file variable and Gaussian method to the probability variable with the MAXGAUSS method. If the
probability variable is not requested, MAXGAUSS method is the same as MAX method.

For the GOES-16 and GOES-17 data, the computing lat/long is time consuming. So the computed
coordinate (lat/long) is saved into the NetCDF file to the environment variable MET_TMP_DIR or
/tmp if MET_TMP_DIR is not defined. The computing lat/long step can be skipped if the coordi-
nate file is given through the environment variable MET_GEOSTATIONARY_DATA. The grid mapping to
the target grid is saved to MET_TMP_DIR to save the execution time. Once this file is created, the
MET_GEOSTATIONARY_DATA is ignored. The grid mapping file should be deleted manually in order to
apply a new MET_GEOSTATIONARY_DATA environment variable or to re-generate the grid mapping file. An
example of call point2grid to process GOES-16 AOD data is shown below:

point2grid \
OR_ABI-L2-AODC-M3_G16_s20181341702215_e20181341704588_c20181341711418.nc \
G212 \
regrid_data_plane_GOES-16_AOD_TO_G212.nc \
-field 'name="AOD"; level="(*,*)";' \
-qc 0,1,2
-method MAX -v 1

When processing GOES-16 data, the -qc option may also be used to specify the acceptable quality control
flag values. The example above regrids the GOES-16 AOD values to NCEP Grid number 212 (which QC flags
are high, medium, and low), writing to the output the maximum AOD value falling inside each grid box.

Listed below is an example of processing the same set of observations but using Python embedding instead:

160 Chapter 7. Re-Formatting of Point Observations

MET User’s Guide, version 11.1.0-beta2

point2grid \
'PYTHON_NUMPY=MET_BASE/python/examples/read_met_point_obs.py ascii2nc_edr_hourly.20130827.nc
→˓' \
G212 python_gridded_ascii_python.nc -config Point2GridConfig_edr \
-field 'name="200"; level="*"; valid_time="20130827_205959";' -method MAX -v 1

Please refer to Appendix F, Section 36 for more details about Python embedding in MET.

7.6.2 point2grid output

The point2grid tool will output a gridded NetCDF file containing the following:

1. Latitude

2. Longitude

3. The variable specified in the -field string regridded to the grid defined in the to_grid argument.

4. The count field which represents the number of point observations that were included calculating the
value of the variable at that grid cell.

5. The mask field which is a binary field representing the presence or lack thereof of point observations at
that grid cell. A value of “1” indicates that there was at least one point observation within the bounds
of that grid cell and a value of “0” indicates the lack of point observations at that grid cell.

6. The probability field which is the probability of the event defined by the -prob_cat_thresh command
line option. The output variable name includes the threshold used to define the probability. Ranges
from 0 to 1.

7. The probability mask field which is a binary field that represents whether or not there is probability
data at that grid point. Can be either “0” or “1” with “0” meaning the probability value does not exist
and a value of “1” meaning that the probability value does exist.

For MET observation input and CF complaint NetCDF input with 2D time variable: The latest observation
time within the target grid is saved as the observation time. If the “valid_time” is configured at the configu-
ration file, the valid_time from the configuration file is saved into the output file.

7.6.3 point2grid configuration file

The default configuration file for the point2grid tool named Point2GridConfig_default can be found in the
installed share/met/config directory. It is recommended that users make a copy of this file prior to modifying
its contents.

The point2grid configuration file is optional and only necessary when defining the variable name instead
of GRIB code or filtering by time. The contents of the default MADIS2NC configuration file are described
below.

version = "VN.N";

7.6. Point2Grid tool 161

MET User’s Guide, version 11.1.0-beta2

The configuration options listed above are common to many MET tools and are described in Section 5.

valid_time = "YYYYMMDD_HHMMSS";

This entry is a string to override the obseration time into the output and to filter observation data by time.

obs_window = {
beg = -5400;
end = 5400;

}

The configuration option listed above is common to many MET tools and are described in Section 5.

var_name_map = [
{ key = "1"; val = "PRES"; }, // GRIB: Pressure
{ key = "2"; val = "PRMSL"; }, // GRIB: Pressure reduced to MSL
{ key = "7"; val = "HGT"; }, // GRIB: Geopotential height
{ key = "11"; val = "TMP"; }, // GRIB: Temperature
{ key = "15"; val = "TMAX"; }, // GRIB: Max Temperature
...

]

This entry is an array of dictionaries, each containing a GRIB code string and mathcing variable name
string which define a mapping of GRIB code to the output variable names.

7.7 Point NetCDF to ASCII Python Utility

As a tool for debugging, a utility script called print_pointnc2ascii.py is included for users. This script reads
the MET point NetCDF file format and returns an ASCII representation to the screen, with either space or
comma delimiting. Optionally, the user can request that the output be written to a file.

The script can be found at:

MET_BASE/python/utility/print_pointnc2ascii.py

For how to use the script, issue the command:

python3 MET_BASE/python/utility/print_pointnc2ascii.py -h

162 Chapter 7. Re-Formatting of Point Observations

Chapter 8

Re-Formatting of Gridded Fields

Several MET tools exist for the purpose of reformatting gridded fields, and they are described in this section.
These tools are represented by the reformatting column of MET flowchart depicted in Figure 1.1.

8.1 Pcp-Combine tool

This section describes the Pcp-Combine tool which summarizes data across multiple input gridded data files
and writes the results to a single NetCDF output file. It is often used to modify precipitation accumulation
intervals in the forecast and/or observation datasets to make them comparable. However it can also be used
to derive summary fields, such as daily min/max temperature or average precipitation rate.

The Pcp-Combine tool supports four types of commands (“sum”, “add”, “subtract”, and “derive”) which may
be run on any gridded data files supported by MET.

1. The “sum” command is the default command and therefore specifying “-sum” on the command line
is optional. Using the sum arguments described below, Pcp-Combine searches the input directories
(“-pcpdir” option) for data that matches the requested time stamps and accumulation intervals. Pcp-
Combine only considers files from the input data directory which match the specified regular expres-
sion (“-pcprx” option). While “sum” searches for matching data, all the other commands are run on
the explicit set of input files specified.

2. The “add” command reads the requested data from the input data files and adds them together.

3. The “subtract” command reads the requested data from exactly two input files and computes their
difference.

4. The “derive” command reads the requested data from the input data files and computes the requested
summary fields.

By default, the Pcp-Combine tool processes data for APCP, the GRIB string for accumulated precipitation.
When requesting data using time strings (i.e. [HH]MMSS), Pcp-Combine searches for accumulated precipi-
tation for that accumulation interval. Alternatively, use the “-field” option to process fields other than APCP
or for non-GRIB files. The “-field” option may be used multiple times to process multiple fields in a single
run. Since the Pcp-Combine tool does not support automated regridding, all input data must be on the same
grid. In general the input files should have the same initialization time unless the user has indicated that it

163

MET User’s Guide, version 11.1.0-beta2

should ignore the initialization time for the “sum” command. The “subtract” command produces a warning
when the input initialization times differ or the subtraction results in a negative accumulation interval.

8.1.1 pcp_combine usage

The usage statement for the Pcp-Combine tool is shown below:

Usage: pcp_combine
[-sum] sum_args |
-add input_files |
-subtract input_files |
-derive stat_list input_files
out_file
[-field string]
[-name list]
[-vld_thresh n]
[-log file]
[-v level]
[-compress level]

The arguments to pcp_combine vary depending on the run command. Listed below are the arguments for
the sum command:

SUM_ARGS:
init_time
in_accum
valid_time
out_accum
out_file
[-pcpdir path]
[-pcprx reg_exp]

The add, subtract, and derive commands all require that the input files be explicitly listed:

INPUT_FILES:
file_1 config_str_1 ... file_n config_str_n |
file_1 ... file_n |
input_file_list

164 Chapter 8. Re-Formatting of Gridded Fields

MET User’s Guide, version 11.1.0-beta2

8.1.1.1 Required arguments for the pcp_combine

1. The Pcp-Combine tool must be run with exactly one run command (-sum, -add, -subtract, or -derive)
with the corresponding additional arguments.

2. The out_file argument indicates the name for the NetCDF file to be written.

8.1.1.2 Optional arguments for pcp_combine

3. The -field string option defines the data to be extracted from the input files. Use this option when
processing fields other than APCP or non-GRIB files. It can be used multiple times and output will
be created for each. In general, the field string should include the name and level of the requested
data and be enclosed in single quotes. It is processed as an inline configuration file and may also
include data filtering, censoring, and conversion options. For example, use -field ‘name=”ACPCP”;
level=”A6”; convert(x)=x/25.4;’ to read 6-hourly accumulated convective precipitation from a GRIB
file and convert from millimeters to inches.

4. The -name list option is a comma-separated list of output variable names which override the default
choices. If specified, the number of names must match the number of variables to be written to the
output file.

5. The -vld_thresh n option overrides the default required ratio of valid data for at each grid point for
an output value to be written. The default is 1.0.

6. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

7. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

8. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

8.1.1.3 Required arguments for the pcp_combine sum command

1. The init_time argument, provided in YYYYMMDD[_HH[MMSS]] format, indicates the initialization
time for model data to be summed. Only files found with this initialization time will be processed.
If combining observation files, Stage II or Stage IV data for example, the initialization time is not
applicable. Providing a string of all zeros (00000000_000000) indicates that all files, regardless of
initialization time should be processed.

2. The in_accum argument, provided in HH[MMSS] format, indicates the accumulation interval of the
model or observation gridded files to be processed. This value must be specified, since a model output
file may contain multiple accumulation periods for precipitation in a single file. The argument indicates
which accumulation period to extract.

8.1. Pcp-Combine tool 165

MET User’s Guide, version 11.1.0-beta2

3. The valid_time argument, in YYYYMMDD[_HH[MMSS]] format, indicates the desired valid time to
which the accumulated precipitation is to be summed.

4. The out_accum argument, in HH[MMSS] format, indicates the desired total accumulation period to
be summed.

8.1.1.4 Optional arguments for pcp_combine sum command

5. The -pcpdir path option indicates the directories in which the input files reside. The contents of “path”
will override the default setting. This option may be used multiple times and can accept multiple
arguments, supporting the use of wildcards.

6. The -pcprx reg_exp option indicates the regular expression to be used in matching files in the search
directories specified. The contents of “reg_exp” will override the default setting that matches all file
names. If the search directories contain a large number of files, the user may specify that only a subset
of those files be processed using a regular expression which will speed up the run time.

8.1.1.5 Required arguments for the pcp_combine derive command

1. The “derive” run command must be followed by stat_list which is a comma-separated list of summary
fields to be computed. The stat_list may be set to sum, min, max, range, mean, stdev, and vld_count
for the sum, minimum, maximum, range (max-min), average, standard deviation, and valid data count
fields, respectively.

8.1.1.6 Input files for pcp_combine add, subtract, and derive commands

The input files for the add, subtract, and derive command can be specified in one of 3 ways:

1. Use file_1 config_str_1 . . . file_n config_str_n to specify the full path to each input file followed by
a description of the data to be read from it. The config_str_i argument describing the data can be a
set to a time string in HH[MMSS] format for accumulated precipitation or a full configuration string.
For example, use ‘name=”TMP”; level=”P500”;’ to process temperature at 500mb.

2. Use file_1 . . . file_n to specify the list of input files to be processed on the command line. Rather
than specifying a separate configuration string for each input file, the “-field” command line option is
required to specify the data to be processed.

3. Use input_file_list to specify the name of an ASCII file which contains the paths for the gridded data
files to be processed. As in the previous option, the “-field” command line option is required to specify
the data to be processed.

An example of the pcp_combine calling sequence is presented below:

Example 1:

pcp_combine -sum \
20050807_000000 3 \
20050808_000000 24 \

(continues on next page)

166 Chapter 8. Re-Formatting of Gridded Fields

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

sample_fcst.nc \
-pcpdir ../data/sample_fcst/2005080700

In Example 1, the Pcp-Combine tool will sum the values in model files initialized at 2005/08/07 00Z and
containing 3-hourly accumulation intervals of precipitation. The requested valid time is 2005/08/08 00Z
with a requested total accumulation interval of 24 hours. The output file is to be named sample_fcst.nc, and
the Pcp-Combine tool is to search the directory indicated for the input files.

The Pcp-Combine tool will search for 8 files containing 3-hourly accumulation intervals which meet the
criteria specified. It will write out a single NetCDF file containing that 24 hours of accumulation.

A second example of the pcp_combine calling sequence is presented below:

Example 2:

pcp_combine -sum \
00000000_000000 1 \
20050808_000000 24 \
sample_obs.nc \
-pcpdir ../data/sample_obs/ST2ml

Example 2 shows an example of using the Pcp-Combine tool to sum observation data. The init_time has
been set to all zeros to indicate that when searching through the files in the precipitation directory, the
initialization time should be ignored. The in_accum has been changed from 3 to 1 to indicate that the
input observation files contain 1-hourly accumulations of precipitation. Lastly, -pcpdir provides a different
directory to be searched for the input files.

The Pcp-Combine tool will search for 24 files containing 1-hourly accumulation intervals which meet the
criteria specified. It will write out a single NetCDF file containing that 24 hours of accumulation.

Example 3:

pcp_combine -add input_pinterp.nc 'name="TT"; level="(0,*,*)";' tt_10.nc

This command would grab the first level of the TT variable from a pinterp NetCDF file and write it to the
output tt_10.nc file.

Example 4:

pcp_combine -subtract 2022043018_48.grib2 'name="APCP"; level="A48";' 2022043018_36.grib2
→˓'name="APCP"; level="A36";' sample_fcst.nc

The Pcp-Combine tool will subtract the 36 hour precipitation accumulations in the file 2022043018_36.grib2
(a 36hr forecast initialized at 2022-04-30 18Z) from the 48 hour accumulations in the file
2022043018_48.grib2 (a 48hr forecast from the same model cycle). This will produce the 12 hour ac-
cumulation amounts for the period in between the 36 and 48 hour forecasts. It will write out a single
NetCDF file containing that 12 hours of accumulation.

8.1. Pcp-Combine tool 167

MET User’s Guide, version 11.1.0-beta2

8.1.2 pcp_combine output

The output NetCDF files contain the requested accumulation intervals as well as information about the grid
on which the data lie. That grid projection information will be parsed out and used by the MET statistics
tools in subsequent steps. One may use NetCDF utilities such as ncdump or ncview to view the contents of
the output file. Alternatively, the MET Plot-Data-Plane tool described in Section 29.1.3 may be run to create
a PostScript image of the data.

Each NetCDF file generated by the Pcp-Combine tool contains the dimensions and variables shown in the
following two tables.

Table 8.1: NetCDF file dimensions for pcp_combine output.

Pcp_combine NetCDF dimen-
sions
NetCDF dimension Description
lat Dimension of the latitude (i.e. Number of grid points in the North-South

direction)
lon Dimension of the longitude (i.e. Number of grid points in the East-West

direction)

Table 8.2: NetCDF variables for pcp_combine output.

Pcp_combine NetCDF vari-
ables
NetCDF variable Di-

men-
sion

Description

lat lat,
lon

Latitude value for each point in the grid

lon lat,
lon

Longitude value for each point in the grid

Name and level of the re-
quested data or value of the
-name option.

lat,
lon

Data value (i.e. accumulated precipitation) for each point in the
grid. The name of the variable describes the name and level and any
derivation logic that was applied.

8.2 Regrid-Data-Plane tool

This section contains a description of running the Regrid-Data-Plane tool. This tool may be run to read
data from any gridded file MET supports, interpolate to a user-specified grid, and writes the field(s) out
in NetCDF format. The user may specify the method of interpolation used for regridding as well as which
fields to regrid. This tool is particularly useful when dealing with GRIB2 and NetCDF input files that need
to be regridded. For GRIB1 files, it has also been tested for compatibility with the copygb regridding utility
mentioned in Section 3.7.

168 Chapter 8. Re-Formatting of Gridded Fields

MET User’s Guide, version 11.1.0-beta2

8.2.1 regrid_data_plane usage

The usage statement for the regrid_data_plane utility is shown below:

Usage: regrid_data_plane
input_filename
to_grid
output_filename
-field string
[-method type]
[-width n]
[-gaussian_dx n]
[-gaussian_radius n]
[-shape type]
[-vld_thresh n]
[-name list]
[-log file]
[-v level]
[-compress level]

8.2.1.1 Required arguments for regrid_data_plane

1. The input_filename is the gridded data file to be read.

2. The to_grid defines the output grid as a named grid, the path to a gridded data file, or an explicit grid
specification string.

3. The output_filename is the output NetCDF file to be written.

4. The -field string may be used multiple times to define the field(s) to be regridded.

8.2.1.2 Optional arguments for regrid_data_plane

5. The -method type option overrides the default regridding method. Default is NEAREST.

6. The -width n option overrides the default regridding width. Default is 1. In case of MAXGAUSS
method, the width should be the ratio between from_grid and to_grid (for example, 27 if from_grid is
3km and to_grid is 81.271km).

7. The -gaussian_dx option overrides the default delta distance for Gaussian smoothing. Default is
81.271. Ignored if not the MAXGAUSS method.

8. The -gaussian_radius option overrides the default radius of influence for Gaussian interpolation. De-
fault is 120. Ignored if not the MAXGAUSS method.

9. The -shape option overrides the default interpolation shape. Default is SQUARE.

10. The -vld_thresh n option overrides the default required ratio of valid data for regridding. Default is
0.5.

11. The -name list specifies a comma-separated list of output variable names for each field specified.

8.2. Regrid-Data-Plane tool 169

MET User’s Guide, version 11.1.0-beta2

12. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

13. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

14. The -compress level option specifies the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. Setting the compression level to 0 will make no compression
for the NetCDF output. Lower number is for fast compression and higher number is for better com-
pression.

For more details on setting the to_grid, -method, -width, and -vld_thresh options, see the regrid entry in
Section 5. An example of the regrid_data_plane calling sequence is shown below:

regrid_data_plane \
input.grb \
togrid.grb \
regridded.nc \
-field 'name="APCP"; level="A6";'
-field 'name="TMP"; level="Z2";' \
-field 'name="UGRD"; level="Z10";' \
-field 'name="VGRD"; level="Z10";' \
-field 'name="HGT"; level="P500";' \
-method BILIN -width 2 -v 1

In this example, the Regrid-Data-Plane tool will regrid data from the input.grb file to the grid on which
the first record of the togrid.grb file resides using Bilinear Interpolation with a width of 2 and write the
output in NetCDF format to a file named regridded.nc. The variables in regridded.nc will include 6-
hour accumulated precipitation, 2m temperature, 10m U and V components of the wind, and the 500mb
geopotential height.

8.2.2 Automated regridding within tools

While the Regrid-Data-Plane tool is useful as a stand-alone tool, the capability is also included to automat-
ically regrid one or both fields in most of the MET tools that handle gridded data. See the regrid entry in
Section 4.5 for a description of the configuration file entries that control automated regridding.

8.3 Shift-Data-Plane tool

The Shift-Data-Plane tool performs a rigid shift of the entire grid based on user-defined specifications and
writes the field(s) out in NetCDF format. This tool was originally designed to account for track error when
comparing fields associated with tropical cyclones. The user specifies the latitude and longitude of the source
and destination points to define the shift. Both points must fall within the domain and are used to define the
X and Y direction grid unit shift. The shift is then applied to all grid points. The user may specify the method
of interpolation and the field to be shifted. The effects of topography and land/water masks are ignored.

170 Chapter 8. Re-Formatting of Gridded Fields

MET User’s Guide, version 11.1.0-beta2

8.3.1 shift_data_plane usage

The usage statement for the shift_data_plane utility is shown below:

Usage: shift_data_plane
input_filename
output_filename
field_string
-from lat lon
-to lat lon
[-method type]
[-width n]
[-shape SHAPE]
[-log file]
[-v level]
[-compress level]

shift_data_plane has five required arguments and can also take optional ones.

8.3.1.1 Required arguments for shift_data_plane

1. The input_filename is the gridded data file to be read.

2. The output_filename is the output NetCDF file to be written.

3. The field_string defines the data to be shifted from the input file.

4. The -from lat lon specifies the starting location within the domain to define the shift. Latitude and
longitude are defined in degrees North and East, respectively.

5. The -to lat lon specifies the ending location within the domain to define the shift. Lat is deg N, Lon is
deg E.

8.3.1.2 Optional arguments for shift_data_plane

6. The -method type overrides the default regridding method. Default is NEAREST.

7. The -width n overrides the default regridding width. Default is 2.

8. The -shape SHAPE overrides the default interpolation shape. Default is SQUARE.

9. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

10. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

11. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0

8.3. Shift-Data-Plane tool 171

MET User’s Guide, version 11.1.0-beta2

from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

For more details on setting the -method and -width options, see the regrid entry in Section 5. An example
of the shift_data_plane calling sequence is shown below:

shift_data_plane \
nam.grib \
nam_shift_APCP_12.nc \
'name = "APCP"; level = "A12";' \
-from 38.6272 -90.1978 \
-to 40.1717 -105.1092 \
-v 2

In this example, the Shift-Data-Plane tool reads 12-hour accumulated precipitation from the nam.grb file,
applies a rigid shift defined by (38.6272, -90.1978) to (40.1717, -105.1092) and writes the output in NetCDF
format to a file named nam_shift_APCP_12.nc. These -from and -to locations result in a grid shift of -108.30
units in the x-direction and 16.67 units in the y-direction.

8.4 MODIS regrid tool

This section contains a description of running the MODIS regrid tool. This tool may be run to create a
NetCDF file for use in other MET tools from MODIS level 2 cloud product from NASA.

8.4.1 modis_regrid usage

The usage statement for the modis_regrid utility is shown below:

Usage: modis_regrid
-data_file path
-field name
-out path
-scale value
-offset value
-fill value
[-units text]
[-compress level]
modis_file

modis_regrid has some required arguments and can also take optional ones.

172 Chapter 8. Re-Formatting of Gridded Fields

https://ladsweb.modaps.eosdis.nasa.gov

MET User’s Guide, version 11.1.0-beta2

8.4.1.1 Required arguments for modis_regrid

1. The -data_file path argument specifies the data files used to get the grid information.

2. The -field name argument specifies the name of the field to use in the MODIS data file.

3. The -out path argument specifies the name of the output NetCDF file.

4. The -scale value argument specifies the scale factor to be used on the raw MODIS values.

5. The -offset value argument specifies the offset value to be used on the raw MODIS values.

6. The -fill value argument specifies the bad data value in the MODIS data.

7. The modis_file argument is the name of the MODIS input file.

8.4.1.2 Optional arguments for modis_regrid

8. The -units text option specifies the units string in the global attributes section of the output file.

9. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the modis_regrid calling sequence is shown below:

modis_regrid -field Cloud_Fraction \
-data_file grid_file \
-out t2.nc \
-units percent \
-scale 0.01 \
-offset 0 \
-fill 127 \
modis_file

In this example, the Modis-Regrid tool will process the Cloud_Fraction field from modis_file and write it
out to the output NetCDF file t2.nc on the grid specified in grid_file using the appropriate scale, offset and
fill values.

8.4. MODIS regrid tool 173

MET User’s Guide, version 11.1.0-beta2

Figure 8.1: Example plot showing surface temperature from a MODIS file.

8.5 WWMCA Tool Documentation

There are two WWMCA tools available. The WWMCA-Plot tool makes a PostScript plot of one or more
WWMCA cloud percent files and the WWMCA-Regrid tool regrids binary WWMCA data files and reformats
them into NetCDF files that the other MET tools can read. The WWMCA-Regrid tool has been generalized to
more broadly support any data stored in the WWMCA binary format.

The WWMCA tools attempt to parse timing and hemisphere information from the file names. They tokenize
the filename using underscores (_) and dots (.) and examine each element which need be in no particular
order. A string of 10 or more numbers is interpreted as the valid time in YYYYMMDDHH[MMSS] format. The
string NH indicates the northern hemisphere while SH indicates the southern hemisphere. While WWMCA
data is an analysis and has no forecast lead time, other datasets following this format may. Therefore,
a string of 1 to 4 numbers is interpreted as the forecast lead time in hours. While parsing the filename
provides default values for this timing information, they can be overridden by explicitly setting their values
in the WWMCA-Regrid configuration file.

174 Chapter 8. Re-Formatting of Gridded Fields

MET User’s Guide, version 11.1.0-beta2

8.5.1 wwmca_plot usage

The usage statement for the WWMCA-Plot tool is shown below:

Usage: wwmca_plot
[-outdir path]
[-max max_minutes]
[-log file]
[-v level]
wwmca_cloud_pct_file_list

wmmca_plot has some required arguments and can also take optional ones.

8.5.1.1 Required arguments for wwmca_plot

1. The wwmca_cloud_pct_file_list argument represents one or more WWMCA cloud percent files given
on the command line. As with any command given to a UNIX shell, the user can use meta-characters
as a shorthand way to specify many filenames. For each input file specified, one output PostScript plot
will be created.

8.5.1.2 Optional arguments for wwmca_plot

2. The -outdir path option specifies the directory where the output PostScript plots will be placed. If not
specified, then the plots will be put in the current (working) directory.

3. The -max minutes option specifies the maximum pixel age in minutes to be plotted.

4. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

5. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

8.5. WWMCA Tool Documentation 175

MET User’s Guide, version 11.1.0-beta2

Figure 8.2: Example output of WWMCA-Plot tool.

8.5.2 wwmca_regrid usage

The usage statement for the WWMCA-Regrid tool is shown below:

Usage: wwmca_regrid
-out filename
-config filename
-nh filename [pt_filename]
-sh filename [pt_filename]
[-log file]
[-v level]
[-compress level]

wmmca_regrid has some required arguments and can also take optional ones.

176 Chapter 8. Re-Formatting of Gridded Fields

MET User’s Guide, version 11.1.0-beta2

8.5.2.1 Required arguments for wwmca_regrid

1. The -out filename argument specifies the name of the output netCDF file.

2. The -config filename argument indicates the name of the configuration file to be used. The contents
of the configuration file are discussed below.

3. The -nh filename [pt_filename] argument specifies the northern hemisphere WWMCA binary file
and, optionally, may be followed by a binary pixel age file. This switch is required if the output grid
includes any portion of the northern hemisphere.

4. The -sh filename [pt_filename] argument specifies the southern hemisphere WWMCA binary file and,
optionally, may be followed by a binary pixel age file. This switch is required if the output grid includes
any portion of the southern hemisphere.

8.5.2.2 Optional arguments for wwmca_regrid

5. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

6. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

7. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

In any regridding problem, there are two grids involved: the “From” grid, which is the grid the input data are
on, and the “To” grid, which is the grid the data are to be moved onto. In WWMCA-Regrid the “From” grid is
pre-defined by the hemisphere of the WWMCA binary files being processed. The “To” grid and corresponding
regridding logic are specified using the regrid section of the configuration file. If the “To” grid is entirely
confined to one hemisphere, then only the WWMCA data file for that hemisphere needs to be given. If the
“To” grid or the interpolation box used straddles the equator, the data files for both hemispheres need to be
given. Once the “To” grid is specified in the config file, the WWMCA-Regrid tool will know which input data
files it needs and will complain if it is not given the right ones.

8.5.3 wwmca_regrid configuration file

The default configuration file for the WWMCA-Regrid tool named WWMCARegridConfig_default can be
found in the installed share/met/config directory. We encourage users to make a copy of this file prior to
modifying its contents. The contents of the configuration file are described in the subsections below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

8.5. WWMCA Tool Documentation 177

MET User’s Guide, version 11.1.0-beta2

regrid = { ... }

See the regrid entry in Section 4.5 for a description of the configuration file entries that control regridding.

variable_name = "Cloud_Pct";
units = "percent";
long_name = "cloud cover percent";
level = "SFC";

The settings listed above are strings which control the output netCDF variable name and specify attributes
for that variable.

init_time = "";
valid_time = "";
accum_time = "01";

The settings listed above are strings which specify the timing information for the data being processed.
The accumulation time is specified in HH[MMSS] format and, by default, is set to a value of 1 hour. The
initialization and valid time strings are specified in YYYYMMDD[_HH[MMSS]] format. However, by default
they are set to empty strings. If empty, the timing information parsed from the filename will be used. If not
empty, these values override the times parsed from the filename.

max_minutes = 120;
swap_endian = TRUE;
write_pixel_age = FALSE;

The settings listed above control the processing of the WWMCA pixel age data. This data is stored in binary
data files in 4-byte blocks. The swap_endian option indicates whether the endian-ness of the data should
be swapped after reading. The max_minutes option specifies a maximum allowed age for the cloud data
in minutes. Any data values older than this value are set to bad data in the output. The write_pixel_age
option writes the pixel age data, in minutes, to the output file instead of the cloud data.

178 Chapter 8. Re-Formatting of Gridded Fields

Chapter 9

Gen-Ens-Prod Tool

9.1 Introduction

The Gen-Ens-Prod tool generates simple ensemble products (mean, spread, probability, etc) from gridded
ensemble member input files. While it processes model inputs, it does not compare them to observations
or compute statistics. However, the output products can be passed as input to the MET statistics tools for
comparison against observations. Climatological mean and standard deviation data may also be provided to
define thresholds based on the climatological distribution at each grid point.

Note: This ensemble product generation step was provided by the Ensemble-Stat tool in earlier versions
of MET. The Gen-Ens-Prod tool replaces and extends that functionality. Users are strongly encouraged to
migrate ensemble product generation from Ensemble-Stat to Gen-Ens-Prod, as new features will only be
added to Gen-Ens-Prod and the existing Ensemble-Stat functionality will be deprecated in a future version.

9.2 Scientific and statistical aspects

9.2.1 Ensemble forecasts derived from a set of deterministic ensemble members

Ensemble forecasts are often created as a set of deterministic forecasts. The ensemble members are rarely
used separately. Instead, they can be combined in various ways to produce a forecast. MET can combine the
ensemble members into some type of summary forecast according to user specifications. Ensemble means
are the most common, and can be paired with the ensemble variance or spread. Maximum, minimum and
other summary values are also available, with details in the practical information section.

The -ctrl command line option specifies an input file for the ensemble control member. The fields specified
in the configuration file are read from the control member file. Those fields are included in the computation
of the ensemble mean and probabilities but excluded from the ensemble spread.

The ensemble relative frequency is the simplest method for turning a set of deterministic forecasts into some-
thing resembling a probability forecast. MET will create the ensemble relative frequency as the proportion of

179

MET User’s Guide, version 11.1.0-beta2

ensemble members forecasting some event. For example, if 5 out of 10 ensemble members predict measur-
able precipitation at a grid location, then the ensemble relative frequency of precipitation will be 5/10 = 0.5.
If the ensemble relative frequency is calibrated (unlikely) then this could be thought of as a probability of
precipitation.

The neighborhood ensemble probability (NEP) and neighborhood maximum ensemble probability (NMEP)
methods are described in Schwartz and Sobash (2017) (page 453). They are an extension of the ensemble
relative frequencies described above. The NEP value is computed by averaging the relative frequency of the
event within the neighborhood over all ensemble members. The NMEP value is computed as the fraction of
ensemble members for which the event is occurring somewhere within the surrounding neighborhood. The
NMEP output is typically smoothed using a Gaussian kernel filter. The neighborhood sizes and smoothing
options can be customized in the configuration file.

The Gen-Ens-Prod tool writes the gridded relative frequencies, NEP, and NMEP fields to a NetCDF output file.
Probabilistic verification methods can then be applied to those fields by evaluating them with the Grid-Stat
and/or Point-Stat tools.

9.2.2 Climatology data

The ensemble relative frequencies derived by Gen-Ens-Prod are computed by applying threshold(s) to the
input ensemble member data. Those thresholds can be simple and remain constant over the entire domain
(e.g. >0) or can be defined relative to the climatological distribution at each grid point (e.g. >CDP90,
for exceeding the 90-th percentile of climatology). When using climatological distribution percentile (CDP)
thresholds, the climatological mean and standard deviation must be provided in the configuration file.

9.3 Practical Information

This section contains information about configuring and running the Gen-Ens-Prod tool. The Gen-Ens-
Prod tool writes a NetCDF output file containing the requested ensemble product fields for each input field
specified. If provided, the climatology data files must be gridded. All input gridded model and climatology
datasets must be on the same grid. However, users may leverage the automated regridding feature in MET
if the desired output grid is specified in the configuration file.

9.3.1 gen_ens_prod usage

The usage statement for the Ensemble Stat tool is shown below:

Usage: gen_ens_prod
-ens file_1 ... file_n | ens_file_list
-out file
-config file
[-ctrl file]
[-log file]
[-v level]

gen_ens_prod has three required arguments and accepts several optional ones.

180 Chapter 9. Gen-Ens-Prod Tool

MET User’s Guide, version 11.1.0-beta2

9.3.2 Required arguments gen_ens_prod

1. The -ens file_1 . . . file_n option specifies the ensemble member file names. This argument is not
required when ensemble files are specified in the ens_file_list, detailed below.

2. The ens_file_list option is an ASCII file containing a list of ensemble member file names. This is not
required when a file list is included on the command line, as described above.

3. The -out file option specifies the NetCDF output file name to be written.

4. The -config file option is a GenEnsProdConfig file containing the desired configuration settings.

9.3.3 Optional arguments for gen_ens_prod

4. The -ctrl file option specifies the input file for the ensemble control member. Data for this member
is included in the computation of the ensemble mean, but excluded from the spread. The control
file should not appear in the -ens list of ensemble member files (unless processing a single file that
contains all ensemble members).

5. The -log file outputs log messages to the specified file.

6. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

An example of the gen_ens_prod calling sequence is shown below:

gen_ens_prod \
-ens sample_fcst/2009123112/*gep*/d01_2009123112_02400.grib \
-out out/gen_ens_prod/gen_ens_prod_20100101_120000V_ens.nc \
-config config/GenEnsProdConfig -v 2

In this example, the Gen-Ens-Prod tool derives products from the input ensemble members listed on the
command line.

9.3.4 gen_ens_prod configuration file

The default configuration file for the Gen-Ens-Prod tool named GenEnsProdConfig_default can be found
in the installed share/met/config directory. Another version is located in scripts/config. We encourage users
to make a copy of these files prior to modifying their contents. The contents of the configuration file are
described in the subsections below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

model = "WRF";
desc = "NA";
regrid = { ... }

(continues on next page)

9.3. Practical Information 181

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

censor_thresh = [];
censor_val = [];
nc_var_str = "";
climo_mean = { ... } // Corresponding to ens.field entries
climo_stdev = { ... } // Corresponding to ens.field entries
rng = { ... }
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

ens = {
ens_thresh = 1.0;
vld_thresh = 1.0;
field = [
{
name = "APCP";
level = "A03";
cat_thresh = [>0.0, >=5.0];

}
];

}

The ens dictionary defines which ensemble fields should be processed.

When summarizing the ensemble, compute a ratio of the number of valid ensemble fields to the total number
of ensemble members. If this ratio is less than the ens_thresh, then quit with an error. This threshold must
be between 0 and 1. Setting this threshold to 1 requires that all ensemble members input files exist and all
requested data be present.

When summarizing the ensemble, for each grid point compute a ratio of the number of valid data values to
the number of ensemble members. If that ratio is less than vld_thresh, write out bad data for that grid point.
This threshold must be between 0 and 1. Setting this threshold to 1 requires that each grid point contain
valid data for all ensemble members in order to compute ensemble product values for that grid point.

For each dictionary entry in the field array, give the name and vertical or accumulation level, plus one or
more categorical thresholds in the cat_thresh entry. The formatting for threshold are described in Section
5. It is the user’s responsibility to know the units for each model variable and choose appropriate threshold
values. The thresholds are used to define ensemble relative frequencies. For example, a threshold of >=5
is used to define the proportion of ensemble members predicting precipitation of at least 5mm at each grid
point.

ens_member_ids = [];
control_id = "";

The ens_member_ids array is only used if reading a single file that contains all ensemble members. It should
contain a list of string identifiers that are substituted into the ens dictionary fields to determine which data

182 Chapter 9. Gen-Ens-Prod Tool

MET User’s Guide, version 11.1.0-beta2

to read from the file. The length of the array determines how many ensemble members will be processed
for a given field. Each value in the array will replace the text MET_ENS_MEMBER_ID.

NetCDF Example:

ens = {
field = [
{
name = "fcst";
level = "(MET_ENS_MEMBER_ID,0,*,*)";

}
];

}

GRIB Example:

ens = {
field = [
{
name = "fcst";
level = "L0";
GRIB_ens = "MET_ENS_MEMBER_ID";

}
];

}

This replacement behavior can also be applied to climatology file name entry, in the climo_mean and
climo_stdev dictionaries.

climo_mean = {
file_name = ["/path/to/file/memberMET_ENS_MEMBER_ID-mean.nc"];
}

This substitution method can only be used if ens_member_ids has at least one entry and the normalize
option is set to CLIMO_ANOM or CLIMO_STD_ANOM.

control_id is a string that is substituted in the same way as the ens_member_ids values to read a control
member. This value is only used when the -ctrl command line argument is used. The value should not be
found in the ens_member_ids array.

normalize = NONE;

The normalize option defines if and how the input ensemble member data should be normalized. Op-
tions are provided to normalize relative to an external climatology, specified using the climo_mean and
climo_stdev dictionaries, or relative to current ensemble forecast being processed. The anomaly is com-
puted by subtracting the (climatological or ensemble) mean from each ensemble memeber. The standard
anomaly is computed by dividing the anomaly by the (climatological or ensemble) standard deviation. Val-
ues for the normalize option are described below:

9.3. Practical Information 183

MET User’s Guide, version 11.1.0-beta2

• NONE (default) to skip the normalization step and process the raw ensemble member data.

• CLIMO_ANOM to subtract the climatological mean field.

• CLIMO_STD_ANOM to subtract the climatological mean field and divide by the climatological stan-
dard deviation.

• FCST_ANOM to subtract the current ensemble mean field.

• FCST_STD_ANOM to subtract the current ensemble mean field and divide by the current ensemble
standard deviation.

Note that the normalize option may be specified separately for each entry in the ens.field array.

nbrhd_prob = {
width = [5];
shape = CIRCLE;
vld_thresh = 0.0;

}

The nbrhd_prob dictionary defines the neighborhoods used to compute NEP and NMEP output.

The neighborhood shape is a SQUARE or CIRCLE centered on the current point, and the width array
specifies the width of the square or diameter of the circle as an odd integer. The vld_thresh entry is a
number between 0 and 1 specifying the required ratio of valid data in the neighborhood for an output value
to be computed.

If ensemble_flag.nep is set to TRUE, NEP output is created for each combination of the categorical threshold
(cat_thresh) and neighborhood width specified.

nmep_smooth = {
vld_thresh = 0.0;
shape = CIRCLE;
gaussian_dx = 81.27;
gaussian_radius = 120;
type = [

{
method = GAUSSIAN;
width = 1;

}
];

}

Similar to the interp dictionary, the nmep_smooth dictionary includes a type array of dictionaries to define
one or more methods for smoothing the NMEP data. Setting the interpolation method to nearest neighbor
(NEAREST) effectively disables this smoothing step.

If ensemble_flag.nmep is set to TRUE, NMEP output is created for each combination of
the categorical threshold (cat_thresh), neighborhood width (nbrhd_prob.width), and smoothing
method(nmep_smooth.type) specified.

184 Chapter 9. Gen-Ens-Prod Tool

MET User’s Guide, version 11.1.0-beta2

ensemble_flag = {
latlon = TRUE;

mean = TRUE;
stdev = TRUE;
minus = TRUE;
plus = TRUE;
min = TRUE;
max = TRUE;
range = TRUE;
vld_count = TRUE;
frequency = TRUE;
nep = FALSE;
nmep = FALSE;
climo = FALSE;
climo_cdp = FALSE;

}

The ensemble_flag specifies which derived ensemble fields should be calculated and output. Setting the
flag to TRUE produces output of the specified field, while FALSE produces no output for that field type. The
flags correspond to the following output line types:

1. Grid Latitude and Longitude Fields

2. Ensemble Mean Field

3. Ensemble Standard Deviation Field

4. Ensemble Mean - One Standard Deviation Field

5. Ensemble Mean + One Standard Deviation Field

6. Ensemble Minimum Field

7. Ensemble Maximum Field

8. Ensemble Range Field

9. Ensemble Valid Data Count

10. Ensemble Relative Frequency (i.e. uncalibrate probability forecast) for each categorical threshold
(cat_thresh) specified

11. Neighborhood Ensemble Probability for each categorical threshold (cat_thresh) and neighborhood
width (nbrhd_prob.width) specified

12. Neighborhood Maximum Ensemble Probability for each categorical threshold (cat_thresh), neighbor-
hood width (nbrhd_prob.width), and smoothing method (nmep_smooth.type) specified

13. Climatology mean (climo_mean) and standard deviation (climo_stdev) data regridded to the model
domain

14. Climatological Distribution Percentile field for each CDP threshold specified

9.3. Practical Information 185

MET User’s Guide, version 11.1.0-beta2

9.3.5 gen_ens_prod output

The Gen-Ens-Prod tools writes a gridded NetCDF output file whose file name is specified using the -out com-
mand line option. The contents of that file depend on the contents of the ens.field array, the ensemble_flag
options selected, and the presence of climatology data. The NetCDF variable names are self-describing
and include the name/level of the field being processed, the type of ensemble product, and any relevant
threshold information. If nc_var_str is defined for an ens.field array entry, that string is included in the
corresponding NetCDF output variable names.

The Gen-Ens-Prod NetCDF output can be passed as input to the MET statistics tools, like Point-Stat and
Grid-Stat, for futher processing and comparison against observations.

186 Chapter 9. Gen-Ens-Prod Tool

Chapter 10

Regional Verification using Spatial Masking

Verification over a particular region or area of interest may be performed using “masking”. Defining a
masking region is simply selecting the desired set of grid points to be used. The Gen-Vx-Mask tool automates
this process and replaces the Gen-Poly-Mask and Gen-Circle-Mask tools from previous releases. It may be
run to create a bitmap verification masking region to be used by many of the statistical tools. This tool
enables the user to generate a masking region once for a domain and apply it to many cases. It has been
enhanced to support additional types of masking region definition (e.g. tropical-cyclone track over water
only). An iterative approach may be used to define complex areas by combining multiple masking regions
together.

10.1 Gen-Vx-Mask tool

The Gen-Vx-Mask tool may be run to create a bitmap verification masking region to be used by the MET
statistics tools. This tool enables the user to generate a masking region once for a domain and apply it to
many cases. While the MET statistics tools can define some masking regions on the fly using polylines, doing
so can be slow, especially for complex polylines containing hundreds of vertices. Using the Gen-Vx-Mask tool
to create a bitmap masking region before running the other MET tools will make them run more efficiently.

10.1.1 gen_vx_mask usage

The usage statement for the Gen-Vx-Mask tool is shown below:

Usage: gen_vx_mask
input_grid
mask_file
out_file
-type str
[-input_field string]
[-mask_field string]
[-complement]
[-union | -intersection | -symdiff]

(continues on next page)

187

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

[-thresh string]
[-height n]
[-width n]
[-shapeno n]
[-value n]
[-name string]
[-log file]
[-v level]
[-compress level]

gen_vx_mask has four required arguments and can take optional ones. Note, -type string (masking type)
was previously optional but is now required.

10.1.1.1 Required arguments for gen_vx_mask

1. The input_file argument is a gridded data file which specifies the grid definition for the domain over
which the masking bitmap is to be defined. If output from gen_vx_mask, automatically read mask data
as the input_field.

2. The mask_file argument defines the masking information, see below.

• For “poly”, “poly_xy”, “box”, “circle”, and “track” masking, specify an ASCII Lat/Lon file.

• For “grid” and “data” masking, specify a gridded data file.

• For “solar_alt” and “solar_azi” masking, specify a gridded data file or a time string in YYYYM-
MDD[_HH[MMSS]] format.

• For “lat” and “lon” masking, no “mask_file” needed, simply repeat the path for “input_file”.

• For “shape” masking, specify an ESRI shapefile (.shp).

3. The out_file argument is the output NetCDF mask file to be written.

4. The -type string is required to set the masking type. The application will give an error message and
exit if “-type string” is not specified on the command line. See description of supported types below.

10.1.1.2 Optional arguments for gen_vx_mask

5. The -input_field string option can be used to read existing mask data from “input_file”.

6. The -mask_field string option can be used to define the field from “mask_file” to be used for “data”
masking.

7. The -complement option can be used to compute the complement of the area defined by “mask_file”.

8. The -union | -intersection | -symdiff option can be used to specify how to combine the masks from
“input_file” and “mask_file”.

9. The -thresh string option can be used to define the threshold to be applied.

• For “circle” and “track” masking, threshold the distance (km).

188 Chapter 10. Regional Verification using Spatial Masking

MET User’s Guide, version 11.1.0-beta2

• For “data” masking, threshold the values of “mask_field”.

• For “solar_alt” and “solar_azi” masking, threshold the computed solar values.

• For “lat” and “lon” masking, threshold the latitude and longitude values.

10. The -height n and -width n options set the size in grid units for “box” masking.

11. The -shapeno n option is only used for shapefile masking. (See description of shapefile masking
below).

12. The -value n option can be used to override the default output mask data value (1).

13. The -name string option can be used to specify the output variable name for the mask.

14. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

15. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

16. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

The Gen-Vx-Mask tool supports the following types of masking region definition selected using the -type
command line option:

1. Polyline (poly) masking reads an input ASCII file containing Lat/Lon locations, connects the first and
last points, and selects grid points whose Lat/Lon location falls inside that polyline in Lat/Lon space.
This option is useful when defining geographic subregions of a domain.

2. Polyline XY (poly_xy) masking reads an input ASCII file containing Lat/Lon locations. It converts the
polyline Lat/Lon locations into grid X/Y space and connects the first and last points. It selects grid
points whose X/Y location falls inside that polyline in X/Y space. This option is useful when defining
geographic subregions of a domain.

3. Box (box) masking reads an input ASCII file containing Lat/Lon locations and draws a box around
each point. The height and width of the box is specified by the -height and -width command line
options in grid units. For a square, only one of -height or -width needs to be used.

4. Circle (circle) masking reads an input ASCII file containing Lat/Lon locations and for each grid point,
computes the minimum great-circle arc distance in kilometers to those points. If the -thresh command
line option is not used, the minimum distance value for each grid point will be written to the output. If
it is used, only those grid points whose minimum distance meets the threshold criteria will be selected.
This option is useful when defining areas within a certain radius of radar locations.

5. Track (track) masking reads an input ASCII file containing Lat/Lon locations and for each grid point,
computes the minimum great-circle arc distance in kilometers to the track defined by those points.
The first and last track points are not connected. As with circle masking the output for each grid point

10.1. Gen-Vx-Mask tool 189

MET User’s Guide, version 11.1.0-beta2

depends on the use of the -thresh command line option. This option is useful when defining the area
within a certain distance of a hurricane track.

6. Grid (grid) masking reads an input gridded data file, extracts the field specified using its grid defini-
tion, and selects grid points falling inside that grid. This option is useful when using a model nest to
define the corresponding area of the parent domain.

7. Data (data) masking reads an input gridded data file, extracts the field specified using the -mask_field
command line option, thresholds the data using the -thresh command line option, and selects grid
points which meet that threshold criteria. The option is useful when thresholding topography to define
a mask based on elevation or when threshold land use to extract a particular category.

8. Solar altitude (solar_alt) and solar azimuth (solar_azi) masking computes the solar altitude and
azimuth values at each grid point for the time defined by the mask_file setting. mask_file may either
be set to an explicit time string in YYYYMMDD[_HH[MMSS]] format or to a gridded data file. If set to
a gridded data file, the -mask_field command line option specifies the field of data whose valid time
should be used. If the -thresh command line option is not used, the raw solar altitude or azimuth
value for each grid point will be written to the output. If it is used, the resulting binary mask field will
be written. This option is useful when defining a day/night mask.

9. Latitude (lat) and longitude (lon) masking computes the latitude and longitude value at each grid
point. This logic only requires the definition of the grid, specified by the input_file. Technically, the
mask_file is not needed, but a value must be specified for the command line to parse correctly. Users
are advised to simply repeat the input_file setting twice. If the -thresh command line option is not
used, the raw latitude or longitude values for each grid point will be written to the output. This option
is useful when defining latitude or longitude bands over which to compute statistics.

10. Shapefile (shape) masking uses a closed polygon taken from an ESRI shapefile to define the masking
region. Gen-Vx-Mask reads the shapefile with the “.shp” suffix and extracts the latitude and longitudes
of the vertices. The other types of shapefiles (index file, suffix “.shx”, and dBASE file, suffix “.dbf”)
are not currently used. The shapefile must consist of closed polygons rather than polylines, points, or
any of the other data types that shapefiles support. Shapefiles usually contain more than one polygon,
and the -shape n command line option enables the user to select one polygon from the shapefile.
The integer n tells which shape number to use from the shapefile. Note that this value is zero-based,
so that the first polygon in the shapefile is polygon number 0, the second polygon in the shapefile is
polygon number 1, etc. For the user’s convenience, some utilities that perform human-readable screen
dumps of shapefile contents are provided. The gis_dump_shp, gis_dump_shx and gis_dump_dbf tools
enable the user to examine the contents of her shapefiles. As an example, if the user knows the name
of the particular polygon but not the number of the polygon in the shapefile, the user can use the
gis_dump_dbf utility to examine the names of the polygons in the shapefile. The information written
to the screen will display the corresponding polygon number.

The polyline, polyline XY, box, circle, and track masking methods all read an ASCII file containing Lat/Lon
locations. Those files must contain a string, which defines the name of the masking region, followed by a
series of whitespace-separated latitude (degrees north) and longitude (degree east) values.

The Gen-Vx-Mask tool performs three main steps, described below.

1. Determine the input_field and grid definition.

• Read the input_file to determine the grid over which the mask should be defined.

• By default, initialize the input_field at each grid point to a value of zero.

190 Chapter 10. Regional Verification using Spatial Masking

MET User’s Guide, version 11.1.0-beta2

• If the -input_field option was specified, initialize the input_field at each grid point to the value of that
field.

• If the input_file is the output from a previous run of Gen-Vx-Mask, automatically initialize each grid
point with the input_field value.

2. Determine the mask_field.

• Read the mask_file, process it based on the -type setting (as described above), and define the
mask_field value for each grid point to specify whether or not it is included in the mask.

• By default, store the mask value as 1 unless the -value option was specified to override that default
value.

• If the -complement option was specified, the opposite of the masking area is selected.

3. Apply logic to combine the input_field and mask_field and write the out_file.

• By default, the output value at each grid point is set to the value of mask_field if included in the mask,
or the value of input_field if not included.

• If the -union, -intersection, or -symdiff option was specified, apply that logic to the input_field and
mask_field values at each grid point to determine the output value.

• Write the output value for each grid point to the out_file.

This three step process enables the Gen-Vx-Mask tool to be run iteratively on its own output to generate
complex masking areas. Additionally, the -union, -intersection, and -symdiff options control the logic for
combining the input data value and current mask value at each grid point. For example, one could define
a complex masking region by selecting grid points with an elevation greater than 1000 meters within a
specified geographic region by doing the following:

• Run the Gen-Vx-Mask tool to apply data masking by thresholding a field of topography greater than
1000 meters.

• Rerun the Gen-Vx-Mask tool passing in the output of the first call and applying polyline masking to
define the geographic area of interest.

– Use the -intersection option to only select grid points whose value is non-zero in both the input
field and the current mask.

An example of the gen_vx_mask calling sequence is shown below:

gen_vx_mask sample_fcst.grb \
CONUS.poly CONUS_poly.nc

In this example, the Gen-Vx-Mask tool will read the ASCII Lat/Lon file named CONUS.poly and apply the
default polyline masking method to the domain on which the data in the file sample_fcst.grib resides. It
will create a NetCDF file containing a bitmap for the domain with a value of 1 for all grid points inside
the CONUS polyline and a value of 0 for all grid points outside. It will write an output NetCDF file named
CONUS_poly.nc.

10.1. Gen-Vx-Mask tool 191

MET User’s Guide, version 11.1.0-beta2

10.2 Feature-Relative Methods

This section contains a description of several methods that may be used to perform feature-relative (or event
-based) evaluation. The methodology pertains to examining the environment surrounding a particular fea-
ture or event such as a tropical, extra-tropical cyclone, convective cell, snow-band, etc. Several approaches
are available for these types of investigations including applying masking described above (e.g. circle or
box) or using the “FORCE” interpolation method in the regrid configuration option (see Section 5). These
methods generally require additional scripting, including potentially storm-track identification, outside of
MET to be paired with the features of the MET tools. METplus may be used to execute this type of analysis.
Please refer to the METplus User’s Guide.

192 Chapter 10. Regional Verification using Spatial Masking

https://metplus.readthedocs.io/

Chapter 11

Point-Stat Tool

11.1 Introduction

The Point-Stat tool provides verification statistics for forecasts at observation points (as opposed to over
gridded analyses). The Point-Stat tool matches gridded forecasts to point observation locations and sup-
ports several different interpolation options. The tool then computes continuous, categorical, spatial, and
probabilistic verification statistics. The categorical and probabilistic statistics generally are derived by apply-
ing a threshold to the forecast and observation values. Confidence intervals - representing the uncertainty
in the verification measures - are computed for the verification statistics.

Scientific and statistical aspects of the Point-Stat tool are discussed in the following section. Practical aspects
of the Point-Stat tool are described in Section 11.3.

11.2 Scientific and statistical aspects

The statistical methods and measures computed by the Point-Stat tool are described briefly in this section.
In addition, Section 11.2.1 discusses the various interpolation options available for matching the forecast
grid point values to the observation points. The statistical measures computed by the Point-Stat tool are
described briefly in Section 11.2.4 and in more detail in Appendix C, Section 33. Section 11.2.5 describes
the methods for computing confidence intervals that are applied to some of the measures computed by the
Point-Stat tool; more detail on confidence intervals is provided in Appendix D, Section 34.

11.2.1 Interpolation/matching methods

This section provides information about the various methods available in MET to match gridded model out-
put to point observations. Matching in the vertical and horizontal are completed separately using different
methods.

In the vertical, if forecasts and observations are at the same vertical level, then they are paired as-is. If
any discrepancy exists between the vertical levels, then the forecasts are interpolated to the level of the
observation. The vertical interpolation is done in the natural log of pressure coordinates, except for specific
humidity, which is interpolated using the natural log of specific humidity in the natural log of pressure

193

MET User’s Guide, version 11.1.0-beta2

coordinates. Vertical interpolation for heights above ground are done linear in height coordinates. When
forecasts are for the surface, no interpolation is done. They are matched to observations with message
types that are mapped to SURFACE in the message_type_group_map configuration option. By default,
the surface message types include ADPSFC, SFCSHP, and MSONET. The regular expression is applied to
the message type list at the message_type_group_map. The derived message types from the time summary
(“ADPSFC_MIN_hhmmss” and “ADPSFC_MAX_hhmmss”) are accepted as “ADPSFC”.

To match forecasts and observations in the horizontal plane, the user can select from a number of methods
described below. Many of these methods require the user to define the width of the forecast grid W, around
each observation point P, that should be considered. In addition, the user can select the interpolation shape,
either a SQUARE or a CIRCLE. For example, a square of width 2 defines the 2 x 2 set of grid points enclosing
P, or simply the 4 grid points closest to P. A square of width of 3 defines a 3 x 3 square consisting of 9 grid
points centered on the grid point closest to P. Figure 11.1 provides illustration. The point P denotes the
observation location where the interpolated value is calculated. The interpolation width W, shown is five.

This section describes the options for interpolation in the horizontal.

Figure 11.1: Diagram illustrating matching and interpolation methods used in MET. See text for explanation.

194 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Figure 11.2: Illustration of some matching and interpolation methods used in MET. See text for explanation.

Nearest Neighbor

The forecast value at P is assigned the value at the nearest grid point. No interpolation is performed. Here,
“nearest” means spatially closest in horizontal grid coordinates. This method is used by default when the
interpolation width, W, is set to 1.

Geography Match

The forecast value at P is assigned the value at the nearest grid point in the interpolation area where the
land/sea mask and topography criteria are satisfied.

Gaussian

11.2. Scientific and statistical aspects 195

MET User’s Guide, version 11.1.0-beta2

The forecast value at P is a weighted sum of the values in the interpolation area. The weight given to each
forecast point follows the Gaussian distribution with nearby points contributing more the far away points.
The shape of the distribution is configured using sigma.

When used for regridding, with the regrid configuration option, or smoothing, with the interp configuration
option in grid-to-grid comparisons, the Gaussian method is named MAXGAUSS and is implemented as a 2-
step process. First, the data is regridded or smoothed using the maximum value interpolation method
described below, where the width and shape define the interpolation area. Second, the Gaussian smoother,
defined by the gaussian_dx and gaussian_radius configuration options, is applied.

Minimum value

The forecast value at P is the minimum of the values in the interpolation area.

Maximum value

The forecast value at P is the maximum of the values in the interpolation area.

Distance-weighted mean

The forecast value at P is a weighted sum of the values in the interpolation area. The weight given to each
forecast point is the reciprocal of the square of the distance (in grid coordinates) from P. The weighted sum
of forecast values is normalized by dividing by the sum of the weights.

Unweighted mean

This method is similar to the distance-weighted mean, except all the weights are equal to 1. The distance of
any point from P is not considered.

Median

The forecast value at P is the median of the forecast values in the interpolation area.

Least-Squares Fit

To perform least squares interpolation of a gridded field at a location P, MET uses an WxW subgrid centered
(as closely as possible) at P. Figure 11.1 shows the case where W = 5.

If we denote the horizontal coordinate in this subgrid by x, and vertical coordinate by y, then we can assign
coordinates to the point P relative to this subgrid. These coordinates are chosen so that the center of the
grid is. For example, in Figure 11.1, P has coordinates (-0.4, 0.2). Since the grid is centered near P, the
coordinates of P should always be at most 0.5 in absolute value. At each of the vertices of the grid (indicated
by black dots in the figure), we have data values. We would like to use these values to interpolate a value at
P. We do this using least squares. If we denote the interpolated value by z, then we fit an expression of the
form 𝑧 = 𝛼(𝑥) + 𝛽(𝑦) + 𝛾 over the subgrid. The values of 𝛼, 𝛽, 𝛾 are calculated from the data values at the

196 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

vertices. Finally, the coordinates (x,y) of P are substituted into this expression to give z, our least squares
interpolated data value at P.

Bilinear Interpolation

This method is performed using the four closest grid squares. The forecast values are interpolated linearly
first in one dimension and then the other to the location of the observation.

Upper Left, Upper Right, Lower Left, Lower Right Interpolation

This method is performed using the four closest grid squares. The forecast values are interpolated to the
specified grid point.

Best Interpolation

The forecast value at P is chosen as the grid point inside the interpolation area whose value most closely
matches the observation value.

11.2.2 HiRA framework

The Point-Stat tool has been enhanced to include the High Resolution Assessment (HiRA) verification logic
(Mittermaier, 2014 (page 452)). HiRA is analogous to neighborhood verification but for point observations.
The HiRA logic interprets the forecast values surrounding each point observation as an ensemble forecast.
These ensemble values are processed in three ways. First, the ensemble continuous statistics (ECNT), the
observation rank statistics (ORANK) and the ranked probability score (RPS) line types are computed directly
from the ensemble values. Second, for each categorical threshold specified, a fractional coverage value is
computed as the ratio of the nearby forecast values that meet the threshold criteria. Point-Stat evaluates
those fractional coverage values as if they were a probability forecast. When applying HiRA, users should
enable the matched pair (MPR), probabilistic (PCT, PSTD, PJC, or PRC), continuous ensemble statistics
(ECNT), observation rank statistics (ORANK) or ranked probability score (RPS) line types in the output_flag
dictionary. The number of probabilistic HiRA output lines is determined by the number of categorical forecast
thresholds and HiRA neighborhood widths chosen.

The HiRA framework provides a unique method for evaluating models in the neighborhood of point ob-
servations, allowing for some spatial and temporal uncertainty in the forecast and/or the observations.
Additionally, the HiRA framework can be used to compare deterministic forecasts to ensemble forecasts. In
MET, the neighborhood is a circle or square centered on the grid point closest to the observation location. An
event is defined, then the proportion of points with events in the neighborhood is calculated. This proportion
is treated as an ensemble probability, though it is likely to be uncalibrated.

Figure 11.3 shows a couple of examples of how the HiRA proportion is derived at a single model level using
square neighborhoods. Events (in our case, model accretion values > 0) are separated from non-events
(model accretion value = 0). Then, in each neighborhood, the total proportion of events is calculated. In
the leftmost panel, four events exist in the 25 point neighborhood, making the HiRA proportion is 4/25
= 0.16. For the neighborhood of size 9 centered in that same panel, the HiRA proportion is 1/9. In the
right panel, the size 25 neighborhood has HiRA proportion of 6/25, with the centered 9-point neighborhood

11.2. Scientific and statistical aspects 197

MET User’s Guide, version 11.1.0-beta2

having a HiRA value of 2/9. To extend this method into 3-dimensions, all layers within the user-defined
layer are also included in the calculation of the proportion in the same manner.

Figure 11.3: Example showing how HiRA proportions are calculated.

Often, the neighborhood size is chosen so that multiple models to be compared have approximately the same
horizontal resolution. Then, standard metrics for probabilistic forecasts, such as Brier Score, can be used to
compare those forecasts. HiRA was developed using surface observation stations so the neighborhood lies
completely within the horizontal plane. With any type of upper air observation, the vertical neighborhood
must also be defined.

11.2.3 SEEPS scores

The Stable Equitable Error in Probability Space (SEEPS) was devised for monitoring global deterministic
forecasts of precipitation against the WMO gauge network (Rodwell et al., 2010 (page 453); Haiden et al.,
2012 (page 450)) and is a multi-category score which uses a climatology to account for local variations
in behavior. Since the score uses probability space to define categories using the climatology, it can be
aggregated over heterogeneous climate regions. Even though it was developed for use with precipitation
forecasts, in principle it could be applied to any forecast parameter for which a sufficiently long time period
of observations exists to create a suitable climatology. The computation of SEEPS for precipitation is only
supported for now.

For use with precipitation, three categories are used, named ‘dry’, ‘light’ and ‘heavy’. The ‘dry’ category is de-
fined (using the WMO observing guidelines) with any accumulation (rounded to the nearest 0.1 millimeter)
that is less than or equal to 0.2 mm. The remaining precipitation is divided into ‘light’ and ‘heavy’ categories
whose thresholds are with respect to a climatology and thus location specific. The light precipitation is
defined to occur twice as often as heavy precipitation.

When calculating a single SEEPS value over observing stations for a particular region, the scores should
have a density weighting applied which accounts for uneven station distribution in the region of interest
(see Section 9.1 in Rodwell et al., 2010 (page 453)). This density weighting has not yet been implemented
in MET. Global precipitation climatologies calculated from the WMO SYNOP records from 1980-2009 are
supplied with the release. At the moment, a 24-hour climatology is available (valid at 00 UTC or 12 UTC),
but in future a 6-hour climatology will become available.

198 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

11.2.4 Statistical measures

The Point-Stat tool computes a wide variety of verification statistics. Broadly speaking, these statistics can
be subdivided into statistics for categorical variables and statistics for continuous variables. The categories
of measures are briefly described here; specific descriptions of the measures are provided in Appendix C,
Section 33. Additional information can be found in Wilks (2011) (page 454) and Jolliffe and Stephenson
(2012) (page 451), and at Collaboration for Australian Weather and Climate Research. Forecast Verification
- Issues, Methods and FAQ web page.

In addition to these verification measures, the Point-Stat tool also computes partial sums and other FHO
statistics that are produced by the NCEP verification system. These statistics are also described in Appendix
C, Section 33.

11.2.4.1 Measures for categorical variables

Categorical verification statistics are used to evaluate forecasts that are in the form of a discrete set of cate-
gories rather than on a continuous scale. If the original forecast is continuous, the user may specify one or
more thresholds in the configuration file to divide the continuous measure into categories. Currently, Point-
Stat computes categorical statistics for variables in two or more categories. The special case of dichotomous
(i.e., 2-category) variables has several types of statistics calculated from the resulting contingency table and
are available in the CTS output line type. For multi-category variables, fewer statistics can be calculated so
these are available separately, in line type MCTS. Categorical variables can be intrinsic (e.g., rain/no-rain)
or they may be formed by applying one or more thresholds to a continuous variable (e.g., temperature <
273.15 K or cloud coverage percentages in 10% bins). See Appendix C, Section 33 for more information.

11.2.4.2 Measures for continuous variables

For continuous variables, many verification measures are based on the forecast error (i.e., f - o). However,
it also is of interest to investigate characteristics of the forecasts, and the observations, as well as their
relationship. These concepts are consistent with the general framework for verification outlined by Murphy
and Winkler (1987) (page 452). The statistics produced by MET for continuous forecasts represent this
philosophy of verification, which focuses on a variety of aspects of performance rather than a single measure.
See Appendix C, Section 33 for specific information.

A user may wish to eliminate certain values of the forecasts from the calculation of statistics, a process
referred to here as``’conditional verification”. For example, a user may eliminate all temperatures above
freezing and then calculate the error statistics only for those forecasts of below freezing temperatures. An-
other common example involves verification of wind forecasts. Since wind direction is indeterminate at
very low wind speeds, the user may wish to set a minimum wind speed threshold prior to calculating error
statistics for wind direction. The user may specify these thresholds in the configuration file to specify the con-
ditional verification. Thresholds can be specified using the usual Fortran conventions (<, <=, ==, !-, >=,
or >) followed by a numeric value. The threshold type may also be specified using two letter abbreviations
(lt, le, eq, ne, ge, gt). Further, more complex thresholds can be achieved by defining multiple thresholds
and using && or || to string together event definition logic. The forecast and observation threshold can
be used together according to user preference by specifying one of: UNION, INTERSECTION, or SYMDIFF
(symmetric difference).

11.2. Scientific and statistical aspects 199

https://www.cawcr.gov.au/projects/verification/verif_web_page.html

MET User’s Guide, version 11.1.0-beta2

11.2.4.3 Measures for probabilistic forecasts and dichotomous outcomes

For probabilistic forecasts, many verification measures are based on reliability, accuracy and bias. However,
it also is of interest to investigate joint and conditional distributions of the forecasts and the observations, as
in Wilks (2011) (page 454). See Appendix C, Section 33 for specific information.

Probabilistic forecast values are assumed to have a range of either 0 to 1 or 0 to 100. If the max data value
is > 1, we assume the data range is 0 to 100, and divide all the values by 100. If the max data value is
<= 1, then we use the values as is. Further, thresholds are applied to the probabilities with equality on the
lower end. For example, with a forecast probability p, and thresholds t1 and t2, the range is defined as: t1
<= p < t2. The exception is for the highest set of thresholds, when the range includes 1: t1 <= p <= 1.
To make configuration easier, in METv6.0, these probabilities may be specified in the configuration file as
a list (>=0.00,>=0.25,>=0.50,>=0.75,>=1.00) or using shorthand notation (==0.25) for bins of equal
width.

When the “prob” entry is set as a dictionary to define the field of interest, setting “prob_as_scalar = TRUE”
indicates that this data should be processed as regular scalars rather than probabilities. For example, this
option can be used to compute traditional 2x2 contingency tables and neighborhood verification statistics
for probability data. It can also be used to compare two probability fields directly.

11.2.4.4 Measures for comparison against climatology

For each of the types of statistics mentioned above (categorical, continuous, and probabilistic), it is possible
to calculate measures of skill relative to climatology. MET will accept a climatology file provided by the user,
and will evaluate it as a reference forecast. Further, anomalies, i.e. departures from average conditions, can
be calculated. As with all other statistics, the available measures will depend on the nature of the forecast.
Common statistics that use a climatological reference include: the mean squared error skill score (MSESS),
the Anomaly Correlation (ANOM_CORR and ANOM_CORR_UNCNTR), scalar and vector anomalies (SAL1L2
and VAL1L2), continuous ranked probability skill score (CRPSS and CRPSS_EMP), Brier Skill Score (BSS)
(Wilks, 2011 (page 454); Mason, 2004 (page 451)).

Often, the sample climatology is used as a reference by a skill score. The sample climatology is the average
over all included observations and may be transparent to the user. This is the case in most categorical
skill scores. The sample climatology will probably prove more difficult to improve upon than a long term
climatology, since it will be from the same locations and time periods as the forecasts. This may mask
legitimate forecast skill. However, a more general climatology, perhaps covering many years, is often easier
to improve upon and is less likely to mask real forecast skill.

11.2.5 Statistical confidence intervals

A single summary score gives an indication of the forecast performance, but it is a single realization from
a random process that neglects uncertainty in the score’s estimate. That is, it is possible to obtain a good
score, but it may be that the “good” score was achieved by chance and does not reflect the “true” score.
Therefore, when interpreting results from a verification analysis, it is imperative to analyze the uncertainty
in the realized scores. One good way to do this is to utilize confidence intervals. A confidence interval
indicates that if the process were repeated many times, say 100, then the true score would fall within the
interval 100(1−𝛼)% of the time. Typical values of 𝛼 are 0.01, 0.05, and 0.10. The Point-Stat tool allows the
user to select one or more specific 𝛼-values to use.

200 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

For continuous fields (e.g., temperature), it is possible to estimate confidence intervals for some measures
of forecast performance based on the assumption that the data, or their errors, are normally distributed.
The Point-Stat tool computes confidence intervals for the following summary measures: forecast mean and
standard deviation, observation mean and standard deviation, correlation, mean error, and the standard
deviation of the error. In the case of the respective means, the central limit theorem suggests that the means
are normally distributed, and this assumption leads to the usual 100(1 − 𝛼)% confidence intervals for the
mean. For the standard deviations of each field, one must be careful to check that the field of interest
is normally distributed, as this assumption is necessary for the interpretation of the resulting confidence
intervals.

For the measures relating the two fields (i.e., mean error, correlation and standard deviation of the errors),
confidence intervals are based on either the joint distributions of the two fields (e.g., with correlation) or
on a function of the two fields. For the correlation, the underlying assumption is that the two fields follow
a bivariate normal distribution. In the case of the mean error and the standard deviation of the mean
error, the assumption is that the errors are normally distributed, which for continuous variables, is usually a
reasonable assumption, even for the standard deviation of the errors.

Bootstrap confidence intervals for any verification statistic are available in MET. Bootstrapping is a non-
parametric statistical method for estimating parameters and uncertainty information. The idea is to obtain a
sample of the verification statistic(s) of interest (e.g., bias, ETS, etc.) so that inferences can be made from this
sample. The assumption is that the original sample of matched forecast-observation pairs is representative of
the population. Several replicated samples are taken with replacement from this set of forecast-observation
pairs of variables (e.g., precipitation, temperature, etc.), and the statistic(s) are calculated for each replicate.
That is, given a set of n forecast-observation pairs, we draw values at random from these pairs, allowing the
same pair to be drawn more than once, and the statistic(s) is (are) calculated for each replicated sample.
This yields a sample of the statistic(s) based solely on the data without making any assumptions about the
underlying distribution of the sample. It should be noted, however, that if the observed sample of matched
pairs is dependent, then this dependence should be taken into account somehow. Currently, the confidence
interval methods in MET do not take into account dependence, but future releases will support a robust
method allowing for dependence in the original sample. More detailed information about the bootstrap
algorithm is found in the Appendix D, Section 34.

Confidence intervals can be calculated from the sample of verification statistics obtained through the boot-
strap algorithm. The most intuitive method is to simply take the appropriate quantiles of the sample of
statistic(s). For example, if one wants a 95% CI, then one would take the 2.5 and 97.5 percentiles of the
resulting sample. This method is called the percentile method, and has some nice properties. However, if
the original sample is biased and/or has non-constant variance, then it is well known that this interval is
too optimistic. The most robust, accurate, and well-behaved way to obtain accurate CIs from bootstrapping
is to use the bias corrected and adjusted percentile method (or BCa). If there is no bias, and the variance
is constant, then this method will yield the usual percentile interval. The only drawback to the approach is
that it is computationally intensive. Therefore, both the percentile and BCa methods are available in MET,
with the considerably more efficient percentile method being the default.

The only other option associated with bootstrapping currently available in MET is to obtain replicated sam-
ples smaller than the original sample (i.e., to sample m<n points at each replicate). Ordinarily, one should
use m=n, and this is the default. However, there are cases where it is more appropriate to use a smaller
value of m (e.g., when making inference about high percentiles of the original sample). See Gilleland (2010)
(page 449) for more information and references about this topic.

MET provides parametric confidence intervals based on assumptions of normality for the following categor-

11.2. Scientific and statistical aspects 201

MET User’s Guide, version 11.1.0-beta2

ical statistics:

• Base Rate

• Forecast Mean

• Accuracy

• Probability of Detection

• Probability of Detection of the non-event

• Probability of False Detection

• False Alarm Ratio

• Critical Success Index

• Hanssen-Kuipers Discriminant

• Odds Ratio

• Log Odds Ratio

• Odds Ratio Skill Score

• Extreme Dependency Score

• Symmetric Extreme Dependency Score

• Extreme Dependency Index

• Symmetric Extremal Dependency Index

MET provides parametric confidence intervals based on assumptions of normality for the following continu-
ous statistics:

• Forecast and Observation Means

• Forecast, Observation, and Error Standard Deviations

• Pearson Correlation Coefficient

• Mean Error

MET provides parametric confidence intervals based on assumptions of normality for the following proba-
bilistic statistics:

• Brier Score

• Base Rate

MET provides non-parametric bootstrap confidence intervals for many categorical and continuous statistics.
Kendall’s Tau and Spearman’s Rank correlation coefficients are the only exceptions. Computing bootstrap
confidence intervals for these statistics would be computationally unrealistic.

For more information on confidence intervals pertaining to verification measures, see Wilks (2011)
(page 454), Jolliffe and Stephenson (2012) (page 451), and Bradley (2008).

202 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

11.3 Practical information

The Point-Stat tool is used to perform verification of a gridded model field using point observations. The
gridded model field to be verified must be in one of the supported file formats. The point observations must
be formatted as the NetCDF output of the point reformatting tools described in Section 7. The Point-Stat tool
provides the capability of interpolating the gridded forecast data to the observation points using a variety of
methods as described in Section 11.2.1. The Point-Stat tool computes a number of continuous statistics on
the matched pair data as well as discrete statistics once the matched pair data have been thresholded.

If no matched pairs are found for a particular verification task, a report listing counts for reasons why the
observations were not used is written to the log output at the default verbosity level of 2. If matched pairs
are found, this report is written at verbosity level 3. Inspecting these rejection reason counts is the first step
in determining why Point-Stat found no matched pairs. The order of the log messages matches the order in
which the processing logic is applied. Start from the last log message and work your way up, considering
each of the non-zero rejection reason counts.

11.3.1 point_stat usage

The usage statement for the Point-Stat tool is shown below:

Usage: point_stat
fcst_file
obs_file
config_file
[-point_obs file]
[-obs_valid_beg time]
[-obs_valid_end time]
[-outdir path]
[-log file]
[-v level]

point_stat has three required arguments and can take many optional ones.

11.3.1.1 Required arguments for point_stat

1. The fcst_file argument names the gridded file in either GRIB or NetCDF containing the model data to
be verified.

2. The obs_file argument indicates the MET NetCDF point observation file to be used for verifying the
model. Python embedding for point observations is also supported, as described in Section 36.4.2.

3. The config_file argument indicates the name of the configuration file to be used. The contents of the
configuration file are discussed below.

11.3. Practical information 203

MET User’s Guide, version 11.1.0-beta2

11.3.1.2 Optional arguments for point_stat

4. The -point_obs file may be used to pass additional NetCDF point observation files to be used in the
verification. Python embedding for point observations is also supported, as described in Section 36.4.2.

5. The -obs_valid_beg time option in YYYYMMDD[_HH[MMSS]] format sets the beginning of the obser-
vation matching time window, overriding the configuration file setting.

6. The -obs_valid_end time option in YYYYMMDD[_HH[MMSS]] format sets the end of the observation
matching time window, overriding the configuration file setting.

7. The -outdir path indicates the directory where output files should be written.

8. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

9. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

An example of the point_stat calling sequence is shown below:

point_stat sample_fcst.grb \
sample_pb.nc \
PointStatConfig

In this example, the Point-Stat tool evaluates the model data in the sample_fcst.grb GRIB file using the
observations in the NetCDF output of PB2NC, sample_pb.nc, applying the configuration options specified in
the PointStatConfig file.

11.3.2 point_stat configuration file

The default configuration file for the Point-Stat tool named PointStatConfig_default can be found in the
installed share/met/config directory. Another version is located in scripts/config. We encourage users to make
a copy of these files prior to modifying their contents. The contents of the configuration file are described in
the subsections below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

model = "WRF";
desc = "NA";
regrid = { ... }
climo_mean = { ... }
climo_stdev = { ... }
climo_cdf = { ... }
obs_window = { beg = -5400; end = 5400; }
mask = { grid = ["FULL"]; poly = []; sid = []; }

(continues on next page)

204 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

ci_alpha = [0.05];
boot = { interval = PCTILE; rep_prop = 1.0; n_rep = 1000;

rng = "mt19937"; seed = ""; }
interp = { vld_thresh = 1.0; shape = SQUARE;

type = [{ method = NEAREST; width = 1; }]; }
censor_thresh = [];
censor_val = [];
mpr_column = [];
mpr_thresh = [];
eclv_points = 0.05;
hss_ec_value = NA;
rank_corr_flag = TRUE;
sid_inc = [];
sid_exc = [];
duplicate_flag = NONE;
obs_quality_inc = [];
obs_quality_exc = [];
obs_summary = NONE;
obs_perc_value = 50;
message_type_group_map = [...];
tmp_dir = "/tmp";
output_prefix = "";
version = "VN.N";

The configuration options listed above are common to multiple MET tools and are described in Section 5.

Setting up the fcst and obs dictionaries of the configuration file is described in Section 5. The following are
some special considerations for the Point-Stat tool.

The obs dictionary looks very similar to the fcst dictionary. When the forecast and observation variables
follow the same naming convention, one can easily copy over the forecast settings to the observation dic-
tionary using obs = fcst;. However when verifying forecast data in NetCDF format or verifying against
not-standard observation variables, users will need to specify the fcst and obs dictionaries separately. The
number of fields specified in the fcst and obs dictionaries must match.

The message_type entry, defined in the obs dictionary, contains a comma-separated list of the message types
to use for verification. At least one entry must be provided. The Point-Stat tool performs verification using
observations for one message type at a time. See Table 1.a Current Table A Entries in PREPBUFR mnemonic
table for a list of the possible types. If using obs = fcst;, it can be defined in the forecast dictionary and the
copied into the observation dictionary.

land_mask = {
flag = FALSE;
file_name = [];
field = { name = "LAND"; level = "L0"; }

(continues on next page)

11.3. Practical information 205

https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

regrid = { method = NEAREST; width = 1; }
thresh = eq1;

}

The land_mask dictionary defines the land/sea mask field which is used when verifying at the surface.
For point observations whose message type appears in the LANDSF entry of the message_type_group_map
setting, only use forecast grid points where land = TRUE. For point observations whose message type appears
in the WATERSF entry of the message_type_group_map setting, only use forecast grid points where land
= FALSE. The flag entry enables/disables this logic. If the file_name is left empty, then the land/sea is
assumed to exist in the input forecast file. Otherwise, the specified file(s) are searched for the data specified
in the field entry. The regrid settings specify how this field should be regridded to the verification domain.
Lastly, the thresh entry is the threshold which defines land (threshold is true) and water (threshold is false).

topo_mask = {
flag = FALSE;
file_name = [];
field = { name = "TOPO"; level = "L0"; }
regrid = { method = BILIN; width = 2; }
use_obs_thresh = ge-100&&le100;
interp_fcst_thresh = ge-50&&le50;

}

The topo_mask dictionary defines the model topography field which is used when verifying at the surface.
This logic is applied to point observations whose message type appears in the SURFACE entry of the mes-
sage_type_group_map setting. Only use point observations where the topo - station elevation difference
meets the use_obs_thresh threshold entry. For the observations kept, when interpolating forecast data to
the observation location, only use forecast grid points where the topo - station difference meets the in-
terp_fcst_thresh threshold entry. The flag entry enables/disables this logic. If the file_name is left empty,
then the topography data is assumed to exist in the input forecast file. Otherwise, the specified file(s)
are searched for the data specified in the field entry. The regrid settings specify how this field should be
regridded to the verification domain.

hira = {
flag = FALSE;
width = [2, 3, 4, 5]
vld_thresh = 1.0;
cov_thresh = [==0.25];
shape = SQUARE;
prob_cat_thresh = [];

}

The hira dictionary that is very similar to the interp and nbrhd entries. It specifies information for applying
the High Resolution Assessment (HiRA) verification logic described in section Section 11.2.2. The flag
entry is a boolean which toggles HiRA on (TRUE) and off (FALSE). The width and shape entries define

206 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

the neighborhood size and shape, respectively. Since HiRA applies to point observations, the width may be
even or odd. The vld_thresh entry is the required ratio of valid data within the neighborhood to compute
an output value. The cov_thresh entry is an array of probabilistic thresholds used to populate the Nx2
probabilistic contingency table written to the PCT output line and used for computing probabilistic statistics.
The prob_cat_thresh entry defines the thresholds to be used in computing the ranked probability score in
the RPS output line type. If left empty but climatology data is provided, the climo_cdf thresholds will be
used instead of prob_cat_thresh.

output_flag = {
fho = BOTH;
ctc = BOTH;
cts = BOTH;
mctc = BOTH;
mcts = BOTH;
cnt = BOTH;
sl1l2 = BOTH;
sal1l2 = BOTH;
vl1l2 = BOTH;
vcnt = BOTH;
val1l2 = BOTH;
pct = BOTH;
pstd = BOTH;
pjc = BOTH;
prc = BOTH;
ecnt = BOTH; // Only for HiRA
orank = BOTH; // Only for HiRA
rps = BOTH; // Only for HiRA
eclv = BOTH;
mpr = BOTH;
seeps = NONE;
seeps_mpr = NONE;

}

The output_flag array controls the type of output that the Point-Stat tool generates. Each flag corresponds
to an output line type in the STAT file. Setting the flag to NONE indicates that the line type should not
be generated. Setting the flag to STAT indicates that the line type should be written to the STAT file only.
Setting the flag to BOTH indicates that the line type should be written to the STAT file as well as a separate
ASCII file where the data is grouped by line type. The output flags correspond to the following output line
types:

1. FHO for Forecast, Hit, Observation Rates

2. CTC for Contingency Table Counts

3. CTS for Contingency Table Statistics

4. MCTC for Multi-category Contingency Table Counts

5. MCTS for Multi-category Contingency Table Statistics

11.3. Practical information 207

MET User’s Guide, version 11.1.0-beta2

6. CNT for Continuous Statistics

7. SL1L2 for Scalar L1L2 Partial Sums

8. SAL1L2 for Scalar Anomaly L1L2 Partial Sums when climatological data is supplied

9. VL1L2 for Vector L1L2 Partial Sums

10. VAL1L2 for Vector Anomaly L1L2 Partial Sums when climatological data is supplied

11. VCNT for Vector Continuous Statistics

12. PCT for Contingency Table counts for Probabilistic forecasts

13. PSTD for contingency table Statistics for Probabilistic forecasts with Dichotomous outcomes

14. PJC for Joint and Conditional factorization for Probabilistic forecasts

15. PRC for Receiver Operating Characteristic for Probabilistic forecasts

16. ECNT for Ensemble Continuous Statistics is only computed for the HiRA methodology

17. ORANK for Ensemble Matched Pair Information when point observations are supplied for the HiRA
methodology

18. RPS for Ranked Probability Score is only computed for the HiRA methodology

19. ECLV for Economic Cost/Loss Relative Value

20. MPR for Matched Pair data

21. SEEPS for averaged SEEPS (Stable Equitable Error in Probability Space) score

22. SEEPS_MPR for SEEPS score of Matched Pair data

Note that the FHO and CTC line types are easily derived from each other. Users are free to choose which
measures are most desired. The output line types are described in more detail in Section 11.3.3.

Note that writing out matched pair data (MPR lines) for a large number of cases is generally not recom-
mended. The MPR lines create very large output files and are only intended for use on a small set of cases.

If all line types corresponding to a particular verification method are set to NONE, the computation of those
statistics will be skipped in the code and thus make the Point-Stat tool run more efficiently. For example, if
FHO, CTC, and CTS are all set to NONE, the Point-Stat tool will skip the categorical verification step.

The default SEEPS climo file exists at MET_BASE/climo/seeps/PPT24_seepsweights.nc. It can be overridden
by using the environment variable, MET_SEEPS_POINT_CLIMO_NAME.

11.3.3 point_stat output

point_stat produces output in STAT and, optionally, ASCII format. The ASCII output duplicates the STAT
output but has the data organized by line type. The output files will be written to the default output
directory or the directory specified using the “-outdir” command line option.

The output STAT file will be named using the following naming convention:

208 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

point_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV.stat where PREFIX indicates the user-defined out-
put prefix, HHMMSSL indicates the forecast lead time and YYYYMMDD_HHMMSS indicates the forecast
valid time.

The output ASCII files are named similarly:

point_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV_TYPE.txt where TYPE is one of mpr, fho, ctc, cts,
cnt, mctc, mcts, pct, pstd, pjc, prc, ecnt, orank, rps, eclv, sl1l2, sal1l2, vl1l2, vcnt or val1l2 to indicate the
line type it contains.

The first set of header columns are common to all of the output files generated by the Point-Stat tool. Tables
describing the contents of the header columns and the contents of the additional columns for each line type
are listed in the following tables. The ECNT line type is described in Table 13.2. The ORANK line type is
described in Table 13.7. The RPS line type is described in Table 13.3.

Table 11.1: Common STAT header columns.

HEADER
Column Num-
ber

Header Column
Name

Description

1 VERSION Version number
2 MODEL User provided text string designating model name
3 DESC User provided text string describing the verification task
4 FCST_LEAD Forecast lead time in HHMMSS format
5 FCST_VALID_BEG Forecast valid start time in YYYYMMDD_HHMMSS format
6 FCST_VALID_END Forecast valid end time in YYYYMMDD_HHMMSS format
7 OBS_LEAD Observation lead time in HHMMSS format
8 OBS_VALID_BEG Observation valid start time in YYYYMMDD_HHMMSS format
9 OBS_VALID_END Observation valid end time in YYYYMMDD_HHMMSS format
10 FCST_VAR Model variable
11 FCST_UNITS Units for model variable
12 FCST_LEV Selected Vertical level for forecast
13 OBS_VAR Observation variable
14 OBS_UNITS Units for observation variable
15 OBS_LEV Selected Vertical level for observations
16 OBTYPE Observation message type selected
17 VX_MASK Verifying masking region indicating the masking grid or polyline

region applied
18 INTERP_MTHD Interpolation method applied to forecasts
19 INTERP_PNTS Number of points used in interpolation method
20 FCST_THRESH The threshold applied to the forecast
21 OBS_THRESH The threshold applied to the observations
22 COV_THRESH NA in Point-Stat
23 ALPHA Error percent value used in confidence intervals
24 LINE_TYPE Output line types are listed in tables Table 11.2 through Table

11.20.

11.3. Practical information 209

MET User’s Guide, version 11.1.0-beta2

Table 11.2: Format information for FHO (Forecast, Hit rate,
Observation rate) output line type.

FHO OUTPUT FORMAT
Column Number FHO Column Name Description
24 FHO Forecast, Hit, Observation line type
25 TOTAL Total number of matched pairs
26 F_RATE Forecast rate
27 H_RATE Hit rate
28 O_RATE Observation rate

Table 11.3: Format information for CTC (Contingency Table
Counts) output line type.

CTC OUTPUT FORMAT
Column Number CTC Column Name Description
24 CTC Contingency Table Counts line type
25 TOTAL Total number of matched pairs
26 FY_OY Number of forecast yes and observation yes
27 FY_ON Number of forecast yes and observation no
28 FN_OY Number of forecast no and observation yes
29 FN_ON Number of forecast no and observation no
30 EC_VALUE Expected correct rate, used for CTS HSS_EC

210 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.4: Format information for CTS (Contingency Table
Statistics) output line type.

CTS OUT-
PUT FOR-
MAT
Column
Number

CTS Column Name Description

24 CTS Contingency Table Statistics line type
25 TOTAL Total number of matched pairs
26-30 BASER, BASER_NCL, BASER_NCU,

BASER_BCL, BASER_BCU
Base rate including normal and bootstrap upper and
lower confidence limits

31-35 FMEAN, FMEAN_NCL,
FMEAN_NCU, FMEAN_BCL,
FMEAN_BCU

Forecast mean including normal and bootstrap up-
per and lower confidence limits

36-40 ACC, ACC_NCL, ACC_NCU,
ACC_BCL, ACC_BCU

Accuracy including normal and bootstrap upper and
lower confidence limits

41-43 FBIAS, FBIAS_BCL, FBIAS_BCU Frequency Bias including bootstrap upper and lower
confidence limits

44-48 PODY, PODY_NCL, PODY_NCU,
PODY_BCL, PODY_BCU

Probability of detecting yes including normal and
bootstrap upper and lower confidence limits

49-53 PODN, PODN_NCL, PODN_NCU,
PODN_BCL, PODN_BCU

Probability of detecting no including normal and
bootstrap upper and lower confidence limits

54-58 POFD, POFD_NCL, POFD_NCU,
POFD_BCL, POFD_BCU

Probability of false detection including normal and
bootstrap upper and lower confidence limits

59-63 FAR, FAR_NCL, FAR_NCU,
FAR_BCL, FAR_BCU

False alarm ratio including normal and bootstrap
upper and lower confidence limits

64-68 CSI, CSI_NCL, CSI_NCU, CSI_BCL,
CSI_BCU

Critical Success Index including normal and boot-
strap upper and lower confidence limits

69-71 GSS, GSS_BCL, GSS_BCU Gilbert Skill Score including bootstrap upper and
lower confidence limits

11.3. Practical information 211

MET User’s Guide, version 11.1.0-beta2

Table 11.5: Format information for CTS (Contingency Table
Statistics) output line type, continued from above

CTS OUTPUT
FORMAT (con-
tinued)
Column Number CTS Column Name Description
72-76 HK, HK_NCL, HK_NCU,

HK_BCL, HK_BCU
Hanssen-Kuipers Discriminant including normal
and bootstrap upper and lower confidence limits

77-79 HSS, HSS_BCL, HSS_BCU Heidke Skill Score including bootstrap upper and
lower confidence limits

80-84 ODDS, ODDS_NCL,
ODDS_NCU, ODDS_BCL,
ODDS_BCU

Odds Ratio including normal and bootstrap upper
and lower confidence limits

85-89 LODDS, LODDS_NCL,
LODDS_NCU, LODDS_BCL,
LODDS_BCU

Logarithm of the Odds Ratio including normal and
bootstrap upper and lower confidence limits

90-94 ORSS, ORSS _NCL, ORSS
_NCU, ORSS _BCL, ORSS
_BCU

Odds Ratio Skill Score including normal and boot-
strap upper and lower confidence limits

95-99 EDS, EDS _NCL, EDS _NCU,
EDS _BCL, EDS _BCU

Extreme Dependency Score including normal and
bootstrap upper and lower confidence limits

100-104 SEDS, SEDS _NCL, SEDS
_NCU, SEDS _BCL, SEDS
_BCU

Symmetric Extreme Dependency Score including
normal and bootstrap upper and lower confidence
limits

105-109 EDI, EDI _NCL, EDI _NCU, EDI
_BCL, EDI _BCU

Extreme Dependency Index including normal and
bootstrap upper and lower confidence limits

111-113 SEDI, SEDI _NCL, SEDI _NCU,
SEDI _BCL, SEDI _BCU

Symmetric Extremal Dependency Index including
normal and bootstrap upper and lower confidence
limits

115-117 BAGSS, BAGSS_BCL,
BAGSS_BCU

Bias-Adjusted Gilbert Skill Score including boot-
strap upper and lower confidence limits

118-120 HSS_EC, HSS_EC_BCL,
HSS_EC_BCU

Heidke Skill Score with user-specific expected cor-
rect and bootstrap confidence limits

121 EC_VALUE Expected correct rate, used for CTS HSS_EC

212 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.6: Format information for CNT (Continuous Statis-
tics) output line type.

CNT OUT-
PUT FOR-
MAT
Column
Number

CNT Column Name Description

24 CNT Continuous statistics line type
25 TOTAL Total number of matched pairs
26-30 FBAR, FBAR_NCL, FBAR_NCU,

FBAR_BCL, FBAR_BCU
Forecast mean including normal and bootstrap up-
per and lower confidence limits

31-35 FSTDEV, FSTDEV_NCL, FST-
DEV_NCU, FSTDEV_BCL, FST-
DEV_BCU

Standard deviation of the forecasts including nor-
mal and bootstrap upper and lower confidence lim-
its

36-40 OBAR, OBAR_NCL, OBAR_NCU,
OBAR_BCL, OBAR_BCU

Observation mean including normal and bootstrap
upper and lower confidence limits

41-45 OSTDEV, OSTDEV_NCL, OST-
DEV_NCU, OSTDEV_BCL, OST-
DEV_BCU

Standard deviation of the observations including
normal and bootstrap upper and lower confidence
limits

46-50 PR_CORR, PR_CORR_NCL,
PR_CORR_NCU, PR_CORR_BCL,
PR_CORR_BCU

Pearson correlation coefficient including normal
and bootstrap upper and lower confidence limits

51 SP_CORR Spearman’s rank correlation coefficient
52 KT_CORR Kendall’s tau statistic
53 RANKS Number of ranks used in computing Kendall’s tau

statistic
54 FRANK_TIES Number of tied forecast ranks used in computing

Kendall’s tau statistic
55 ORANK_TIES Number of tied observation ranks used in comput-

ing Kendall’s tau statistic
56-60 ME, ME_NCL, ME_NCU, ME_BCL,

ME_BCU
Mean error (F-O) including normal and bootstrap
upper and lower confidence limits

61-65 ESTDEV, ESTDEV_NCL, EST-
DEV_NCU, ESTDEV_BCL, EST-
DEV_BCU

Standard deviation of the error including normal
and bootstrap upper and lower confidence limits

11.3. Practical information 213

MET User’s Guide, version 11.1.0-beta2

Table 11.7: Format information for CNT (Continuous Statis-
tics) output line type continued from above table

CNT OUT-
PUT FOR-
MAT (con-
tinued)
Column
Number

CNT Column Name Description

66-68 MBIAS, MBIAS_BCL, MBIAS_BCU Multiplicative bias including bootstrap
upper and lower confidence limits

69-71 MAE, MAE_BCL, MAE_BCU Mean absolute error including bootstrap
upper and lower confidence limits

72-74 MSE, MSE_BCL, MSE_BCU Mean squared error including bootstrap
upper and lower confidence limits

75-77 BCMSE, BCMSE_BCL, BCMSE_BCU Bias-corrected mean squared error in-
cluding bootstrap upper and lower con-
fidence limits

78-80 RMSE, RMSE_BCL, RMSE_BCU Root mean squared error including boot-
strap upper and lower confidence limits

81-95 E10, E10_BCL, E10_BCU, E25, E25_BCL,
E25_BCU, E50, E50_BCL, E50_BCU, E75,
E75_BCL, E75_BCU, E90, E90_BCL, E90_BCU

10th, 25th, 50th, 75th, and 90th per-
centiles of the error including bootstrap
upper and lower confidence limits

96-98 EIQR, IQR _BCL, IQR _BCU The Interquartile Range of the error in-
cluding bootstrap upper and lower confi-
dence limits

99-101 MAD, MAD_BCL, MAD_BCU The Median Absolute Deviation includ-
ing bootstrap upper and lower confi-
dence limits

102-106 ANOM_CORR, ANOM_CORR_NCL,
ANOM_CORR_NCU, ANOM_CORR_BCL,
ANOM_CORR_BCU

The Anomaly Correlation including
mean error with normal and bootstrap
upper and lower confidence limits

107-109 ME2, ME2_BCL, ME2_BCU The square of the mean error (bias) in-
cluding bootstrap upper and lower confi-
dence limits

110-112 MSESS, MSESS_BCL, MSESS_BCU The mean squared error skill score in-
cluding bootstrap upper and lower con-
fidence limits

113-115 RMSFA, RMSFA_BCL, RMSFA_BCU Root mean squared forecast anomaly (f-
c) including bootstrap upper and lower
confidence limits

116-118 RMSOA, RMSOA_BCL, RMSOA_BCU Root mean squared observation anomaly
(o-c) including bootstrap upper and
lower confidence limits

119-121 ANOM_CORR_UNCNTR,
ANOM_CORR_UNCNTR_BCL,
ANOM_CORR_UNCNTR_BCU

The uncentered Anomaly Correlation ex-
cluding mean error including bootstrap
upper and lower confidence limits

122-124 SI, SI_BCL, SI_BCU Scatter Index including bootstrap upper
and lower confidence limits

214 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.8: Format information for MCTC (Multi-category
Contingency Table Count) output line type.

MCTC OUT-
PUT FORMAT
Column Num-
ber

MCTC Col-
umn Name

Description

24 MCTC Multi-category Contingency Table Counts line type
25 TOTAL Total number of matched pairs
26 N_CAT Dimension of the contingency table
28 Fi_Oj Count of events in forecast category i and observation category j, with

the observations incrementing first (repeated)
* EC_VALUE Expected correct rate, used for MCTS HSS_EC

Table 11.9: Format information for MCTS (Multi- category
Contingency Table Statistics) output line type.

MCTS OUT-
PUT FOR-
MAT
Column
Number

MCTS Column Name Description

24 MCTS Multi-category Contingency Table Statistics line type
25 TOTAL Total number of matched pairs
26 N_CAT The total number of categories in each dimension of the con-

tingency table. So the total number of cells is N_CAT*N_CAT.
27-31 ACC, ACC_NCL,

ACC_NCU, ACC_BCL,
ACC_BCU

Accuracy, normal confidence limits and bootstrap confidence
limits

32-34 HK, HK_BCL, HK_BCU Hanssen and Kuipers Discriminant and bootstrap confidence
limits

35-37 HSS, HSS_BCL,
HSS_BCU

Heidke Skill Score and bootstrap confidence limits

38-40 GER, GER_BCL,
GER_BCU

Gerrity Score and bootstrap confidence limits

41-43 HSS_EC, HSS_EC_BCL,
HSS_EC_BCU

Heidke Skill Score with user-specific expected correct and
bootstrap confidence limits

44 EC_VALUE Expected correct rate, used for MCTS HSS_EC

11.3. Practical information 215

MET User’s Guide, version 11.1.0-beta2

Table 11.10: Format information for PCT (Contingency Table
Counts for Probabilistic forecasts) output line type.

PCT OUTPUT
FORMAT
Column Num-
ber

PCT Column
Name

Description

24 PCT Probability contingency table count line type
25 TOTAL Total number of matched pairs
26 N_THRESH Number of probability thresholds
27 THRESH_i The ith probability threshold value (repeated)
28 OY_i Number of observation yes when forecast is between the ith and i+1th

probability thresholds (repeated)
29 ON_i Number of observation no when forecast is between the ith and i+1th

probability thresholds (repeated)
* THRESH_n Last probability threshold value

Table 11.11: Format information for PSTD (Contingency Ta-
ble Statistics for Probabilistic forecasts) output line type

PSTD OUTPUT
FORMAT
Column Number PSTD Column Name Description
24 PSTD Probabilistic statistics for dichotomous outcome line

type
25 TOTAL Total number of matched pairs
26 N_THRESH Number of probability thresholds
27-29 BASER, BASER_NCL,

BASER_NCU
The Base Rate, including normal upper and lower con-
fidence limits

30 RELIABILITY Reliability
31 RESOLUTION Resolution
32 UNCERTAINTY Uncertainty
33 ROC_AUC Area under the receiver operating characteristic curve
34-36 BRIER, BRIER_NCL,

BRIER_NCU
Brier Score including normal upper and lower confi-
dence limits

37-39 BRIERCL, BRIERCL_NCL,
BRIERCL_NCU

Climatological Brier Score including upper and lower
normal confidence limits

40 BSS Brier Skill Score relative to external climatology
41 BSS_SMPL Brier Skill Score relative to sample climatology
42 THRESH_i The ith probability threshold value (repeated)

216 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.12: Format information for PJC (Joint and Con-
ditional factorization for Probabilistic forecasts) output line
type.

PJC OUT-
PUT FOR-
MAT
Column
Number

PJC Col-
umn
Name

Description

24 PJC Probabilistic Joint/Continuous line type
25 TOTAL Total number of matched pairs
26 N_THRESH Number of probability thresholds
27 THRESH_i The ith probability threshold value (repeated)
28 OY_TP_i Number of observation yes when forecast is between the ith and i+1th prob-

ability thresholds as a proportion of the total OY (repeated)
29 ON_TP_i Number of observation no when forecast is between the ith and i+1th prob-

ability thresholds as a proportion of the total ON (repeated)
30 CALIBRA-

TION_i
Calibration when forecast is between the ith and i+1th probability thresholds
(repeated)

31 REFINE-
MENT_i

Refinement when forecast is between the ith and i+1th probability thresh-
olds (repeated)

32 LIKELI-
HOOD_i

Likelihood when forecast is between the ith and i+1th probability thresholds
(repeated

33 BASER_i Base rate when forecast is between the ith and i+1th probability thresholds
(repeated)

* THRESH_n Last probability threshold value

Table 11.13: Format information for PRC (PRC for Receiver
Operating Characteristic for Probabilistic forecasts) output
line type.

PRC OUTPUT
FORMAT
Column Number PRC Column

Name
Description

24 PRC Probability ROC points line type
25 TOTAL Total number of matched pairs
26 N_THRESH Number of probability thresholds
27 THRESH_i The ith probability threshold value (repeated)
28 PODY_i Probability of detecting yes when forecast is greater than the ith prob-

ability thresholds (repeated)
29 POFD_i Probability of false detection when forecast is greater than the ith

probability thresholds (repeated)
* THRESH_n Last probability threshold value

11.3. Practical information 217

MET User’s Guide, version 11.1.0-beta2

Table 11.14: Format information for ECLV (ECLV for Eco-
nomic Cost/Loss Relative Value) output line type.

ECLV OUTPUT FORMAT
Column Number PRC Column Name Description
24 ECLV Economic Cost/Loss Relative Value line type
25 TOTAL Total number of matched pairs
26 BASER Base rate
27 VALUE_BASER Economic value of the base rate
28 N_PNT Number of Cost/Loss ratios
29 CL_i ith Cost/Loss ratio evaluated
30 VALUE_i Relative value for the ith Cost/Loss ratio

Table 11.15: Format information for SL1L2 (Scalar Partial
Sums) output line type.

SL1L2 OUTPUT FOR-
MAT
Column Number SL1L2 Column

Name
Description

24 SL1L2 Scalar L1L2 line type
25 TOTAL Total number of matched pairs of forecast (f) and observa-

tion (o)
26 FBAR Mean(f)
27 OBAR Mean(o)
28 FOBAR Mean(f*o)
29 FFBAR Mean(f2)
30 OOBAR Mean(o2)
31 MAE Mean Absolute Error

218 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.16: Format information for SAL1L2 (Scalar
Anomaly Partial Sums) output line type.

SAL1L2 OUTPUT
FORMAT
Column Number SAL1L2 Col-

umn Name
Description

24 SAL1L2 Scalar Anomaly L1L2 line type
25 TOTAL Total number of matched triplets of forecast (f), observation (o),

and climatological value (c)
26 FABAR Mean(f-c)
27 OABAR Mean(o-c)
28 FOABAR Mean((f-c)*(o-c))
29 FFABAR Mean((f-c)2)
30 OOABAR Mean((o-c)2)
31 MAE Mean Absolute Error

Table 11.17: Format information for VL1L2 (Vector Partial
Sums) output line type.

VL1L2 OUTPUT
FORMAT
Column Number VL1L2 Column

Name
Description

24 VL1L2 Vector L1L2 line type
25 TOTAL Total number of matched pairs of forecast winds (uf, vf) and ob-

servation winds (uo, vo)
26 UFBAR Mean(uf)
27 VFBAR Mean(vf)
28 UOBAR Mean(uo)
29 VOBAR Mean(vo)
30 UVFOBAR Mean(uf*uo+vf*vo)
31 UVFFBAR Mean(uf2+vf2)
32 UVOOBAR Mean(uo2+vo2)
33 F_SPEED_BAR Mean forecast wind speed
34 O_SPEED_BAR Mean observed wind speed

11.3. Practical information 219

MET User’s Guide, version 11.1.0-beta2

Table 11.18: Format information for VAL1L2 (Vector
Anomaly Partial Sums) output line type.

VAL1L2 OUT-
PUT FORMAT
Column Num-
ber

VAL1L2 Col-
umn Name

Description

24 VAL1L2 Vector Anomaly L1L2 line type
25 TOTAL Total number of matched triplets of forecast winds (uf, vf), observation

winds (uo, vo), and climatological winds (uc, vc)
26 UFABAR Mean(uf-uc)
27 VFABAR Mean(vf-vc)
28 UOABAR Mean(uo-uc)
29 VOABAR Mean(vo-vc)
30 UVFOABAR Mean((uf-uc)*(uo-uc)+(vf-vc)*(vo-vc))
31 UVFFABAR Mean((uf-uc)2+(vf-vc)2)
32 UVOOABAR Mean((uo-uc)2+(vo-vc)2)
33 FA_SPEED_BARMean forecast wind speed anomaly
34 OA_SPEED_BARMean observed wind speed anomaly

220 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.19: Format information for VCNT (Vector Continu-
ous Statistics) output line type. Note that the bootstrap con-
fidence intervals columns ending with BCL and BCU are not
currently calculated for this release of MET, but will be in fu-
ture releases.

VCNT
OUT-
PUT
FOR-
MAT
Col-
umn
Num-
bers

VCNT Column Name Description

24 VCNT Vector Continuous Statistics line type
25 TOTAL Total number of data points
26-28 FBAR, FBAR_BCL,

FBAR_BCU
Mean value of forecast wind speed including bootstrap upper and
lower confidence limits

29-31 OBAR, OBAR_BCL,
OBAR_BCU

Mean value of observed wind speed including bootstrap upper
and lower confidence limits

32-34 FS_RMS, FS_RMS_BCL,
FS_RMS_BCU

Root mean square forecast wind speed including bootstrap upper
and lower confidence limits

35-37 OS_RMS, OS_RMS_BCL,
OS_RMS_BCU

Root mean square observed wind speed including bootstrap up-
per and lower confidence limits

38-40 MSVE, MSVE_BCL,
MSVE_BCU

Mean squared length of the vector difference between the forecast
and observed winds including bootstrap upper and lower confi-
dence limits

41-43 RMSVE, RMSVE_BCL,
RMSVE_BCU

Square root of MSVE including bootstrap upper and lower confi-
dence limits

45-46 FSTDEV, FSTDEV_BCL,
FSTDEV_BCU

Standard deviation of the forecast wind speed including bootstrap
upper and lower confidence limits

47-49 OSTDEV, OSTDEV_BCL,
OSTDEV_BCU

Standard deviation of the observed wind field including bootstrap
upper and lower confidence limits

50-52 FDIR, FDIR_BCL,
FDIR_BCU

Direction of the average forecast wind vector including bootstrap
upper and lower confidence limits

53-55 ODIR, ODIR_BCL,
ODIR_BCU

Direction of the average observed wind vector including bootstrap
upper and lower confidence limits

56-58 FBAR_SPEED,
FBAR_SPEED_BCL,
FBAR_SPEED_BCU

Length (speed) of the average forecast wind vector including
bootstrap upper and lower confidence limits

59-61 OBAR_SPEED,
OBAR_SPEED_BCL,
OBAR_SPEED_BCU

Length (speed) of the average observed wind vector including
bootstrap upper and lower confidence limits

62-64 VDIFF_SPEED, VD-
IFF_SPEED_BCL, VD-
IFF_SPEED_BCU

Length (speed) of the vector difference between the average fore-
cast and average observed wind vectors including bootstrap up-
per and lower confidence limits

65-67 VDIFF_DIR, VD-
IFF_DIR_BCL, VD-
IFF_DIR_BCU

Direction of the vector difference between the average forecast
and average wind vectors including bootstrap upper and lower
confidence limits

68-70 SPEED_ERR,
SPEED_ERR_BCL,
SPEED_ERR_BCU

Difference between the length of the average forecast wind vector
and the average observed wind vector (in the sense F - O) includ-
ing bootstrap upper and lower confidence limits

71-73 SPEED_ABSERR,
SPEED_ABSERR_BCL,
SPEED_ABSERR_BCU

Absolute value of SPEED_ERR including bootstrap upper and
lower confidence limits

74-76 DIR_ERR, DIR_ERR_BCL,
DIR_ERR_BCU

Signed angle between the directions of the average forecast and
observed wing vectors. Positive if the forecast wind vector is
counterclockwise from the observed wind vector including boot-
strap upper and lower confidence limits

77-79 DIR_ABSERR,
DIR_ABSERR_BCL,
DIR_ABSERR_BCU

Absolute value of DIR_ABSERR including bootstrap upper and
lower confidence limits

80-84 ANOM_CORR,
ANOM_CORR_NCL,
ANOM_CORR_NCU,
ANOM_CORR_BCL,
ANOM_CORR_BCU

Vector Anomaly Correlation including mean error with normal
and bootstrap upper and lower confidence limits

85-87 ANOM_CORR_UNCNTR,
ANOM_CORR_UNCNTR_BCL,
ANOM_CORR_UNCNTR_BCU

Uncentered vector Anomaly Correlation excluding mean error in-
cluding bootstrap upper and lower confidence limits

11.3. Practical information 221

MET User’s Guide, version 11.1.0-beta2

Table 11.20: Format information for MPR (Matched Pair)
output line type.

MPR OUTPUT FOR-
MAT
Column Number MPR Column

Name
Description

24 MPR Matched Pair line type
25 TOTAL Total number of matched pairs
26 INDEX Index for the current matched pair
27 OBS_SID Station Identifier of observation
28 OBS_LAT Latitude of the observation in degrees north
29 OBS_LON Longitude of the observation in degrees east
30 OBS_LVL Pressure level of the observation in hPa or accumulation inter-

val in hours
31 OBS_ELV Elevation of the observation in meters above sea level
32 FCST Forecast value interpolated to the observation location
33 OBS Observation value
34 OBS_QC Quality control flag for observation
35 CLIMO_MEAN Climatological mean value
36 CLIMO_STDEV Climatological standard deviation value
37 CLIMO_CDF Climatological cumulative distribution function value

222 Chapter 11. Point-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 11.21: Format information for SEEPS (Stable Equitable
Error in Probability Space) of MPR (Matched Pair) output
line type.

SEEPS_MPR OUTPUT
FORMAT
Column Number SEEPS_MPR Column

Name
Description

24 SEEPS_MPR SEEPS Matched Pair line type
25 OBS_SID Station Identifier of observation
26 OBS_LAT Latitude of the observation in degrees north
27 OBS_LON Longitude of the observation in degrees east
28 FCST Forecast value interpolated to the observation lo-

cation
29 OBS Observation value
30 OBS_QC Quality control flag for observation
31 FCST_CAT Forecast category to 3 by 3 matrix
32 OBS_CAT Observationtegory to 3 by 3 matrix
33 P1 Climo-derived probability value for this station

(dry)
34 P2 Climo-derived probability value for this station

(dry + light)
35 T1 Threshold 1 for p1
36 T2 Threshold 2 for p2
37 SEEPS SEEPS (Stable Equitable Error in Probability

Space) score

11.3. Practical information 223

MET User’s Guide, version 11.1.0-beta2

Table 11.22: Format information for SEEPS (Stable Equitable
Error in Probability Space) output line type.

SEEPS OUTPUT FOR-
MAT
Column Number SEEPS Column

Name
Description

24 SEEPS SEEPS line type
25 TOTAL Total number of SEEPS matched pairs
26 S12 Counts multiplied by the weights for FCST_CAT 1 and

OBS_CAT 2
27 S13 Counts multiplied by the weights for FCST_CAT 1 and

OBS_CAT 3
28 S21 Counts multiplied by the weights for FCST_CAT 2 and

OBS_CAT 1
29 S23 Counts multiplied by the weights for FCST_CAT 2 and

OBS_CAT 3
30 S31 Counts multiplied by the weights for FCST_CAT 3 and

OBS_CAT 1
31 S32 Counts multiplied by the weights for FCST_CAT 3 and

OBS_CAT 2
32 PF1 marginal probabilities of the forecast values (FCST_CAT 1)
33 PF2 marginal probabilities of the forecast values (FCST_CAT 2)
34 PF3 marginal probabilities of the forecast values (FCST_CAT 3)
35 PV1 marginal probabilities of the observed values (OBS_CAT 1)
36 PV2 marginal probabilities of the observed values (OBS_CAT 2)
37 PV3 marginal probabilities of the observed values (OBS_CAT 3)
38 SEEPS Averaged SEEPS (Stable Equitable Error in Probability

Space) score

The STAT output files described for point_stat may be used as inputs to the Stat-Analysis tool. For more in-
formation on using the Stat-Analysis tool to create stratifications and aggregations of the STAT files produced
by point_stat, please see Section 16.

224 Chapter 11. Point-Stat Tool

Chapter 12

Grid-Stat Tool

12.1 Introduction

The Grid-Stat tool functions in much the same way as the Point-Stat tool, except that the verification statistics
it calculates are for a matched forecast-observation grid (as opposed to a set of observation points). Neither
the forecast nor the observation grid needs to be identical to the final matched grid. If the forecast grid is
different from the final matched grid, then forecast values are regridded (interpolated) to the final matched
grid. The same procedure is followed for observations. No regridding is necessary if the forecast and
observation grids are identical but remains optional. A smoothing operation may be performed on the
forecast and observation fields prior to verification. All the matched forecast-observation grid points are used
to compute the verification statistics. In addition to traditional verification approaches, the Grid-Stat tool
includes Fourier decompositions, gradient statistics, distance metrics, and neighborhood methods, designed
to examine forecast performance as a function of spatial scale.

Scientific and statistical aspects of the Grid-Stat tool are briefly described in this section, followed by practical
details regarding usage and output from the tool.

12.2 Scientific and statistical aspects

12.2.1 Statistical measures

The Grid-Stat tool computes a wide variety of verification statistics. Broadly speaking, these statistics can
be subdivided into three types of statistics: measures for categorical variables, measures for continuous
variables, and measures for probabilistic forecasts. Further, when a climatology file is included, reference
statistics for the forecasts compared to the climatology can be calculated. These categories of measures are
briefly described here; specific descriptions of all measures are provided in Appendix C, Section 33. Addi-
tional information can be found in Wilks (2011) (page 454) and Jolliffe and Stephenson (2012) (page 451),
and on the Collaboration for Australian Weather and Climate Research Forecast Verification - Issues, Methods
and FAQ web page.

In addition to these verification measures, the Grid-Stat tool also computes partial sums and other FHO
statistics that are produced by the NCEP verification system. These statistics are also described in Appendix
C, Section 33.

225

http://www.cawcr.gov.au/projects/verification/verif_web_page.html
http://www.cawcr.gov.au/projects/verification/verif_web_page.html

MET User’s Guide, version 11.1.0-beta2

12.2.1.1 Measures for categorical variables

Categorical verification statistics are used to evaluate forecasts that are in the form of a discrete set of
categories rather than on a continuous scale. Grid-Stat computes both 2x2 and multi-category contingency
tables and their associated statistics, similar to Point-Stat. See Appendix C, Section 33 for more information.

12.2.1.2 Measures for continuous variables

For continuous variables, many verification measures are based on the forecast error (i.e., f - o). However,
it also is of interest to investigate characteristics of the forecasts, and the observations, as well as their
relationship. These concepts are consistent with the general framework for verification outlined by Murphy
and Winkler (1987) (page 452). The statistics produced by MET for continuous forecasts represent this
philosophy of verification, which focuses on a variety of aspects of performance rather than a single measure.
See Appendix C, Section 33 for specific information.

A user may wish to eliminate certain values of the forecasts from the calculation of statistics, a process
referred to here as “conditional verification”. For example, a user may eliminate all temperatures above
freezing and then calculate the error statistics only for those forecasts of below freezing temperatures. An-
other common example involves verification of wind forecasts. Since wind direction is indeterminate at
very low wind speeds, the user may wish to set a minimum wind speed threshold prior to calculating error
statistics for wind direction. The user may specify these thresholds in the configuration file to specify the con-
ditional verification. Thresholds can be specified using the usual Fortran conventions (<, <=, ==, !-, >=,
or >) followed by a numeric value. The threshold type may also be specified using two letter abbreviations
(lt, le, eq, ne, ge, gt). Further, more complex thresholds can be achieved by defining multiple thresholds
and using && or || to string together event definition logic. The forecast and observation threshold can
be used together according to user preference by specifying one of: UNION, INTERSECTION, or SYMDIFF
(symmetric difference).

12.2.1.3 Measures for probabilistic forecasts and dichotomous outcomes

For probabilistic forecasts, many verification measures are based on reliability, accuracy and bias. However,
it also is of interest to investigate joint and conditional distributions of the forecasts and the observations, as
in Wilks (2011) (page 454). See Appendix C, Section 33 for specific information.

Probabilistic forecast values are assumed to have a range of either 0 to 1 or 0 to 100. If the max data value
is > 1, we assume the data range is 0 to 100, and divide all the values by 100. If the max data value is
<= 1, then we use the values as is. Further, thresholds are applied to the probabilities with equality on the
lower end. For example, with a forecast probability p, and thresholds t1 and t2, the range is defined as: t1
<= p < t2. The exception is for the highest set of thresholds, when the range includes 1: t1 <= p <= 1.
To make configuration easier, since METv6.0, these probabilities may be specified in the configuration file as
a list (>0.00,>0.25,>0.50,>0.75,>1.00) or using shorthand notation (==0.25) for bins of equal width.

Since METv6.0, when the “prob” entry is set as a dictionary to define the field of interest, setting
“prob_as_scalar = TRUE” indicates that this data should be processed as regular scalars rather than probabil-
ities.For example, this option can be used to compute traditional 2x2 contingency tables and neighborhood
verification statistics for probability data. It can also be used to compare two probability fields directly.

226 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

12.2.1.4 Use of a climatology field for comparative verification

The Grid-Stat tool allows evaluation of model forecasts compared with a user-supplied climatology. Prior
to calculation of statistics, the climatology must be put on the same grid as the forecasts and observations.
In particular, the anomaly correlation and mean squared error skill score provide a measure of the forecast
skill versus the climatology. For more details about climatological comparisons and reference forecasts, see
the relevant section in the Point-Stat Chapter: Section 11.2.4.4.

12.2.1.5 Use of analysis fields for verification

The Grid-Stat tool allows evaluation of model forecasts using model analysis fields. However, users are
cautioned that an analysis field is not independent of its parent model; for this reason verification of model
output using an analysis field from the same model is generally not recommended and is not likely to yield
meaningful information about model performance.

12.2.2 Statistical confidence intervals

The confidence intervals for the Grid-Stat tool are the same as those provided for the Point-Stat tool except
that the scores are based on pairing grid points with grid points so that there are likely more values for each
field making any assumptions based on the central limit theorem more likely to be valid. However, it should
be noted that spatial (and temporal) correlations are not presently taken into account in the confidence
interval calculations. Therefore, confidence intervals reported may be somewhat too narrow (e.g., Efron,
2007 (page 449)). See Appendix D, Section 34 for details regarding confidence intervals provided by MET.

12.2.3 Grid weighting

When computing continuous statistics on a regular large scale or global latitude-longitude grid, weighting
may be applied in order to compensate for the meridian convergence toward higher latitudes. Grid square
area weighting or weighting based on the cosine of the latitude are two configuration options in both point-
stat and grid-stat. See Section 5 for more information.

12.2.4 Neighborhood methods

MET also incorporates several neighborhood methods to give credit to forecasts that are close to the obser-
vations, but not necessarily exactly matched up in space. Also referred to as “fuzzy” verification methods,
these methods do not just compare a single forecast at each grid point to a single observation at each grid
point; they compare the forecasts and observations in a neighborhood surrounding the point of interest.
With the neighborhood method, the user chooses a distance within which the forecast event can fall from
the observed event and still be considered a hit. In MET this is implemented by defining a square search
window around each grid point. Within the search window, the number of observed events is compared
to the number of forecast events. In this way, credit is given to forecasts that are close to the observations
without requiring a strict match between forecasted events and observed events at any particular grid point.
The neighborhood methods allow the user to see how forecast skill varies with neighborhood size and can
help determine the smallest neighborhood size that can be used to give sufficiently accurate forecasts.

12.2. Scientific and statistical aspects 227

MET User’s Guide, version 11.1.0-beta2

There are several ways to present the results of the neighborhood approaches, such as the Fractions Skill
Score (FSS) or the Fractions Brier Score (FBS). These scores are presented in Appendix C, Section 33.
One can also simply up-scale the information on the forecast verification grid by smoothing or resampling
within a specified neighborhood around each grid point and recalculate the traditional verification metrics
on the coarser grid. The MET output includes traditional contingency table statistics for each threshold and
neighborhood window size.

The user must specify several parameters in the grid_stat configuration file to utilize the neighborhood
approach, such as the interpolation method, size of the smoothing window, and required fraction of valid
data points within the smoothing window. For FSS-specific results, the user must specify the size of the
neighborhood window, the required fraction of valid data points within the window, and the fractional
coverage threshold from which the contingency tables are defined. These parameters are described further
in the practical information section below.

12.2.5 SEEPS scores

The Stable Equitable Error in Probability Space (SEEPS) was devised for monitoring global deterministic
forecasts of precipitation against the WMO gauge network (Rodwell et al., 2010 (page 453); Haiden et al.,
2012 (page 450)) and is a multi-category score which uses a climatology to account for local variations in
behavior. Please see Point-Stat documentation Section 11.2.3 for more details.

The capability to calculate the SEEPS has also been added to Grid-Stat. This follows the method described in
North et al, 2022 (page 452), which uses the TRMM 3B42 v7 gridded satellite product for the climatological
values and interpolates the forecast and observed products onto this grid for evaluation. A 24-hour TRMM
climatology (valid at 00 UTC) constructed from data over the time period 1998-2015 is supplied with the
release. Expansion of the capability to other fields will occur as well vetted examples and funding allow.

12.2.6 Fourier Decomposition

The MET software will compute the full one-dimensional Fourier transform, then do a partial inverse trans-
form based on the two user-defined wave numbers. These two wave numbers define a band pass filter in the
Fourier domain. This process is conceptually similar to the operation of projecting onto subspace in linear
algebra. If one were to sum up all possible wave numbers the result would be to simply reproduce the raw
data.

Decomposition via Fourier transform allows the user to evaluate the model separately at each spatial fre-
quency. As an example, the Fourier analysis allows users to examine the “dieoff”, or reduction, in anomaly
correlation of geopotential height at various levels for bands of waves. A band of low wave numbers, say
0 - 3, represent larger frequency components, while a band of higher wave numbers, for example 70 - 72,
represent smaller frequency components. Generally, anomaly correlation should be higher for frequencies
with low wave numbers than for frequencies with high wave numbers, hence the “dieoff”.

Wavelets, and in particular the MET wavelet tool, can also be used to define a band pass filter (Casati et al.,
2004 (page 448); Weniger et al., 2016 (page 454)). Both the Fourier and wavelet methods can be used to
look at different spatial scales.

228 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

12.2.7 Gradient Statistics

The S1 score has been in historical use for verification of forecasts, particularly for variables such as pressure
and geopotential height. This score compares differences between adjacent grid points in the forecast and
observed fields. When the adjacent points in both forecast and observed fields exhibit the same differences,
the S1 score will be the perfect value of 0. Larger differences will result in a larger score.

Differences are computed in both of the horizontal grid directions and is not a true mathematical gradient.
Because the S1 score focuses on differences only, any bias in the forecast will not be measured. Further, the
score depends on the domain and spacing of the grid, so can only be compared on forecasts with identical
grids.

12.2.8 Distance Maps

The following methods can all be computed efficiently by utilizing fast algorithms developed for calculating
distance maps. A distance map results from calculating the shortest distance from every grid point, s=(x,y),
in the domain, D, to the nearest one-valued grid point. In each of the following, it is understood that they are
calculated between event areas A, from one field and observation event areas B from another. If the measure
is applied to a feature within a field, then the distance map is still calculated over the entire original domain.
Some of the distance map statistics are computed over the entire distance map, while others use only parts
of it.

Because these methods rely on the distance map, it is helpful to understand precisely what such maps do.
Figure 12.1 demonstrates the path of the shortest distance to the nearest event point in the event area A
marked by the gray rectangle in the diagram. Note that the arrows all point to a grid point on the boundary
of the event area A as it would be a longer distance to any point in its interior. Figure 12.2 demonstrates
the shortest distances from every grid point inside a second event area marked by the gray circle labeled B
to the same event area A as in Figure 12.1. Note that all of the distances are to points on a small subsection
(indicated by the yellow stretch) of the subset A.

12.2. Scientific and statistical aspects 229

MET User’s Guide, version 11.1.0-beta2

Figure 12.1: The above diagram depicts how a distance map is formed. From every grid point in the domain
(depicted by the larger rectangle), the shortest distance from that grid to the nearest non-zero grid point
(event; depicted by the gray rectangle labeled as A) is calculated (a sample of grid points with arrows
indicate the path of the shortest distance with the length of the arrow equal to this distance. In a distance
map, the value at each grid point is this distance. For example, grid points within the rectangle A will all
have value zero in the distance map.

Figure 12.2: Diagram depicting the shortest distances from one event area to another. The yellow bar
indicates the part of the event area A to where all of the shortest distances from B are calculated. That is,
the shortest distances from every point inside the set B to the set A all point to a point along the yellow bar.

While Figure 12.1 and Figure 12.2 are helpful in illustrating the idea of a distance map, Figure 12.3 shows
an actual distance map calculated for binary fields consisting of circular event areas, where one field has two
circular event areas labeled A, and the second has one circular event area labeled B. Notice that the values of
the distance map inside the event areas are all zero (dark blue) and the distances grow larger in the pattern
of concentric circles around these event areas as grid cells move further away. Finally, Figure 12.4 depicts
special situations from which the distance map measures to be discussed are calculated. In particular, the
top left panel shows the absolute difference between the two distance maps presented in the bottom row
of Figure 12.3. The top right panel shows the portion of the distance map for A that falls within the event
area of B, and the bottom left depicts the portion of the distance map for B that falls within the event area
A. That is, the first shows the shortest distances from every grid point in the set B to the nearest grid point
in the event area A, and the latter shows the shortest distance from every grid point in A to the nearest grid
point in B.

230 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Figure 12.3: Binary fields (top) with event areas A (consisting of two circular event areas) and a second
field with event area B (single circular area) with their respective distance maps (bottom).

Figure 12.4: The absolute difference between the distance maps in the bottom row of Figure 12.3 (top left),
the shortest distances from every grid point in B to the nearest grid point in A (top right), and the shortest
distances from every grid point in A to the nearest grid points in B (bottom left). The latter two do not have
axes in order to emphasize that the distances are now only considered from within the respective event sets.
The top right graphic is the distance map of A conditioned on the presence of an event from B, and that in
the bottom left is the distance map of B conditioned on the presence of an event from A.

12.2. Scientific and statistical aspects 231

MET User’s Guide, version 11.1.0-beta2

The statistics derived from these distance maps are described in Appendix C, Section 33.7. To make fair
comparisons, any grid point containing bad data in either the forecast or observation field is set to bad data
in both fields. For each combination of input field and categorical threshold requested in the configuration
file, Grid-Stat applies that threshold to define events in the forecast and observation fields and computes
distance maps for those binary fields. Statistics for all requested masking regions are derived from those
distance maps. Note that the distance maps are computed only once over the full verification domain, not
separately for each masking region. Events occurring outside of a masking region can affect the distance
map values inside that masking region and, therefore, can also affect the distance maps statistics for that
region.

12.2.9 𝛽 and 𝐺𝛽

See Section 33.7.5 for the 𝐺 and 𝐺𝛽 equations.

𝐺𝛽 provides a summary measure of forecast quality for each user-defined threshold chosen. It falls into a
range from zero to one where one is a perfect forecast and zero is considered to be a very poor forecast as
determined by the user through the value of 𝛽. Values of 𝐺𝛽 closer to one represent better forecasts and
worse forecasts as it decreases toward zero. Although a particular value cannot be universally compared
against any forecast, when applied with the same choice of 𝛽 for the same variable and on the same domain,
it is highly effective at ranking such forecasts.

𝐺𝛽 is sensitive to the choice of 𝛽, which depends on the (i) specific domain, (ii) variable, and (iii) user’s
needs. Smaller values make 𝐺𝛽 more stringent and larger values make it more lenient. Figure 12.5 shows
an example of applying 𝐺𝛽 over a range of 𝛽 values to a precipitation verification set where the binary fields
are created by applying a threshold of 2.1𝑚𝑚ℎ−1. Color choice and human bias can make it difficult to
determine the quality of the forecast for a human observer looking at the raw images in the top row of the
figure (Ahijevych et al., 2009 (page 447)). The bottom left panel of the figure displays the differences in
their binary fields, which highlights that the forecast captured the overall shapes of the observed rain areas
but suffers from a spatial displacement error (perhaps really a timing error).

Whether or not the forecast from Figure 12.5 is “good” or not depends on the specific user. Is it sufficient that
the forecast came as close as it did to the observation field? If the answer is yes for the user, then a higher
choice of 𝛽, such as 𝑁/2, with 𝑁 equal to the number of points in the domain, will correctly inform this user
that it is a “good” forecast as it will lead to a 𝐺𝛽 value near one. If the user requires the forecast to be much
better aligned spatially with the observation field, then a lower choice, perhaps 𝛽 = 𝑁 , will correctly inform
that the forecast suffers from spatial displacement errors that are too large for this user to be pleased. If the
goal is to rank a series of ensemble forecasts, for example, then a choice of 𝛽 that falls in the steep part of
the curve shown in the lower right panel of the figure should be preferred, say somewhere between 𝛽 = 𝑁
and 𝛽 = 𝑁2/2. Such a choice will ensure that each member is differentiated by the measure.

232 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Figure 12.5: Top left is an example of an accumulated precipitation (mm/h) forecast with the corresponding
observed field on the top right. Bottom left shows the difference in binary fields, where the binary fields
are created by setting all values in the original fields that fall above 2.1𝑚𝑚ℎ−1 to one and the rest to zero.
Bottom right shows the results for 𝐺𝛽 calculated on the binary fields using the threshold of 2.1𝑚𝑚ℎ−1 over
a range of choices for 𝛽.

In some cases, a user may be interested in a much higher threshold than 2.1𝑚𝑚ℎ−1 of the above example.
Gilleland, 2021 (Fig. 4) (page 450), for example, shows this same forecast using a threshold of 40𝑚𝑚ℎ−1.
Only a small area in Mississippi has such extreme rain predicted at this valid time; yet none was observed.
Small spatial areas of extreme rain in the observed field, however, did occur in a location far away from
Mississippi that was not predicted. Generally, for this type of verification, the Hausdorff metric is a good
choice of measure. However, a small choice of 𝛽 will provide similar results as the Hausdorff distance
(Gilleland, 2021 (page 450)). The user should think about the average size of storm areas and multiply this
value by the displacement distance they are comfortable with in order to get a good initial choice for 𝛽,
and may have to increase or decrease its value by trial-and-error using one or two example cases from their
verification set.

Since 𝐺𝛽 is so sensitive to the choice of 𝛽, which is defined relative to the number of points in the verification
domain, 𝐺𝛽 is only computed for the full verification domain. 𝐺𝛽 is reported as a bad data value for any
masking region subsets of the full verification domain.

12.2. Scientific and statistical aspects 233

MET User’s Guide, version 11.1.0-beta2

12.3 Practical information

This section contains information about configuring and running the Grid-Stat tool. The Grid-Stat tool
verifies gridded model data using gridded observations. The input gridded model and observation datasets
must be in one of the MET supported file formats. The requirement of having all gridded fields using the
same grid specification was removed in METv5.1. There is a regrid option in the configuration file that
allows the user to define the grid upon which the scores will be computed. The gridded observation data
may be a gridded analysis based on observations such as Stage II or Stage IV data for verifying accumulated
precipitation, or a model analysis field may be used.

The Grid-Stat tool provides the capability of verifying one or more model variables/levels using multiple
thresholds for each model variable/level. The Grid-Stat tool performs no interpolation when the input
model, observation, and climatology datasets must be on a common grid. MET will interpolate these files
to a common grid if one is specified. The interpolation parameters may be used to perform a smoothing
operation on the forecast field prior to verifying it to investigate how the scale of the forecast affects the
verification statistics. The Grid-Stat tool computes a number of continuous statistics for the forecast minus
observation differences, discrete statistics once the data have been thresholded, or statistics for probabilistic
forecasts. All types of statistics can incorporate a climatological reference.

12.3.1 grid_stat usage

The usage statement for the Grid-Stat tool is listed below:

Usage: grid_stat
fcst_file
obs_file
config_file
[-outdir path]
[-log file]
[-v level]
[-compress level]

grid_stat has three required arguments and accepts several optional ones.

12.3.1.1 Required arguments for grid_stat

1. The fcst_file argument indicates the gridded file containing the model data to be verified.

2. The obs_file argument indicates the gridded file containing the gridded observations to be used for
the verification of the model.

3. The config_file argument indicates the name of the configuration file to be used. The contents of the
configuration file are discussed below.

234 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

12.3.1.2 Optional arguments for grid_stat

4. The -outdir path indicates the directory where output files should be written.

5. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

6. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

7. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the grid_stat calling sequence is listed below:

Example 1:

grid_stat sample_fcst.grb \
sample_obs.grb \
GridStatConfig

In Example 1, the Grid-Stat tool will verify the model data in the sample_fcst.grb GRIB file using the obser-
vations in the sample_obs.grb GRIB file applying the configuration options specified in the GridStatConfig
file.

A second example of the grid_stat calling sequence is listed below:

Example 2:

grid_stat sample_fcst.nc
sample_obs.nc
GridStatConfig

In the second example, the Grid-Stat tool will verify the model data in the sample_fcst.nc NetCDF output of
pcp_combine, using the observations in the sample_obs.nc NetCDF output of pcp_combine, and applying the
configuration options specified in the GridStatConfig file. Because the model and observation files contain
only a single field of accumulated precipitation, the GridStatConfig file should be configured to specify that
only accumulated precipitation be verified.

12.3. Practical information 235

MET User’s Guide, version 11.1.0-beta2

12.3.2 grid_stat configuration file

The default configuration file for the Grid-Stat tool, named GridStatConfig_default, can be found in the
installed share/met/config directory. Other versions of the configuration file are included in scripts/config.
We recommend that users make a copy of the default (or other) configuration file prior to modifying it. The
contents are described in more detail below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

model = "WRF";
desc = "NA";
obtype = "ANALYS";
fcst = { ... }
obs = { ... }
regrid = { ... }
climo_mean = { ... }
climo_stdev = { ... }
climo_cdf = { ... }
mask = { grid = ["FULL"]; poly = []; }
ci_alpha = [0.05];
boot = { interval = PCTILE; rep_prop = 1.0; n_rep = 1000;

rng = "mt19937"; seed = ""; }
interp = { field = BOTH; vld_thresh = 1.0; shape = SQUARE;

type = [{ method = NEAREST; width = 1; }]; }
censor_thresh = [];
censor_val = [];
mpr_column = [];
mpr_thresh = [];
eclv_points = 0.05;
hss_ec_value = NA;
rank_corr_flag = TRUE;
tmp_dir = "/tmp";
output_prefix = "";
version = "VN.N";

The configuration options listed above are common to multiple MET tools and are described in Section 5.

nbrhd (page 236)

nbrhd = {
field = BOTH;
vld_thresh = 1.0;
shape = SQUARE;
width = [1];
cov_thresh = [>=0.5];

}

236 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

The nbrhd dictionary contains a list of values to be used in defining the neighborhood to be used when
computing neighborhood verification statistics. The neighborhood shape is a SQUARE or CIRCLE centered
on the current point, and the width value specifies the width of the square or diameter of the circle as an
odd integer.

The field entry is set to BOTH, FCST, OBS, or NONE to indicate the fields to which the fractional coverage
derivation logic should be applied. This should always be set to BOTH unless you have already computed
the fractional coverage field(s) with numbers between 0 and 1 outside of MET.

The vld_thresh entry contains a number between 0 and 1. When performing neighborhood verification
over some neighborhood of points the ratio of the number of valid data points to the total number of points
in the neighborhood is computed. If that ratio is greater than this threshold, that value is included in
the neighborhood verification. Setting this threshold to 1, which is the default, requires that the entire
neighborhood must contain valid data. This variable will typically come into play only along the boundaries
of the verification region chosen.

The cov_thresh entry contains a comma separated list of thresholds to be applied to the neighborhood
coverage field. The coverage is the proportion of forecast points in the neighborhood that exceed the forecast
threshold. For example, if 10 of the 25 forecast grid points contain values larger than a threshold of 2, then
the coverage is 10/25 = 0.4. If the coverage threshold is set to 0.5, then this neighborhood is considered to
be a “No” forecast.

fourier (page 237)

fourier = {
wave_1d_beg = [0, 4, 10];
wave_1d_end = [3, 9, 20];

}

The fourier entry is a dictionary which specifies the application of the Fourier decomposition method. It
consists of two arrays of the same length which define the beginning and ending wave numbers to be
included. If the arrays have length zero, no Fourier decomposition is applied. For each array entry, the
requested Fourier decomposition is applied to the forecast and observation fields. The beginning and ending
wave numbers are indicated in the MET ASCII output files by the INTERP_MTHD column (e.g. WV1_0-3 for
waves 0 to 3 or WV1_10 for only wave 10). This 1-dimensional Fourier decomposition is computed along
the Y-dimension only (i.e. the columns of data). It is applied to the forecast and observation fields as well
as the climatological mean field, if specified. It is only defined when each grid point contains valid data. If
any input field contains missing data, no Fourier decomposition is computed.

The available wave numbers start at 0 (the mean across each row of data) and end at (Nx+1)/2 (the finest
level of detail), where Nx is the X-dimension of the verification grid:

• The wave_1d_beg entry is an array of integers specifying the first wave number to be included.

• The wave_1d_end entry is an array of integers specifying the last wave number to be included.

gradient (page 237)

12.3. Practical information 237

MET User’s Guide, version 11.1.0-beta2

gradient = {
dx = [1];
dy = [1];

}

The gradient entry is a dictionary which specifies the number and size of gradients to be computed. The
dx and dy entries specify the size of the gradients in grid units in the X and Y dimensions, respectively. dx
and dy are arrays of integers (positive or negative) which must have the same length, and the GRAD output
line type will be computed separately for each entry. When computing gradients, the value at the (x, y) grid
point is replaced by the value at the (x+dx, y+dy) grid point minus the value at (x, y). This configuration
option may be set separately in each obs.field entry.

distance_map (page 238)

distance_map = {
baddeley_p = 2;
baddeley_max_dist = NA;
fom_alpha = 0.1;
zhu_weight = 0.5;
beta_value(n) = n * n / 2.0;

}

The distance_map entry is a dictionary containing options related to the distance map statistics in the DMAP
output line type. The baddeley_p entry is an integer specifying the exponent used in the Lp-norm when
computing the Baddeley ∆ metric. The baddeley_max_dist entry is a floating point number specifying the
maximum allowable distance for each distance map. Any distances larger than this number will be reset to
this constant. A value of NA indicates that no maximum distance value should be used. The fom_alpha
entry is a floating point number specifying the scaling constant to be used when computing Pratt’s Figure of
Merit. The zhu_weight specifies a value between 0 and 1 to define the importance of the RMSE of the binary
fields (i.e. amount of overlap) versus the mean-error distance (MED). The default value of 0.5 gives equal
weighting. This configuration option may be set separately in each obs.field entry. The beta_value entry is
defined as a function of n, where n is the total number of grid points in the full verification domain containing
valid data in both the forecast and observation fields. The resulting beta_value is used to compute the 𝐺𝛽

statistic. The default function, 𝑁2/2, is recommended in Gilleland, 2021 (page 450) but can be modified as
needed.

output_flag = {
fho = BOTH;
ctc = BOTH;
cts = BOTH;
mctc = BOTH;
mcts = BOTH;
cnt = BOTH;
sl1l2 = BOTH;
sal1l2 = NONE;

(continues on next page)

238 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

vl1l2 = BOTH;
val1l2 = NONE;
vcnt = BOTH;
pct = BOTH;
pstd = BOTH;
pjc = BOTH;
prc = BOTH;
eclv = BOTH;
nbrctc = BOTH;
nbrcts = BOTH;
nbrcnt = BOTH;
grad = BOTH;
dmap = BOTH;
seeps = NONE;

}

The output_flag array controls the type of output that the Grid-Stat tool generates. Each flag corresponds
to an output line type in the STAT file. Setting the flag to NONE indicates that the line type should not
be generated. Setting the flag to STAT indicates that the line type should be written to the STAT file only.
Setting the flag to BOTH indicates that the line type should be written to the STAT file as well as a separate
ASCII file where the data are grouped by line type. These output flags correspond to the following types of
output line types:

1. FHO for Forecast, Hit, Observation Rates

2. CTC for Contingency Table Counts

3. CTS for Contingency Table Statistics

4. MCTC for Multi-Category Contingency Table Counts

5. MCTS for Multi-Category Contingency Table Statistics

6. CNT for Continuous Statistics

7. SL1L2 for Scalar L1L2 Partial Sums

8. SAL1L2 for Scalar Anomaly L1L2 Partial Sums when climatological data is supplied

9. VL1L2 for Vector L1L2 Partial Sums

10. VAL1L2 for Vector Anomaly L1L2 Partial Sums when climatological data is supplied

11. VCNT for Vector Continuous Statistics

12. PCT for Contingency Table Counts for Probabilistic forecasts

13. PSTD for Contingency Table Statistics for Probabilistic forecasts

14. PJC for Joint and Conditional factorization for Probabilistic forecasts

15. PRC for Receiver Operating Characteristic for Probabilistic forecasts

16. ECLV for Cost/Loss Ratio Relative Value

12.3. Practical information 239

MET User’s Guide, version 11.1.0-beta2

17. NBRCTC for Neighborhood Contingency Table Counts

18. NBRCTS for Neighborhood Contingency Table Statistics

19. NBRCNT for Neighborhood Continuous Statistics

20. GRAD for Gradient Statistics

21. DMAP for Distance Map Statistics

22. SEEPS for SEEPS (Stable Equitable Error in Probability Space) score. It’s described in Table 11.22.
The SEEPS score of matched pair data is saved into the NetCDF.

Note that the first two line types are easily derived from one another. The user is free to choose which
measure is most desired. The output line types are described in more detail in Section 12.3.3.

The SEEPS climo file is not distributed with MET tools because of the file size. It should be configured by
using the environment variable, MET_SEEPS_GRID_CLIMO_NAME.

nc_pairs_flag = {
latlon = TRUE;
raw = TRUE;
diff = TRUE;
climo = TRUE;
climo_cdp = TRUE;
weight = FALSE;
nbrhd = FALSE;
gradient = FALSE;
distance_map = FALSE;
apply_mask = TRUE;

}

The nc_pairs_flag entry may either be set to a boolean value or a dictionary specifying which fields should
be written. Setting it to TRUE indicates the output NetCDF matched pairs file should be created with
all available output fields, while setting all to FALSE disables its creation. This is done regardless of if
output_flag dictionary indicates any statistics should be computed. The latlon, raw, and diff entries control
the creation of output variables for the latitude and longitude, the forecast and observed fields after they
have been modified by any user-defined regridding, censoring, and conversion, and the forecast minus
observation difference fields, respectively. The climo, weight, and nbrhd entries control the creation of
output variables for the climatological mean and standard deviation fields, the grid area weights applied,
and the fractional coverage fields computed for neighborhood verification methods. Setting these entries to
TRUE indicates that they should be written, while setting them to FALSE disables their creation.

Setting the climo_cdp entry to TRUE enables the creation of an output variable for each climatological
distribution percentile (CDP) threshold requested in the configuration file. Note that enabling nbrhd output
may lead to very large output files. The gradient entry controls the creation of output variables for the
FCST and OBS gradients in the grid-x and grid-y directions. The distance_map entry controls the creation
of output variables for the FCST and OBS distance maps for each categorical threshold. The apply_mask
entry controls whether to create the FCST, OBS, and DIFF output variables for all defined masking regions.
Setting this to TRUE will create the FCST, OBS, and DIFF output variables for all defined masking regions.

240 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Setting this to FALSE will create the FCST, OBS, and DIFF output variables for only the FULL verification
domain.

nc_pairs_var_name = "";

The nc_pairs_var_name entry specifies a string for each verification task. This string is parsed from each
obs.field dictionary entry and is used to construct variable names for the NetCDF matched pairs output file.
The default value of an empty string indicates that the name and level strings of the input data should be
used. If the input data level string changes for each run of Grid-Stat, using this option to define a constant
string may make downstream processing more convenient.

nc_pairs_var_suffix = "";

The nc_pairs_var_suffix entry is similar to the nc_pairs_var_name entry. It is also parsed from each
obs.field dictionary entry. However, it defines a suffix to be appended to the output variable name. This
enables the output variable names to be made unique. For example, when verifying height for multiple level
types but all with the same level value, use this option to customize the output variable names. This option
was previously named nc_pairs_var_str which is now deprecated.

12.3.3 grid_stat output

grid_stat produces output in STAT and, optionally, ASCII and NetCDF formats. The ASCII output duplicates
the STAT output but has the data organized by line type. The output files are written to the default output
directory or the directory specified by the -outdir command line option.

The output STAT file is named using the following naming convention:

grid_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV.stat where PREFIX indicates the user-defined output
prefix, HHMMSSL indicates the forecast lead time and YYYYMMDD_HHMMSSV indicates the forecast valid
time.

The output ASCII files are named similarly:

grid_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV_TYPE.txt where TYPE is one of fho, ctc, cts, mctc,
mcts, cnt, sl1l2, vl1l2, vcnt, pct, pstd, pjc, prc, eclv, nbrctc, nbrcts, nbrcnt, dmap, or grad to indicate the line
type it contains.

The format of the STAT and ASCII output of the Grid-Stat tool are the same as the format of the STAT and
ASCII output of the Point-Stat tool with the exception of the five additional line types. Please refer to the
tables in Section 11.3.3 for a description of the common output STAT and optional ASCII file line types. The
formats of the five additional line types for grid_stat are explained in the following tables.

12.3. Practical information 241

MET User’s Guide, version 11.1.0-beta2

Table 12.1: Header information for each file grid-stat outputs

HEADER
Column
Number

Header Column
Name

Description

1 VERSION Version number
2 MODEL User provided text string designating model name
3 DESC User provided text string describing the verification task
4 FCST_LEAD Forecast lead time in HHMMSS format
5 FCST_VALID_BEG Forecast valid start time in YYYYMMDD_HHMMSS format
6 FCST_VALID_END Forecast valid end time in YYYYMMDD_HHMMSS format
7 OBS_LEAD Observation lead time in HHMMSS format
8 OBS_VALID_BEG Observation valid start time in YYYYMMDD_HHMMSS format
9 OBS_VALID_END Observation valid end time in YYYYMMDD_HHMMSS format
10 FCST_VAR Model variable
11 FCST_UNITS Units for model variable
12 FCST_LEV Selected Vertical level for forecast
13 OBS_VAR Observation variable
14 OBS_UNITS Units for observation variable
15 OBS_LEV Selected Vertical level for observations
16 OBTYPE User provided text string designating the observation type
17 VX_MASK Verifying masking region indicating the masking grid or polyline re-

gion applied
18 INTERP_MTHD Interpolation method applied to forecast field
19 INTERP_PNTS Number of points used by interpolation method
20 FCST_THRESH The threshold applied to the forecast
21 OBS_THRESH The threshold applied to the observations
22 COV_THRESH Proportion of observations in specified neighborhood which must ex-

ceed obs_thresh
23 ALPHA Error percent value used in confidence intervals
24 LINE_TYPE Various line type options, refer to Section 11.3.3 and the tables be-

low.

242 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 12.2: Format information for NBRCTC (Neighborhood
Contingency Table Counts) output line type

NBRCTC OUTPUT FOR-
MAT
Column Number NBRCTC Column

Name
Description

24 NBRCTC Neighborhood Contingency Table Counts line
type

25 TOTAL Total number of matched pairs
26 FY_OY Number of forecast yes and observation yes
27 FY_ON Number of forecast yes and observation no
28 FN_OY Number of forecast no and observation yes
29 FN_ON Number of forecast no and observation no

12.3. Practical information 243

MET User’s Guide, version 11.1.0-beta2

Table 12.3: Format information for NBRCTS (Neighborhood
Contingency Table Statistics) output line type

NBRCTS OUT-
PUT FORMAT
Column Num-
ber

NBRCTS Column Name Description

24 NBRCTS Neighborhood Contingency Table Statistics line
type

25 TOTAL Total number of matched pairs
26-30 BASER, BASER_NCL,

BASER_NCU, BASER_BCL,
BASER_BCU

Base rate including normal and bootstrap upper
and lower confidence limits

31-35 FMEAN, FMEAN_NCL,
FMEAN_NCU, FMEAN_BCL,
FMEAN_BCU

Forecast mean including normal and bootstrap up-
per and lower confidence limits

36-40 ACC, ACC_NCL, ACC_NCU,
ACC_BCL, ACC_BCU

Accuracy including normal and bootstrap upper
and lower confidence limits

41-43 FBIAS, FBIAS_BCL, FBIAS_BCU Frequency Bias including bootstrap upper and
lower confidence limits

44-48 PODY, PODY_NCL, PODY_NCU,
PODY_BCL, PODY_BCU

Probability of detecting yes including normal and
bootstrap upper and lower confidence limits

49-53 PODN, PODN_NCL, PODN_NCU,
PODN_BCL, PODN_BCU

Probability of detecting no including normal and
bootstrap upper and lower confidence limits

54-58 POFD, POFD_NCL, POFD_NCU,
POFD_BCL, POFD_BCU

Probability of false detection including normal and
bootstrap upper and lower confidence limits

59-63 FAR, FAR_NCL, FAR_NCU,
FAR_BCL, FAR_BCU

False alarm ratio including normal and bootstrap
upper and lower confidence limits

64-68 CSI, CSI_NCL, CSI_NCU,
CSI_BCL, CSI_BCU

Critical Success Index including normal and boot-
strap upper and lower confidence limits

69-71 GSS, GSS_BCL, GSS_BCU Gilbert Skill Score including bootstrap upper and
lower confidence limits

244 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 12.4: Format information for NBRCTS (Neighborhood
Contingency Table Statistics) output line type, continued
from above

Column
Number

NBRCTS Column Name Description

72-76 HK, HK_NCL, HK_NCU, HK_BCL,
HK_BCU

Hanssen-Kuipers Discriminant including normal and
bootstrap upper and lower confidence limits

77-79 HSS, HSS_BCL, HSS_BCU Heidke Skill Score including bootstrap upper and lower
confidence limits

80-84 ODDS, ODDS_NCL, ODDS_NCU,
ODDS_BCL, ODDS_BCU

Odds Ratio including normal and bootstrap upper and
lower confidence limits

85-89 LODDS, LODDS_NCL,
LODDS_NCU, LODDS_BCL,
LODDS_BCU

Logarithm of the Odds Ratio including normal and boot-
strap upper and lower confidence limits

90-94 ORSS, ORSS _NCL, ORSS _NCU,
ORSS _BCL, ORSS _BCU

Odds Ratio Skill Score including normal and bootstrap
upper and lower confidence limits

95-99 EDS, EDS _NCL, EDS _NCU, EDS
_BCL, EDS _BCU

Extreme Dependency Score including normal and boot-
strap upper and lower confidence limits

100-104 SEDS, SEDS _NCL, SEDS _NCU,
SEDS _BCL SEDS _BCU

Symmetric Extreme Dependency Score including normal
and bootstrap upper and lower confidence limits

105-109 EDI, EDI _NCL, EDI _NCU, EDI
_BCL, EDI _BCU

Extreme Dependency Index including normal and boot-
strap upper and lower confidence limits

110-114 SEDI, SEDI _NCL, SEDI _NCU,
SEDI _BCL,SEDI _BCU

Symmetric Extremal Dependency Index including normal
and bootstrap upper and lower confidence limits

115-117 BAGSS, BAGSS_BCL, BAGSS_BCU Bias-Adjusted Gilbert Skill Score including bootstrap up-
per and lower confidence limits

12.3. Practical information 245

MET User’s Guide, version 11.1.0-beta2

Table 12.5: Format information for NBRCNT(Neighborhood
Continuous Statistics) output line type

NBRCNT OUT-
PUT FORMAT
Column Number NBRCNT Column Name Description
24 NBRCNT Neighborhood Continuous statistics line type
25 TOTAL Total number of matched pairs
26-28 FBS, FBS_BCL, FBS_BCU Fractions Brier Score including bootstrap upper and

lower confidence limits
29-31 FSS, FSS_BCL, FSS_BCU Fractions Skill Score including bootstrap upper and

lower confidence limits
32-34 AFSS, AFSS_BCL,

AFSS_BCU
Asymptotic Fractions Skill Score including bootstrap up-
per and lower confidence limits

35-37 UFSS, UFSS_BCL,
UFSS_BCU

Uniform Fractions Skill Score including bootstrap upper
and lower confidence limits

38-40 F_RATE, F_RATE _BCL,
F_RATE _BCU

Forecast event frequency including bootstrap upper and
lower confidence limits

41-43 O_RATE, O _RATE _BCL,
O _RATE _BCU

Observed event frequency including bootstrap upper
and lower confidence limits

Table 12.6: Format information for GRAD (Gradient Statis-
tics) output line type

GRAD OUTPUT
FORMAT
Column Number GRAD Column

Name
Description

24 GRAD Gradient Statistics line type
25 TOTAL Total number of matched pairs
26 FGBAR Mean of absolute value of forecast gradients
27 OGBAR Mean of absolute value of observed gradients
28 MGBAR Mean of maximum of absolute values of forecast and ob-

served gradients
29 EGBAR Mean of absolute value of forecast minus observed gradients
30 S1 S1 score
31 S1_OG S1 score with respect to observed gradient
32 FGOG_RATIO Ratio of forecast and observed gradients
33 DX Gradient size in the X-direction
34 DY Gradient size in the Y-direction

246 Chapter 12. Grid-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 12.7: Format information for DMAP (Distance Map)
output line type

DMAP OUTPUT FORMAT
Column Number DMAP Column Name Description
24 DMAP Distance Map line type
25 TOTAL Total number of matched pairs
26 FY Number of forecast events
27 OY Number of observation events
28 FBIAS Frequency Bias
29 BADDELEY Baddeley’s ∆ Metric
30 HAUSDORFF Hausdorff Distance
31 MED_FO Mean-error Distance from observation to forecast
32 MED_OF Mean-error Distance from forecast to observation
33 MED_MIN Minimum of MED_FO and MED_OF
34 MED_MAX Maximum of MED_FO and MED_OF
35 MED_MEAN Mean of MED_FO and MED_OF
36 FOM_FO Pratt’s Figure of Merit from observation to forecast
37 FOM_OF Pratt’s Figure of Merit from forecast to observation
38 FOM_MIN Minimum of FOM_FO and FOM_OF
39 FOM_MAX Maximum of FOM_FO and FOM_OF
40 FOM_MEAN Mean of FOM_FO and FOM_OF
41 ZHU_FO Zhu’s Measure from observation to forecast
42 ZHU_OF Zhu’s Measure from forecast to observation
43 ZHU_MIN Minimum of ZHU_FO and ZHU_OF
44 ZHU_MAX Maximum of ZHU_FO and ZHU_OF
45 ZHU_MEAN Mean of ZHU_FO and ZHU_OF
46 G 𝐺 distance measure
47 GBETA 𝐺𝛽 distance measure
48 BETA_VALUE Beta value used to compute 𝐺𝛽

If requested using the nc_pairs_flag dictionary in the configuration file, a NetCDF file containing the
matched pair and forecast minus observation difference fields for each combination of variable type/level
and masking region applied will be generated. The contents of this file are determined by the contents
of the nc_pairs_flag dictionary. The output NetCDF file is named similarly to the other output files:
grid_stat_PREFIX_ HHMMSSL_YYYYMMDD_HHMMSSV_pairs.nc. Commonly available NetCDF utilities
such as ncdump or ncview may be used to view the contents of the output file.

The output NetCDF file contains the dimensions and variables shown in Table 12.8 and Table 12.9.

12.3. Practical information 247

MET User’s Guide, version 11.1.0-beta2

Table 12.8: Dimensions defined in NetCDF matched pair out-
put

grid_stat NETCDF DIMEN-
SIONS
NetCDF Dimension Description
Lat Dimension of the latitude (i.e. Number of grid points in the North-South

direction)
Lon Dimension of the longitude (i.e. Number of grid points in the East-West

direction)

Table 12.9: A selection of variables that can appear in the
NetCDF matched pair output

grid_stat NETCDF VARI-
ABLES
NetCDF Variable Di-

men-
sion

Description

FCST_VAR_LVL_MASK
_INTERP_MTHD _IN-
TERP_PNTS

lat,
lon

For each model variable (VAR), vertical level (LVL), masking region
(MASK), and, if applicable, smoothing operation (INTERP_MTHD and
INTERP_PNTS), the forecast value is listed for each point in the mask.

OBS_VAR_LVL_MASK
DIFF_FCSTVAR

lat,
lon

For each model variable (VAR), vertical level (LVL), and masking region
(MASK), the observation value is listed for each point in the mask .

DIFF_FCSTVAR _FC-
STLVL _OBSVAR
_OBSLVL_MASK _IN-
TERP_MTHD _IN-
TERP_PNTS

lat,
lon

For each model variable (VAR), vertical level (LVL), masking region
(MASK), and, if applicable, smoothing operation (INTERP_MTHD and
INTERP_PNTS), the difference (forecast - observation) is computed for
each point in the mask.

FCST_XGRAD_DX
FCST_YGRAD_DX
OBS_XGRAD_DY
OBS_YGRAD_DY

lat,
lon

List the gradient of the forecast and observation fields computed in the
grid-x and grid-y directions where DX and DY indicate the gradient
direction and size.

The STAT output files described for grid_stat may be used as inputs to the Stat-Analysis tool. For more infor-
mation on using the Stat-Analysis tool to create stratifications and aggregations of the STAT files produced
by grid_stat, please see Section 16.

248 Chapter 12. Grid-Stat Tool

Chapter 13

Ensemble-Stat Tool

13.1 Introduction

The Ensemble-Stat tool verifies deterministic ensemble members against gridded and/or point observa-
tions. It computes ensemble statistics such as rank histograms, probability integral transform histograms,
spread/skill variance, relative position and continuous ranked probability score. Climatological mean and
standard deviation data may also be provided, and is used as a reference forecast in several of the output
statistics. Finally, observation error perturbations can be included prior to calculation of statistics. Details
about and equations for the statistics produced for ensembles are given in Appendix C, Section 33.5.

Note: Earlier versions of the Ensemble-Stat tool supported both ensemble product generation and en-
semble verification. However, the ensemble product generation logic has moved to the Gen-Ens-Prod Tool
(page 179), which replaces and extends that functionality. Ensemble product generation was removed from
Ensemble-Stat in version 11.0.0.

13.2 Scientific and statistical aspects

13.2.1 HiRA framework

The HiRA framework described in Section 11.2.2 is also supported in the Ensemble-Stat tool. That support
is provided as an interpolation option via the interp dictionary. The interpolation dictionary defines how
gridded model data is matched to each observation value. Most interpolation methods, such as UW_MEAN
for the unweighted mean or BILIN for bilinear, compute a single value for each ensemble member. When
the High Resolution Assessment (HiRA) interpolation method is chosen, as shown below, all of the nearby
neighborhood points surrounding each observation from each member are used. Therefore, processing an
N-member ensemble using a HiRA neighborhood of size M produces ensemble output with size N*M. This
approach fully leverages information from all nearby grid points to evaluate the ensemble quality.

interp = {
field = BOTH;

(continues on next page)

249

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

vld_thresh = 1.0;
shape = SQUARE;

type = [
{

method = HIRA;
width = 2;
shape = SQUARE;

}
];

}

In this example, all four grid points of the 2x2 square surrounding each observation point are used to define
the ensemble. Therefore, an N-member ensemble is evaluated as an ensemble of size Nx4.

13.2.2 Ensemble statistics

Rank histograms and probability integral transform (PIT) histograms are used to determine if the distribution
of ensemble values is the same as the distribution of observed values for any forecast field (Hamill, 2001
(page 451)). The rank histogram is a tally of the rank of the observed value when placed in order with
each of the ensemble values from the same location. If the distributions are identical, then the rank of
the observation will be uniformly distributed. In other words, it will fall among the ensemble members
randomly in equal likelihood. The PIT histogram applies this same concept, but transforms the actual rank
into a probability to facilitate ensembles of differing sizes or with missing members.

Often, the goal of ensemble forecasting is to reproduce the distribution of observations using a set of many
forecasts. In other words, the ensemble members represent the set of all possible outcomes. When this is
true, the spread of the ensemble is identical to the error in the mean forecast. Though this rarely occurs
in practice, the spread / skill relationship is still typically assessed for ensemble forecasts (Barker, 1991
(page 447); Buizza,1997 (page 448)). MET calculates the spread and skill in user defined categories accord-
ing to Eckel et al. (2012) (page 449).

The relative position (RELP) is a count of the number of times each ensemble member is closest to the obser-
vation. For stochastic or randomly derived ensembles, this statistic is meaningless. For specified ensemble
members, however, it can assist users in determining if any ensemble member is performing consistently
better or worse than the others.

The ranked probability score (RPS) is included in the Ranked Probability Score (RPS) line type. It is the
mean of the Brier scores computed from ensemble probabilities derived for each probability category thresh-
old (prob_cat_thresh) specified in the configuration file. The continuous ranked probability score (CRPS) is
the average the distance between the forecast (ensemble) cumulative distribution function and the obser-
vation cumulative distribution function. It is an analog of the Brier score, but for continuous forecast and
observation fields. The CRPS statistic is computed using two methods: assuming a normal distribution de-
fined by the ensemble mean and spread (Gneiting et al., 2004 (page 450)) and using the empirical ensemble
distribution (Hersbach, 2000 (page 451)). The CRPS statistic using the empirical ensemble distribution can
be adjusted (bias corrected) by subtracting 1/(2*m) times the mean absolute difference of the ensemble
members, where m is the ensemble size. This is reported as a separate statistic called CRPS_EMP_FAIR. The

250 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

empirical CRPS and its fair version are included in the Ensemble Continuous Statistics (ECNT) line type,
along with other statistics quantifying the ensemble spread and ensemble mean skill.

The Ensemble-Stat tool can derive ensemble relative frequencies and verify them as probability forecasts all
in the same run. Note however that these simple ensemble relative frequencies are not actually calibrated
probability forecasts. If probabilistic line types are requested (output_flag), this logic is applied to each pair
of fields listed in the forecast (fcst) and observation (obs) dictionaries of the configuration file. Each probabil-
ity category threshold (prob_cat_thresh) listed for the forecast field is applied to the input ensemble members
to derive a relative frequency forecast. The probability category threshold (prob_cat_thresh) parsed from
the corresponding observation entry is applied to the (gridded or point) observations to determine whether
or not the event actually occurred. The paired ensemble relative freqencies and observation events are used
to populate an Nx2 probabilistic contingency table. The dimension of that table is determined by the prob-
ability PCT threshold (prob_pct_thresh) configuration file option parsed from the forecast dictionary. All
probabilistic output types requested are derived from the this Nx2 table and written to the ascii output files.
Note that the FCST_VAR name header column is automatically reset as “PROB({FCST_VAR}{THRESH})”
where {FCST_VAR} is the current field being evaluated and {THRESH} is the threshold that was applied.

Note that if no probability category thresholds (prob_cat_thresh) are defined, but climatological mean and
standard deviation data is provided along with climatological bins, climatological distribution percentile
thresholds are automatically derived and used to compute probabilistic outputs.

13.2.3 Climatology data

The Ensemble-Stat output includes at least three statistics computed relative to external climatology data.
The climatology is defined by mean and standard deviation fields, and typically both are required in the com-
putation of ensemble skill score statistics. MET assumes that the climatology follows a normal distribution,
defined by the mean and standard deviation at each point.

When computing the CRPS skill score for (Gneiting et al., 2004 (page 450)) the reference CRPS statistic
is computed using the climatological mean and standard deviation directly. When computing the CRPS
skill score for (Hersbach, 2000 (page 451)) the reference CRPS statistic is computed by selecting equal-
area-spaced values from the assumed normal climatological distribution. The number of points selected is
determined by the cdf_bins setting in the climo_cdf dictionary. The reference CRPS is computed empirically
from this ensemble of climatology values. If the number bins is set to 1, the climatological CRPS is computed
using only the climatological mean value. In this way, the empirical CRPSS may be computed relative to a
single model rather than a climatological distribution.

The climatological distribution is also used for the RPSS. The forecast RPS statistic is computed from a
probabilistic contingency table in which the probabilities are derived from the ensemble member values.
In a simliar fashion, the climatogical probability for each observed value is derived from the climatological
distribution. The area of the distribution to the left of the observed value is interpreted as the climatological
probability. These climatological probabilities are also evaluated using a probabilistic contingency table from
which the reference RPS score is computed. The skill scores are derived by comparing the forecast statistic
to the reference climatology statistic.

13.2. Scientific and statistical aspects 251

MET User’s Guide, version 11.1.0-beta2

13.2.4 Ensemble observation error

In an attempt to ameliorate the effect of observation errors on the verification of forecasts, a random pertur-
bation approach has been implemented. A great deal of user flexibility has been built in, but the methods
detailed in Candille and Talagrand (2008) (page 448). can be replicated using the appropriate options. The
user selects a distribution for the observation error, along with parameters for that distribution. Rescaling
and bias correction can also be specified prior to the perturbation. Random draws from the distribution can
then be added to either, or both, of the forecast and observed fields, including ensemble members. Details
about the effects of the choices on verification statistics should be considered, with many details provided
in the literature (e.g. Candille and Talagrand, 2008 (page 448); Saetra et al., 2004 (page 453); Santos
and Ghelli, 2012 (page 453)). Generally, perturbation makes verification statistics better when applied to
ensemble members, and worse when applied to the observations themselves.

Normal and uniform are common choices for the observation error distribution. The uniform distribution
provides the benefit of being bounded on both sides, thus preventing the perturbation from taking on ex-
treme values. Normal is the most common choice for observation error. However, the user should realize
that with the very large samples typical in NWP, some large outliers will almost certainly be introduced with
the perturbation. For variables that are bounded below by 0, and that may have inconsistent observation
errors (e.g. larger errors with larger measurements), a lognormal distribution may be selected. Wind speeds
and precipitation measurements are the most common of this type of NWP variable. The lognormal error
perturbation prevents measurements of 0 from being perturbed, and applies larger perturbations when mea-
surements are larger. This is often the desired behavior in these cases, but this distribution can also lead to
some outliers being introduced in the perturbation step.

Observation errors differ according to instrument, temporal and spatial representation, and variable type.
Unfortunately, many observation errors have not been examined or documented in the literature. Those that
have usually lack information regarding their distributions and approximate parameters. Instead, a range or
typical value of observation error is often reported and these are often used as an estimate of the standard
deviation of some distribution. Where possible, it is recommended to use the appropriate type and size of
perturbation for the observation to prevent spurious results.

13.3 Practical Information

This section contains information about configuring and running the Ensemble-Stat tool. The Ensemble-Stat
tool creates or verifies gridded model data. For verification, this tool can accept either gridded or point
observations. If provided, the climatology data files must be gridded. The input gridded model, observation,
and climatology datasets must be on the same grid prior to calculation of any statistics, and in one of the
MET supported gridded file formats. If gridded files are not on the same grid, MET will do the regridding for
you if you specify the desired output grid. The point observations must be formatted as the NetCDF output
of the point reformatting tools described in Section 7.

252 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

13.3.1 ensemble_stat usage

The usage statement for the Ensemble Stat tool is shown below:

Usage: ensemble_stat
n_ens ens_file_1 ... ens_file_n | ens_file_list
config_file
[-grid_obs file]
[-point_obs file]
[-ens_mean file]
[-ctrl file]
[-obs_valid_beg time]
[-obs_valid_end time]
[-outdir path]
[-log file]
[-v level]
[-compress level]

ensemble_stat has three required arguments and accepts several optional ones.

13.3.1.1 Required arguments ensemble_stat

1. The n_ens ens_file_1 . . . ens_file_n is the number of ensemble members followed by a list of en-
semble member file names. This argument is not required when ensemble files are specified in the
ens_file_list, detailed below.

2. The ens_file_list is an ASCII file containing a list of ensemble member file names. This is not required
when a file list is included on the command line, as described above.

3. The config_file is an EnsembleStatConfig file containing the desired configuration settings.

13.3.1.2 Optional arguments for ensemble_stat

4. To produce ensemble statistics using gridded observations, use the -grid_obs file option to specify a
gridded observation file. This option may be used multiple times if your observations are in several
files.

5. To produce ensemble statistics using point observations, use the -point_obs file option to specify a
NetCDF point observation file. This option may be used multiple times if your observations are in
several files. Python embedding for point observations is also supported, as described in Section
36.4.2.

6. To override the simple ensemble mean value of the input ensemble members for the ECNT, SSVAR,
and ORANK line types, the -ens_mean file option specifies an ensemble mean model data file. This
option replaces the -ssvar_mean file option from earlier versions of MET.

7. The -ctrl file option specifies an ensemble control member data file. The control member is included
in the computation of the ensemble mean but excluded from the spread. The control file should not

13.3. Practical Information 253

MET User’s Guide, version 11.1.0-beta2

appear in the list of ensemble member files (unless processing a single file that contains all ensemble
members).

8. To filter point observations by time, use -obs_valid_beg time in YYYYMMDD[_HH[MMSS]] format to
set the beginning of the matching observation time window.

9. As above, use -obs_valid_end time in YYYYMMDD[_HH[MMSS]] format to set the end of the match-
ing observation time window.

10. Specify the -outdir path option to override the default output directory (./).

11. The -log file outputs log messages to the specified file.

12. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

13. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the ensemble_stat calling sequence is shown below:

ensemble_stat \
6 sample_fcst/2009123112/*gep*/d01_2009123112_02400.grib \
config/EnsembleStatConfig \
-grid_obs sample_obs/ST4/ST4.2010010112.24h \
-point_obs out/ascii2nc/precip24_2010010112.nc \
-outdir out/ensemble_stat -v 2

In this example, the Ensemble-Stat tool will process six forecast files specified in the file list into an ensemble
forecast. Observations in both point and grid format will be included, and be used to compute ensemble
statistics separately. Ensemble Stat will create a NetCDF file containing requested ensemble fields and an
output STAT file.

13.3.2 ensemble_stat configuration file

The default configuration file for the Ensemble-Stat tool named EnsembleStatConfig_default can be found
in the installed share/met/config directory. Another version is located in scripts/config. We encourage users
to make a copy of these files prior to modifying their contents. Each configuration file (both the default and
sample) contains many comments describing its contents. The contents of the configuration file are also
described in the subsections below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

254 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

model = "WRF";
desc = "NA";
obtype = "ANALYS";
regrid = { ... }
climo_mean = { ... }
climo_stdev = { ... }
climo_cdf = { ... }
obs_window = { beg = -5400; end = 5400; }
mask = { grid = ["FULL"]; poly = []; sid = []; }
ci_alpha = [0.05];
interp = { field = BOTH; vld_thresh = 1.0; shape = SQUARE;

type = [{ method = NEAREST; width = 1; }]; }
eclv_points = [];
sid_inc = [];
sid_exc = [];
duplicate_flag = NONE;
obs_quality_inc = [];
obs_quality_exc = [];
obs_summary = NONE;
obs_perc_value = 50;
message_type_group_map = [...];
output_prefix = "";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

Note that the HIRA interpolation method is only supported in Ensemble-Stat.

When processing the fcst data, compute a ratio of the number of valid ensemble fields to the total number
of ensemble members. If this ratio is less than the ens_thresh, then quit with an error. This threshold must
be between 0 and 1. Setting this threshold to 1 will require that all ensemble members be present to be
processed.

When processing the fcst data, for each grid point compute a ratio of the number of valid data values to
the number of ensemble members. If that ratio is less than vld_thresh, write out bad data. This threshold
must be between 0 and 1. Setting this threshold to 1 will require each grid point to contain valid data for all
ensemble members.

For each field listed in the forecast field, give the name and vertical or accumulation level, plus one or
more categorical thresholds. The thresholds are specified using symbols, as shown above. It is the user’s
responsibility to know the units for each model variable and to choose appropriate threshold values. The
thresholds are used to define ensemble relative frequencies, e.g. a threshold of >=5 can be used to compute
the proportion of ensemble members predicting precipitation of at least 5mm at each grid point.

ens_member_ids = [];
control_id = "";

13.3. Practical Information 255

MET User’s Guide, version 11.1.0-beta2

The ens_member_ids array is only used if reading a single file that contains all ensemble members. It should
contain a list of string identifiers that are substituted into the ens and/or fcst dictionary fields to determine
which data to read from the file. The length of the array determines how many ensemble members will be
processed for a given field. Each value in the array will replace the text MET_ENS_MEMBER_ID.

NetCDF Example:

fcst = {
field = [
{
name = "fcst";
level = "(MET_ENS_MEMBER_ID,0,*,*)";

}
];

}

GRIB Example:

fcst = {
field = [
{
name = "fcst";
level = "L0";
GRIB_ens = "MET_ENS_MEMBER_ID";

}
];

}

control_id is a string that is substituted in the same way as the ens_member_ids values to read a control
member. This value is only used when the -ctrl command line argument is used. The value should not be
found in the ens_member_ids array.

obs_thresh = [NA];

The obs_thresh entry is an array of thresholds for filtering observation values prior to applying ensemble
verification logic. The default setting of NA means that no observations should be filtered out. Verification
output will be computed separately for each threshold specified. This option may be set separately for each
obs.field entry.

skip_const = FALSE;

Setting skip_const to true tells Ensemble-Stat to exclude pairs where all the ensemble members and the
observation have a constant value. For example, exclude points with zero precipitation amounts from all
output line types. This option may be set separately for each obs.field entry. When set to false, constant
points are and the observation rank is chosen at random.

256 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

ens_ssvar_bin_size = 1.0;
ens_phist_bin_size = 0.05;

Setting up the fcst and obs dictionaries of the configuration file is described in Section 5. The following are
some special considerations for the Ensemble-Stat tool.

The ens and fcst dictionaries do not need to include the same fields. Users may specify any number of
ensemble fields to be summarized, but generally there are many fewer fields with verifying observations
available. The ens dictionary specifies the fields to be summarized while the fcst dictionary specifies the
fields to be verified.

The obs dictionary looks very similar to the fcst dictionary. If verifying against point observations which
are assigned GRIB1 codes, the observation section must be defined following GRIB1 conventions. When
verifying GRIB1 forecast data, one can easily copy over the forecast settings to the observation dictionary
using obs = fcst;. However, when verifying non-GRIB1 forecast data, users will need to specify the fcst and
obs sections separately.

The ens_ssvar_bin_size and ens_phist_bin_size specify the width of the categorical bins used to accumu-
late frequencies for spread-skill-variance or probability integral transform statistics, respectively.

prob_cat_thresh = [];
prob_pct_thresh = [];

The prob_cat_thresh entry is an array of thresholds. It is applied both to the computation of the RPS line
type as well as the when generating probabilistic output line types. Since these thresholds can change for
each variable, they can be specified separately for each fcst.field entry. If left empty but climatological mean
and standard deviation data is provided, the climo_cdf thresholds will be used instead. If no climatology
data is provided, and the RPS output line type is requested, then the prob_cat_thresh array must be defined.
When probabilistic output line types are requested, for each prob_cat_thresh threshold listed, ensemble
relative frequencies are derived and verified against the point and/or gridded observations.

The prob_pct_thresh entry is an array of thresholds which define the Nx2 probabilistic contingency table
used to evaluate probability forecasts. It can be specified separately for each fcst.field entry. These thresh-
olds must span the range [0, 1]. A shorthand notation to create equal bin widths is provided. For example,
the following setting creates 4 probability bins of width 0.25 from 0 to 1.

prob_pct_thresh = [==0.25];

obs_error = {
flag = FALSE;
dist_type = NONE;
dist_parm = [];
inst_bias_scale = 1.0;
inst_bias_offset = 0.0;

}

13.3. Practical Information 257

MET User’s Guide, version 11.1.0-beta2

The obs_error dictionary controls how observation error information should be handled. This dictionary
may be set separately for each obs.field entry. Observation error information can either be specified di-
rectly in the configuration file or by parsing information from an external table file. By default, the
MET_BASE/data/table_files/obs_error_table.txt file is read but this may be overridden by setting the
$MET_OBS_ERROR_TABLE environment variable at runtime.

The flag entry toggles the observation error logic on (TRUE) and off (FALSE). When the flag is TRUE,
random observation error perturbations are applied to the ensemble member values. No perturbation is
applied to the observation values but the bias scale and offset values, if specified, are applied.

The dist_type entry may be set to NONE, NORMAL, LOGNORMAL, EXPONENTIAL,CHISQUARED,
GAMMA, UNIFORM, or BETA. The default value of NONE indicates that the observation error table file
should be used rather than the configuration file settings.

The dist_parm entry is an array of length 1 or 2 specifying the parameters for the distribution selected in
dist_type. The GAMMA, UNIFORM, and BETA distributions are defined by two parameters, specified as a
comma-separated list (a,b), whereas all other distributions are defined by a single parameter.

The inst_bias_scale and inst_bias_offset entries specify bias scale and offset values that should be applied
to observation values prior to perturbing them. These entries enable bias-correction on the fly.

Defining the observation error information in the configuration file is convenient but limited. The random
perturbations for all points in the current verification task are drawn from the same distribution. Specifying
an observation error table file instead (by setting dist_type = NONE;) provides much finer control, enabling
the user to define observation error distribution information and bias-correction logic separately for each
observation variable name, message type, PrepBUFR report type, input report type, instrument type, station
ID, range of heights, range of pressure levels, and range of values.

output_flag = {
ecnt = NONE;
rps = NONE;
rhist = NONE;
phist = NONE;
orank = NONE;
ssvar = NONE;
relp = NONE;
pct = NONE;
pstd = NONE;
pjc = NONE;
prc = NONE;
eclv = NONE;

}

The output_flag array controls the type of output that is generated. Each flag corresponds to an output line
type in the STAT file. Setting the flag to NONE indicates that the line type should not be generated. Setting
the flag to STAT indicates that the line type should be written to the STAT file only. Setting the flag to BOTH
indicates that the line type should be written to the STAT file as well as a separate ASCII file where the data
is grouped by line type. The output flags correspond to the following output line types:

1. ECNT for Continuous Ensemble Statistics

258 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

2. RPS for Ranked Probability Score Statistics

3. RHIST for Ranked Histogram Counts

4. PHIST for Probability Integral Transform Histogram Counts

5. ORANK for Ensemble Matched Pair Information when point observations are supplied

6. SSVAR for Binned Spread/Skill Variance Information

7. RELP for Relative Position Counts

8. PCT for Contingency Table counts for derived ensemble relative frequencies

9. PSTD for Probabilistic statistics for dichotomous outcomes for derived ensemble relative frequencies

10. PJC for Joint and Conditional factorization for derived ensemble relative frequencies

11. PRC for Receiver Operating Characteristic for derived ensemble relative frequencies

12. ECLV for Economic Cost/Loss Relative Value for derived ensemble relative frequencies

nc_orank_flag = {
latlon = TRUE;
mean = TRUE;
raw = TRUE;
rank = TRUE;
pit = TRUE;
vld_count = TRUE;
weight = FALSE;

}

The nc_orank_flag specifies which gridded verification output types should be written to the Observation
Rank (_orank.nc) NetCDF file. This output file is only created when gridded observations have been pro-
vided with the -grid_obs command line option. Setting the flag to TRUE produces output of the specified
field, while FALSE produces no output for that field type. The flags correspond to the following output line
types:

1. Grid Latitude and Longitude Fields

2. Ensemble mean field

3. Raw observation values

4. Observation ranks

5. Observation probability-integral transform values

6. Ensemble valid data count

7. Grid area weight values

nc_var_str = "";

13.3. Practical Information 259

MET User’s Guide, version 11.1.0-beta2

The nc_var_str entry specifies a string for each ensemble field and verification task. This string is parsed
from each ens.field and obs.field dictionary entry and is used to customize the variable names written to
theNetCDF output file. The default is an empty string, meaning that no customization is applied to the
output variable names. When the Ensemble-Stat config file contains two fields with the same name and
level value, this entry is used to make the resulting variable names unique.

rng = {
type = "mt19937";
seed = "";
}

The rng group defines the random number generator type and seed to be used. In the case of a tie when
determining the rank of an observation, the rank is randomly chosen from all available possibilities. The
randomness is determined by the random number generator specified.

The seed variable may be set to a specific value to make the assignment of ranks fully repeatable. When
left empty, as shown above, the random number generator seed is chosen automatically which will lead to
slightly different bootstrap confidence intervals being computed each time the data is run.

Refer to the description of the boot entry in Section 5 for more details on the random number generator.

13.3.3 ensemble_stat output

ensemble_stat can produce output in STAT, ASCII, and NetCDF formats. The ASCII output duplicates the
STAT output but has the data organized by line type. The output files are written to the default output
directory or the directory specified by the -outdir command line option.

The output STAT file is named using the following naming convention:

ensemble_stat_PREFIX_YYYYMMDD_HHMMSSV.stat where PREFIX indicates the user-defined output pre-
fix and YYYYMMDD_HHMMSSV indicates the forecast valid time. Note that the forecast lead time is not
included in the output file names since it would not be well-defined for time-lagged ensembles. When veri-
fying multiple lead times for the same valid time, users should either write the output to separate directories
or specify an output prefix to ensure unique file names.

The output ASCII files are named similarly:

ensemble_stat_PREFIX_YYYYMMDD_HHMMSSV_TYPE.txt where TYPE is one of elements of the out-
put_flag configuration option to indicate the line type it contains.

When verification against gridded analyses is performed, Ensemble-Stat can produce output NetCDF files
using the following naming convention:

ensemble_stat_PREFIX_YYYYMMDD_HHMMSSV_orank.nc contains gridded fields of observation ranks
when the -grid_obs command line option is used. Its contents are specified by the nc_orank_flag con-
figuration option.

The Ensemble-Stat tool can compute the following statistics for the fields specified in the fcst and obs dictio-
naries of the configuration file:

Continuous Ensemble Statistics

260 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Ranked Histograms

Probability Integral Transform (PIT) Histograms

Relative Position Histograms

Spread/Skill Variance

Ensemble Matched Pair information

The format of the STAT and ASCII output of the Ensemble-Stat tool are described below.

Table 13.1: Header information for each file ensemble-stat
outputs

HEADER
Column
Number

Header Column
Name

Description

1 VERSION Version number
2 MODEL User provided text string designating model name
3 DESC User provided text string describing the verification task
4 FCST_LEAD Forecast lead time in HHMMSS format
5 FCST_VALID_BEG Forecast valid start time in YYYYMMDD_HHMMSS format
6 FCST_VALID_END Forecast valid end time in YYYYMMDD_HHMMSS format
7 OBS_LEAD Observation lead time in HHMMSS format
8 OBS_VALID_BEG Observation valid start time in YYYYMMDD_HHMMSS format
9 OBS_VALID_END Observation valid end time in YYYYMMDD_HHMMSS format
10 FCST_VAR Model variable
11 FCST_UNITS Units for model variable
12 FCST_LEV Selected Vertical level for forecast
13 OBS_VAR Observation variable
14 OBS_UNITS Units for observation variable
15 OBS_LEV Selected Vertical level for observations
16 OBTYPE Type of observation selected
17 VX_MASK Verifying masking region indicating the masking grid or polyline re-

gion applied
18 INTERP_MTHD Interpolation method applied to forecasts
19 INTERP_PNTS Number of points used in interpolation method
20 FCST_THRESH The threshold applied to the forecast
21 OBS_THRESH The threshold applied to the observations
22 COV_THRESH The minimum fraction of valid ensemble members required to cal-

culate statistics.
23 ALPHA Error percent value used in confidence intervals
24 LINE_TYPE Output line types are listed in Table 13.4 through Table 13.8.

13.3. Practical Information 261

MET User’s Guide, version 11.1.0-beta2

Table 13.2: Format information for ECNT (Ensemble Contin-
uous Statistics) output line type.

ECNT OUT-
PUT FOR-
MAT
Column
Number

ECNT Col-
umn Name

Description

24 ECNT Ensemble Continuous Statistics line type
25 TOTAL Count of observations
26 N_ENS Number of ensemble values
27 CRPS The Continuous Ranked Probability Score (normal distribution)
28 CRPSS The Continuous Ranked Probability Skill Score (normal distribution)
29 IGN The Ignorance Score
30 ME The Mean Error of the ensemble mean (unperturbed or supplied)
31 RMSE The Root Mean Square Error of the ensemble mean (unperturbed or sup-

plied)
32 SPREAD The square root of the mean of the variance of the unperturbed ensemble

member values at each observation location
33 ME_OERR The Mean Error of the PERTURBED ensemble mean (e.g. with Observation

Error)
34 RMSE_OERR The Root Mean Square Error of the PERTURBED ensemble mean (e.g. with

Observation Error)
35 SPREAD_OERRThe square root of the mean of the variance of the PERTURBED ensemble

member values (e.g. with Observation Error) at each observation location
36 SPREAD_PLUS_OERRThe square root of the sum of unperturbed ensemble variance and the ob-

servation error variance
37 CRPSCL Climatological Continuous Ranked Probability Score (normal distribution)
38 CRPS_EMP The Continuous Ranked Probability Score (empirical distribution)
39 CRP-

SCL_EMP
Climatological Continuous Ranked Probability Score (empirical distribution)

40 CRPSS_EMP The Continuous Ranked Probability Skill Score (empirical distribution)
41 CRPS_EMP_FAIRThe Continuous Ranked Probability Score (empirical distribution) adjusted

by the mean absolute difference of the ensemble members
42 SPREAD_MD The pairwise Mean Absolute Difference of the unperturbed ensemble mem-

bers
43 MAE The Mean Absolute Error of the ensemble mean (unperturbed or supplied)
44 MAE_OERR The Mean Absolute Error of the PERTURBED ensemble mean (e.g. with

Observation Error)
45 BIAS_RATIO The Bias Ratio
46 N_GE_OBS The number of ensemble values greater than or equal to their observations
47 ME_GE_OBS The Mean Error of the ensemble values greater than or equal to their obser-

vations
48 N_LT_OBS The number of ensemble values less than their observations
49 ME_LT_OBS The Mean Error of the ensemble values less than or equal to their observa-

tions

262 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 13.3: Format information for RPS (Ranked Probability
Score) output line type.

RPS OUTPUT
FORMAT
Column Number RPS Column

Name
Description

24 RPS Ranked Probability Score line type
25 TOTAL Count of observations
26 N_PROB Number of probability thresholds (i.e. number of ensemble mem-

bers in Ensemble-Stat)
27 RPS_REL RPS Reliability, mean of the reliabilities for each RPS threshold
28 RPS_RES RPS Resolution, mean of the resolutions for each RPS threshold
29 RPS_UNC RPS Uncertainty, mean of the uncertainties for each RPS threshold
30 RPS Ranked Probability Score, mean of the Brier Scores for each RPS

threshold
31 RPSS Ranked Probability Skill Score relative to external climatology
32 RPSS_SMPL Ranked Probability Skill Score relative to sample climatology

Table 13.4: Format information for RHIST (Ranked His-
togram) output line type.

RHIST OUTPUT FORMAT
Column Number RHIST Column Name Description
24 RHIST Ranked Histogram line type
25 TOTAL Count of observations
26 N_RANK Number of possible ranks for observation
27 RANK_i Count of observations with the i-th rank (repeated)

Table 13.5: Format information for PHIST (Probability Inte-
gral Transform Histogram) output line type.

PHIST OUTPUT FOR-
MAT
Column Number PHIST Column

Name
Description

24 PHIST Probability Integral Transform line type
25 TOTAL Count of observations
26 BIN_SIZE Probability interval width
27 N_BIN Total number of probability intervals
28 BIN_i Count of observations in the ith probability bin (re-

peated)

13.3. Practical Information 263

MET User’s Guide, version 11.1.0-beta2

Table 13.6: Format information for RELP (Relative Position)
output line type.

RELP OUT-
PUT FOR-
MAT
Column
Number

RELP
Column
Name

Description

24 RELP Relative Position line type
25 TOTAL Count of observations
26 N_ENS Number of ensemble members
27 RELP_i Number of times the i-th ensemble member’s value was closest to the obser-

vation (repeated). When n members tie, 1/n is assigned to each member.

264 Chapter 13. Ensemble-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 13.7: Format information for ORANK (Observation
Rank) output line type.

ORANK OUT-
PUT FORMAT
Column Number ORANK Col-

umn Name
Description

24 ORANK Observation Rank line type
25 TOTAL Count of observations
26 INDEX Line number in ORANK file
27 OBS_SID Station Identifier
28 OBS_LAT Latitude of the observation
29 OBS_LON Longitude of the observation
30 OBS_LVL Level of the observation
31 OBS_ELV Elevation of the observation
32 OBS Value of the observation
33 PIT Probability Integral Transform
34 RANK Rank of the observation
35 N_ENS_VLD Number of valid ensemble values
36 N_ENS Number of ensemble values
37 ENS_i Value of the ith ensemble member (repeated)
Last-7 OBS_QC Quality control string for the observation
Last-6 ENS_MEAN The unperturbed ensemble mean value
Last-5 CLIMO_MEAN Climatological mean value (named CLIMO prior to met-10.0.0)
Last-4 SPREAD The spread (standard deviation) of the unperturbed ensemble mem-

ber values
Last-3 ENS_MEAN

_OERR
The PERTURBED ensemble mean (e.g. with Observation Error).

Last-2 SPREAD_OERR The spread (standard deviation) of the PERTURBED ensemble mem-
ber values (e.g. with Observation Error).

Last-1 SPREAD_PLUS_OERRThe square root of the sum of the unperturbed ensemble variance
and the observation error variance.

Last CLIMO_STDEV Climatological standard deviation value

13.3. Practical Information 265

MET User’s Guide, version 11.1.0-beta2

Table 13.8: Format information for SSVAR (Spread/Skill
Variance) output line type.

SSVAR OUTPUT
FORMAT
Column Number SSVAR Column Name Description
24 SSVAR Spread/Skill Variance line type
25 TOTAL Count of observations
26 N_BIN Number of bins for current forecast run
27 BIN_i Index of the current bin
28 BIN_N Number of points in bin i
29 VAR_MIN Minimum variance
30 VAR_MAX Maximum variance
31 VAR_MEAN Average variance
32 FBAR Average forecast value
33 OBAR Average observed value
34 FOBAR Average product of forecast and observation
35 FFBAR Average of forecast squared
36 OOBAR Average of observation squared
37-38 FBAR_NCL, FBAR_NCU Mean forecast normal upper and lower confidence lim-

its
39-41 FSTDEV, FSTDEV_NCL, FST-

DEV_NCU
Standard deviation of the error including normal up-
per and lower confidence limits

42-43 OBAR_NCL, OBAR_NCU Mean observation normal upper and lower confidence
limits

44-46 OSTDEV, OSTDEV_NCL,
OSTDEV_NCU

Standard deviation of the error including normal up-
per and lower confidence limits

47-49 PR_CORR, PR_CORR_NCL,
PR_CORR_NCU

Pearson correlation coefficient including normal upper
and lower confidence limits

50-52 ME, ME_NCL, ME_NCU Mean error including normal upper and lower confi-
dence limits

53-55 ESTDEV, ESTDEV_NCL,
ESTDEV_NCU

Standard deviation of the error including normal up-
per and lower confidence limits

56 MBIAS Magnitude bias
57 MSE Mean squared error
58 BCMSE Bias corrected root mean squared error
59 RMSE Root mean squared error

266 Chapter 13. Ensemble-Stat Tool

Chapter 14

Wavelet-Stat Tool

14.1 Introduction

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations according to intensity and
scale. This section describes the Wavelet-Stat tool, which enables users to apply the Intensity-Scale verifica-
tion technique described by Casati et al. (2004) (page 448).

The Intensity-Scale technique is one of the recently developed verification approaches that focus on verifica-
tion of forecasts defined over spatial domains. Spatial verification approaches, as opposed to point-by-point
verification approaches, aim to account for the presence of features and for the coherent spatial structure
characterizing meteorological fields. Since these approaches account for the intrinsic spatial correlation ex-
isting between nearby grid-points, they do not suffer from point-by-point comparison related verification
issues, such as double penalties. Spatial verification approaches aim to account for the observation and
forecast time-space uncertainties, and aim to provide feedback on the forecast error in physical terms.

The Intensity-Scale verification technique, as most of the spatial verification approaches, compares a forecast
field to an observation field. To apply the Intensity-Scale verification approach, observations need to be
defined over the same spatial domain of the forecast to be verified.

Within the spatial verification approaches, the Intensity-Scale technique belongs to the scale-decomposition
(or scale-separation) verification approaches. The scale-decomposition approaches enable users to perform
the verification on different spatial scales. Weather phenomena on different scales (e.g. frontal systems
versus convective showers) are often driven by different physical processes. Verification on different spatial
scales can therefore provide deeper insights into model performance at simulating these different processes.

The spatial scale components are obtained usually by applying a single band spatial filter to the forecast and
observation fields (e.g. Fourier, Wavelets). The scale-decomposition approaches measure error, bias and skill
of the forecast on each different scale component. The scale-decomposition approaches therefore provide
feedback on the scale dependency of the error and skill, on the no-skill to skill transition scale, and on the
capability of the forecast of reproducing the observed scale structure.

The Intensity-Scale technique evaluates the forecast skill as a function of the intensity values and of the spa-
tial scale of the error. The scale components are obtained by applying a two dimensional Haar wavelet filter.
Note that wavelets, because of their locality, are suitable for representing discontinuous fields characterized
by few sparse non-zero features, such as precipitation. Moreover, the technique is based on a categorical
approach, which is a robust and resistant approach, suitable for non-normally distributed variables, such as

267

MET User’s Guide, version 11.1.0-beta2

precipitation. The intensity-scale technique was specifically designed to cope with the difficult characteristics
of precipitation fields, and for the verification of spatial precipitation forecasts. However, the intensity-scale
technique can also be applied to verify other variables, such as cloud fraction.

14.2 Scientific and statistical aspects

14.2.1 The method

Casati et al. (2004) (page 448) applied the Intensity-Scale verification to preprocessed and re-calibrated (un-
biased) data. The preprocessing was aimed to mainly normalize the data, and defined categorical thresholds
so that each categorical bin had a similar sample size. The recalibration was performed to eliminate the fore-
cast bias. Preprocessing and recalibration are not strictly necessary for the application of the Intensity-Scale
technique. The MET Intensity-Scale Tool does not perform either, and applies the Intensity-Scale approach
to biased forecasts, for categorical thresholds defined by the user.

The Intensity Scale approach can be summarized in the following 5 steps:

1. For each threshold, the forecast and observation fields are transformed into binary fields: where the
grid-point precipitation value meets the threshold criteria it is assigned 1, where the threshold criteria
are not met it is assigned 0. This can also be done with no thresholds indicated at all and in that
case the grid-point values are not transformed to binary fields and instead the raw data is used as
is for statistics. Figure 14.1 illustrates an example of a forecast and observation fields, and their
corresponding binary fields for a threshold of 1mm/h. This case shows an intense storm of the scale
of 160 km displaced almost its entire length. The displacement error is clearly visible from the binary
field difference and the contingency table image obtained for the same threshold Table 14.1.

2. The binary forecast and observation fields obtained from the thresholding are then decomposed into
the sum of components on different scales, by using a 2D Haar wavelet filter (Figure 14.3). Note that
the scale components are fields, and their sum adds up to the original binary field. For a forecast
defined over square domain of 2n * *𝑥 * * : 𝑚𝑎𝑡ℎ :mathbf{2^n} grid-points, the scale components
are n+1: n mother wavelet components + the largest father wavelet (or scale-function) component.
The n mother wavelet components have resolution equal to 1, 2, 4, . . . 2n−1 grid-points. The largest
father wavelet component is a constant field over the 2n * *𝑥 * * : 𝑚𝑎𝑡ℎ :mathbf{2^n} grid-point
domain with value equal to the field mean.

Note that the wavelet transform is a linear operator: this implies that the difference of the spatial scale com-
ponents of the binary forecast and observation fields (Figure 14.3) are equal to the spatial scale components
of the difference of the binary forecast and observation fields (Figure 14.2), and these scale components
also add up to the original binary field difference (Figure 14.1). The intensity-scale technique considers
thus the spatial scale of the error. For the case illustrated (Figure 14.1 and Figure 14.2) note the large error
associated at the scale of 160 km, due the storm, 160km displaced almost its entire length.

Note also that the means of the binary forecast and observation fields (i.e. their largest father wavelet
components) are equal to the proportion of forecast and observed events above the threshold, (a+b)/n and
(a+c)/n, evaluated from the contingency table counts (Table 14.1) obtained from the original forecast and
observation fields by thresholding with the same threshold used to obtain the binary forecast and observation
fields. This relation is intuitive when observing forecast and observation binary fields and their correspond-
ing contingency table image (Figure 14.1). The comparison of the largest father wavelet component of
binary forecast and observation fields therefore provides feedback on the whole field bias.

268 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

3. For each threshold (t) and for each scale component (j) of the binary forecast and observation, the
Mean Squared Error (MSE) is then evaluated (Figure 14.4). The error is usually large for small thresh-
olds, and decreases as the threshold increases. This behavior is partially artificial, and occurs because
the smaller the threshold the more events will exceed it, and therefore the larger would be the error,
since the error tends to be proportional to the amount of events in the binary fields. The artificial ef-
fect can be diminished by normalization: because of the wavelet orthogonal properties, the sum of the
MSE of the scale components is equal to the MSE of the original binary fields: 𝑀𝑆𝐸(𝑡) = 𝑗𝑀𝑆𝐸(𝑡, 𝑗).
Therefore, the percentage that the MSE for each scale contributes to the total MSE may be computed:
for a given threshold, t, 𝑀𝑆𝐸%(𝑡, 𝑗) = 𝑀𝑆𝐸(𝑡, 𝑗)/𝑀𝑆𝐸(𝑡). The MSE% does not exhibit the threshold
dependency, and usually shows small errors on large scales and large errors on small scales, with the
largest error associated to the smallest scale and highest threshold. For the NIMROD case illustrated,
note the large error at 160 km and between the thresholds of and 4 mm/h, due to the storm, 160km
displaced almost its entire length.

Note that the MSE of the original binary fields is equal to the proportion of the counts of misses (c/n) and
false alarms (b/n) for the contingency table (Table 14.1) obtained from the original forecast and observation
fields by thresholding with the same threshold used to obtain the binary forecast and observation fields:
𝑀𝑆𝐸(𝑡) = (𝑏 + 𝑐)/𝑛. This relation is intuitive when comparing the forecast and observation binary field
difference and their corresponding contingency table image (Table 14.1).

4. The MSE for the random binary forecast and observation fields is estimated by 𝑀𝑆𝐸(𝑡)𝑟𝑎𝑛𝑑𝑜𝑚 =
𝐹𝐵𝐼 * 𝐵𝑟 * (1 − 𝐵𝑟) + 𝐵𝑟 * (1 − 𝐹𝐵𝐼 * 𝐵𝑟), where 𝐹𝐵𝐼 = (𝑎 + 𝑏)/(𝑎 + 𝑐) is the frequency bias
index and 𝐵𝑟 = (𝑎+ 𝑐)/𝑛 is the sample climatology from the contingency table (Table 14.1) obtained
from the original forecast and observation fields by thresholding with the same threshold used to
obtain the binary forecast and observation fields. This formula follows by considering the Murphy and
Winkler (1987) (page 452) framework, applying the Bayes’ theorem to express the joint probabilities
b/n and c/n as product of the marginal and conditional probability (e.g. Jolliffe and Stephenson, 2012
(page 451); Wilks, 2010 (page 454)), and then noticing that for a random forecast the conditional
probability is equal to the unconditional one, so that b/n and c/n are equal to the product of the
corresponding marginal probabilities solely.

5. For each threshold (t) and scale component (j), the skill score based on the MSE of binary forecast
and observation scale components is evaluated (Figure 14.5). The standard skill score definition as
in Jolliffe and Stephenson (2012) (page 451) or Wilks (2010) (page 454) is used, and random chance
is used as reference forecast. The MSE for the random binary forecast is equipartitioned on the n+1
scales to evaluate the skill score: 𝑆𝑆(𝑡, 𝑗) = 1−𝑀𝑆𝐸(𝑡, 𝑗) * (𝑛+ 1)/𝑀𝑆𝐸(𝑡)𝑟𝑎𝑛𝑑𝑜𝑚

The Intensity-Scale (IS) skill score evaluates the forecast skill as a function of the precipitation intensity and
of the spatial scale of the error. Positive values of the IS skill score are associated with a skillful forecast,
whereas negative values are associated with no skill. Usually large scales exhibit positive skill (large scale
events, such as fronts, are well predicted), whereas small scales exhibit negative skill (small scale events,
such as convective showers, are less predictable), and the smallest scale and highest thresholds exhibit the
worst skill. For the NIMROD case illustrated note the negative skill associated with the 160 km scale, for the
thresholds to 4 mm/h, due to the 160 km storm displaced almost its entire length.

14.2. Scientific and statistical aspects 269

MET User’s Guide, version 11.1.0-beta2

Table 14.1: 2x2 contingency table in terms of counts. The
nij values in the table represent the counts in each forecast-
observation category, where i represents the forecast and j
represents the observations.

Forecast Observation Total
o = 1 (e.g., “Yes”) o = 0 (e.g., “No”)

f = 1 (e.g., “Yes”) Hits = a False Alarms = b a+b
f = 0 (e.g., “No”) Misses = c Correct rejections = d c+d
Total a+c b+d a+b+c+d

270 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Figure 14.1: NIMROD 3h lead-time forecast and corresponding verifying analysis field (precipitation rate
in mm/h, valid the 05/29/99 at 15:00 UTC); forecast and analysis binary fields obtained for a threshold of
1mm/h, the binary field difference has their corresponding Contingency Table Image (see Table 14.1). The
forecast shows a storm of 160 km displaced almost its entire length.

14.2. Scientific and statistical aspects 271

MET User’s Guide, version 11.1.0-beta2

Figure 14.2: NIMROD binary forecast (top) and binary analysis (bottom) spatial scale components obtained
by a 2D Haar wavelet transform (th=1 mm/h). Scales 1 to 8 refer to mother wavelet components (5, 10,
20, 40, 80, 160, 320, 640 km resolution); scale 9 refers to the largest father wavelet component (1280 km
resolution).

272 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Figure 14.3: NIMROD binary field difference spatial scale components obtained by a 2D Haar wavelet
transform (th=1 mm/h). Scales 1 to 8 refer to mother wavelet components (5, 10, 20, 40, 80, 160, 320,
640 km resolution); scale 9 refers to the largest father wavelet component (1280 km resolution). Note the
large error at the scale 6 = 160 km, due to the storm, 160 km displaced almost of its entire length.

14.2. Scientific and statistical aspects 273

MET User’s Guide, version 11.1.0-beta2

Figure 14.4: MSE and MSE % for the NIMROD binary forecast and analysis spatial scale components. In
the MSE%, note the large error associated with the scale 6 = 160 km, for the thresholds ½ to 4 mm/h,
associated with the displaced storm.

274 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Figure 14.5: Intensity-Scale skill score for the NIMROD forecast and analysis shown in Figure 14.1. The skill
score is a function of the intensity of the precipitation rate and spatial scale of the error. Note the negative
skill associated with the scale 6 = 160 km, for the thresholds to 4 mm/h, associated with the displaced
storm.

In addition to the MSE and the SS, the energy squared is also evaluated, for each threshold and scale
(Figure 14.6). The energy squared of a field X is the average of the squared values: 𝐸𝑛2(𝑋) =

∑︀
𝑖 𝑥

2
𝑖 . The

energy squared provides feedback on the amount of events present in the forecast and observation fields for
each scale, for a given threshold. Usually, small thresholds are associated with a large energy, since many
events exceed the threshold. Large thresholds are associated with a small energy, since few events exceed
the threshold. Comparison of the forecast and observed squared energy provide feedback on the bias on
different scales, for each threshold.

14.2. Scientific and statistical aspects 275

MET User’s Guide, version 11.1.0-beta2

Figure 14.6: Energy squared and energy squared percentages, for each threshold and sale, for the NIMROD
forecast and analysis, and forecast and analysis En2 and En2% relative differences.

The En2 bias for each threshold and scale is assessed by the En2 relative difference, equal to the difference
between forecast and observed squared energies normalized by their sum: 𝐸𝑛2(𝐹) − 𝐸𝑛2(𝑂)]/[𝐸𝑛2(𝐹) +
𝐸𝑛2(𝑂)]. Since defined in such a fashion, the En2 relative difference accounts for the difference between
forecast and observation squared energies relative to their magnitude, and it is sensitive therefore to the
ratio of the forecast and observed squared energies. The En2 relative difference ranges between -1 and 1,
positive values indicate over-forecast and negative values indicate under-forecast. For the NIMROD case

276 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

illustrated the forecast exhibits over-forecast for small thresholds, quite pronounced on the large scales, and
under-forecast for high thresholds.

As for the MSE, the sum of the energy of the scale components is equal to the energy of the original binary
field: 𝐸𝑛2(𝑡) = 𝑗 𝐸𝑛2(𝑡, 𝑗). Therefore, the percentage that the En2 for each scale contributes the total
En2 may be computed: for a given threshold, t, 𝐸𝑛2%(𝑡, 𝑗) = 𝐸𝑛2(𝑡, 𝑗)/𝐸𝑛2(𝑡). Usually, for precipitation
fields, low thresholds exhibit most of the energy percentage on large scales (and less percentage on the
small scales), since low thresholds are associated with large scale features, such as fronts. On the other
hand, for higher thresholds, the energy percentage is usually larger on small scales, since intense events are
associated with small scales features, such as convective cells or showers. The comparison of the forecast
and observation squared energy percentages provides feedback on how the events are distributed across the
scales, and enables the comparison of forecast and observation scale structure.

For the NIMROD case illustrated, the scale structure is assessed again by the relative difference, but cal-
culated of the squared energy percentages. For small thresholds the forecast overestimates the number of
large scale events and underestimates the number of small scale events, in proportion to the total number
of events. On the other hand, for larger thresholds the forecast underestimates the number of large scale
events and overestimates the number of small scale events, again in proportion to the total number of events.
Overall it appears that the forecast overestimates the percentage of events associated with high occurrence,
and underestimates the percentage of events associated with low occurrence. The En2% for the 64 mm/h
thresholds is homogeneously underestimated for all the scales, since the forecast does not have any event
exceeding this threshold.

Note that the energy squared of the observation binary field is identical to the sample climatology 𝐵𝑟 =
(𝑎 + 𝑐)/𝑛. Similarly, the energy squared of the forecast binary field is equal to (𝑎 + 𝑏)/𝑛. The ratio of the
squared energies of the forecast and observation binary fields is equal to the 𝐹𝐵𝐼 = (𝑎+ 𝑏)/(𝑎+ 𝑐), for the
contingency table (Table 14.1) obtained from the original forecast and observation fields by thresholding
with the same threshold used to obtain the binary forecast and observation fields.

14.2.2 The spatial domain constraints

The Intensity-Scale technique is constrained by the fact that orthogonal wavelets (discrete wavelet trans-
forms) are usually performed dyadic domains, square domains of 2n * *𝑥 * * : 𝑚𝑎𝑡ℎ :mathbf{2^n} grid-
points. The Wavelet-Stat tool handles this issue based on settings in the configuration file by defining tiles
of dimensions 2n * *𝑥 * * : 𝑚𝑎𝑡ℎ :mathbf{2^n} over the input domain in the following ways:

1. User-Defined Tiling: The user may define one or more tiles of size 2n**𝑥** : 𝑚𝑎𝑡ℎ :mathbf{2^n} over
their domain to be applied. This is done by selecting the grid coordinates for the lower-left corner of
the tile(s) and the tile dimension to be used. If the user specifies more than one tile, the Intensity-Scale
method will be applied to each tile separately. At the end, the results will automatically be aggregated
across all the tiles and written out with the results for each of the individual tiles. Users are encouraged
to select tiles which consist entirely of valid data.

2. Automated Tiling: This tiling method is essentially the same as the user-defined tiling method listed
above except that the tool automatically selects the location and size of the tile(s) to be applied. It
figures out the maximum tile of dimension 2n**𝑥** : 𝑚𝑎𝑡ℎ :mathbf{2^n} that fits within the domain
and places the tile at the center of the domain. For domains that are very elongated in one direction,
it defines as many of these tiles as possible that fit within the domain.

3. Padding: If the domain size is only slightly smaller than 2n * *𝑥 * * : 𝑚𝑎𝑡ℎ :mathbf{2^n}, for

14.2. Scientific and statistical aspects 277

MET User’s Guide, version 11.1.0-beta2

certain variables (e.g. precipitation), it is advisable to expand the domain out to 2n * *𝑥 * * :
𝑚𝑎𝑡ℎ :mathbf{2^n} grid-points by adding extra rows and/or columns of fill data. For precipita-
tion variables, a fill value of zero is used. For continuous variables, such as temperature, the fill value
is defined as the mean of the valid data in the rest of the field. A drawback to the padding method
is the introduction of artificial data into the original field. Padding should only be used when a very
small number of rows and/or columns need to be added.

14.2.3 Aggregation of statistics on multiple cases

The Stat-Analysis tool aggregates the intensity scale technique results. Since the results are scale-dependent,
it is sensible to aggregate results from multiple model runs (e.g. daily runs for a season) on the same spatial
domain, so that the scale components for each singular case will be the same number, and the domain, if
not a square domain of 2n * *𝑥 * * : 𝑚𝑎𝑡ℎ :mathbf{2^n} grid-points, will be treated in the same fashion.
Similarly, the intensity thresholds for each run should all be the same.

The MSE and forecast and observation squared energy for each scale and thresholds are aggregated simply
with a weighted average, where weights are proportional to the number of grid-points used in each single
run to evaluate the statistics. If the same domain is always used (and it should) the weights result all the
same, and the weighted averaging is a simple mean. For each threshold, the aggregated Br is equal to the
aggregated squared energy of the binary observation field, and the aggregated FBI is obtained as the ratio
of the aggregated squared energies of the forecast and observation binary fields. From aggregated Br and
FBI, the MSErandom for the aggregated runs can be evaluated using the same formula as for the single run.
Finally, the Intensity-Scale Skill Score is evaluated by using the aggregated statistics within the same formula
used for the single case.

14.3 Practical information

The following sections describe the usage statement, required arguments and optional arguments for the
Stat-Analysis tool.

14.3.1 wavelet_stat usage

The usage statement for the Wavelet-Stat tool is shown below:

Usage: wavelet_stat
fcst_file
obs_file
config_file
[-outdir path]
[-log file]
[-v level]
[-compress level]

wavelet_stat has three required arguments and accepts several optional ones.

278 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

14.3.1.1 Required arguments for wavelet_stat

1. The fcst_file argument is the gridded file containing the model data to be verified.

2. The obs_file argument is the gridded file containing the observations to be used.

3. The config_file argument is the configuration file to be used. The contents of the configuration file are
discussed below.

14.3.1.2 Optional arguments for wavelet_stat

4. The -outdir path indicates the directory where output files should be written.

5. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

6. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity will increase the amount of logging.

7. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the wavelet_stat calling sequence is listed below:

wavelet_stat \
sample_fcst.grb \
sample_obs.grb \
WaveletStatConfig

In the example, the Wavelet-Stat tool will verify the model data in the sample_fcst.grb GRIB file using the
observations in the sample_obs.grb GRIB file applying the configuration options specified in the Wavelet-
StatConfig file.

14.3.2 wavelet_stat configuration file

The default configuration file for the Wavelet-Stat tool, WaveletStatConfig_default, can be found in the
installed share/met/config directory. Another version of the configuration file is provided in scripts/config.
We recommend that users make a copy of the default (or other) configuration file prior to modifying it. The
contents are described in more detail below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

14.3. Practical information 279

MET User’s Guide, version 11.1.0-beta2

model = "WRF";
desc = "NA";
obtype = "ANALYS";
fcst = { ... }
obs = { ... }
regrid = { ... }
mask_missing_flag = NONE;
met_data_dir = "MET_BASE";
ps_plot_flag = TRUE;
fcst_raw_plot = { color_table = "MET_BASE/colortables/met_default.ctable";

plot_min = 0.0; plot_max = 0.0; }
obs_raw_plot = { ... }
wvlt_plot = { ... }
output_prefix = "";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

// Empty list of thresholds
cat_thresh = [];

// Or explicitly set the NA threshold type
cat_thresh = [>0.0, >=5.0, NA];

The cat_thresh option defines an array of thresholds for each field defined in the fcst and obs dictionar-
ies. The number of forecast and observation categorical thresholds must match. If set to an empty list,
the thresholds will not be applied (no binary masking) and all the raw grid-point values will be used for
downstream statistics.

If the array of thresholds is an empty list, the application will set the threshold to NA internally and skip
applying the thresholds. If the threshold is set to NA explicitly in the list, the application will also skip
applying the threshold.

Since the application has the ability to loop through multiple thresholds (for multiple fields), a user can
include NA in the list of thresholds to produce statistics for the raw data values for the given field.

grid_decomp_flag = AUTO;

tile = {
width = 0;
location = [{ x_ll = 0; y_ll = 0; }];

}

The grid_decomp_flag variable specifies how tiling should be performed:

• AUTO indicates that the automated-tiling should be done.

280 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

• TILE indicates that the user-defined tiles should be applied.

• PAD indicated that the data should be padded out to the nearest dimension of 2n * *𝑥 * * :
𝑚𝑎𝑡ℎ :mathbf{2^n}

The width and location variables allow users to manually define the tiles of dimension they would like to
apply. The x_ll and y_ll variables specify the location of one or more lower-left tile grid (x, y) points.

wavelet = {
type = HAAR;
member = 2;

}

The wavelet_flag and wavelet_k variables specify the type and shape of the wavelet to be used for the scale
decomposition. The Casati et al. (2004) (page 448) method uses a Haar wavelet which is a good choice for
discontinuous fields like precipitation. However, users may choose to apply any wavelet family/shape that
is available in the GNU Scientific Library. Values for the wavelet_flag variable, and associated choices for k,
are described below:

• HAAR for the Haar wavelet (member = 2).

• HAAR_CNTR for the Centered-Haar wavelet (member = 2).

• DAUB for the Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16, 18, 20).

• DAUB_CNTR for the Centered-Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16, 18, 20).

• BSPLINE for the Bspline wavelet (member = 103, 105, 202, 204, 206, 208, 301, 303, 305, 307, 309).

• BSPLINE_CNTR for the Centered-Bspline wavelet (member = 103, 105, 202, 204, 206, 208, 301, 303,
305, 307, 309).

output_flag = {
isc = BOTH;

}

The output_flag array controls the type of output that the Wavelet-Stat tool generates. This flag is set
similarly to the output flag of the other MET tools, with possible values of NONE, STAT, and BOTH. The ISC
line type is the only one available for Intensity-Scale STAT lines.

nc_pairs_flag = {
latlon = TRUE;
raw = TRUE;

}

The nc_pairs_flag is described in Section 12.3.2

14.3. Practical information 281

MET User’s Guide, version 11.1.0-beta2

14.3.3 wavelet_stat output

wavelet_stat produces output in STAT and, optionally, ASCII and NetCDF and PostScript formats. The ASCII
output duplicates the STAT output but has the data organized by line type. While the Wavelet-Stat tool
currently only outputs one STAT line type, additional line types may be added in future releases. The output
files are written to the default output directory or the directory specified by the -outdir command line option.

The output STAT file is named using the following naming convention:

wavelet_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV.stat where PREFIX indicates the user-defined
output prefix, HHMMSS indicates the forecast lead time, and YYYYMMDD_HHMMSS indicates the fore-
cast valid time.

The output ASCII files are named similarly:

wavelet_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV_TYPE.txt where TYPE is isc to indicate that this
is an intensity-scale line type.

The format of the STAT and ASCII output of the Wavelet-Stat tool is similar to the format of the STAT and
ASCII output of the Point-Stat tool. Please refer to the tables in Section 11.3.3 for a description of the
common output for STAT files types. The information contained in the STAT and isc files are identical.
However, for consistency with the STAT files produced by other tools, the STAT file will only have names for
the header columns. The isc file contains names for all columns. The format of the ISC line type is explained
in the following table.

282 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 14.2: Header information for each file wavelet-stat out-
puts.

HEADER
Column Num-
ber

Header Column
Name

Description

1 VERSION Version number
2 MODEL User provided text string designating model name
3 DESC User provided text string describing the verification task
4 FCST_LEAD Forecast lead time in HHMMSS format
5 FCST_VALID_BEG Forecast valid start time in YYYYMMDD_HHMMSS format
6 FCST_VALID_END Forecast valid end time in YYYYMMDD_HHMMSS format
7 OBS_LEAD Observation lead time in HHMMSS format
8 OBS_VALID_BEG Observation valid start time in YYYYMMDD_HHMMSS format
9 OBS_VALID_END Observation valid end time in YYYYMMDD_HHMMSS format
10 FCST_VAR Model variable
11 FCST_UNITS Units for model variable
12 FCST_LEV Selected Vertical level for forecast
13 OBS_VAR Observation variable
14 OBS_UNITS Units for observation variable
15 OBS_LEV Selected Vertical level for observations
16 OBTYPE User provided text string designating the observation type
17 VX_MASK Verifying masking region indicating the masking grid or polyline

region applied
18 INTERP_MTHD NA in Wavelet-Stat
19 INTERP_PNTS NA in Wavelet-Stat
20 FCST_THRESH The threshold applied to the forecast
21 OBS_THRESH The threshold applied to the observations
22 COV_THRESH NA in Wavelet-Stat
23 ALPHA NA in Wavelet-Stat
24 LINE_TYPE See table below.

14.3. Practical information 283

MET User’s Guide, version 11.1.0-beta2

Table 14.3: Format information for the ISC (Intensity-Scale)
output line type.

ISC OUTPUT FORMAT
Column Number ISC Column Name Description
24 ISC Intensity-Scale line type
25 TOTAL The number of grid points (forecast locations) used
26 TILE_DIM The dimensions of the tile
27 TILE_XLL Horizontal coordinate of the lower left corner of the tile
28 TILE_YLL Vertical coordinate of the lower left corner of the tile
29 NSCALE Total number of scales used in decomposition
30 ISCALE The scale at which all information following applies
31 MSE Mean squared error for this scale
32 ISC The intensity scale skill score
33 FENERGY Forecast energy squared for this scale
34 OENERGY Observed energy squared for this scale
35 BASER The base rate (not scale dependent)
36 FBIAS The frequency bias

The Wavelet-Stat tool creates a NetCDF output file containing the raw and decomposed values for the
forecast, observation, and difference fields for each combination of variable and threshold value.

The dimensions and variables included in the wavelet_stat NetCDF files are described in Tables Table 14.4
and Table 14.5.

Table 14.4: Dimensions defined in NetCDF output.

wavelet_stat
NetCDF DIMEN-
SIONS
NetCDF Dimen-
sion

Description

x Dimension of the tile which equals 2n

y Dimension of the tile which equals 2n

scale Dimension for the number of scales. This is set to n+2, where 2n is the tile dimension.
The 2 extra scales are for the binary image and the wavelet averaged over the whole
tile.

tile Dimension for the number of tiles used

284 Chapter 14. Wavelet-Stat Tool

MET User’s Guide, version 11.1.0-beta2

Table 14.5: Variables defined in NetCDF output.

wavelet-stat NetCDF
VARIABLES
NetCDF Variable Dimen-

sion
Description

FCST_FIELD_LEVEL_RAW tile, x, y Raw values for the forecast field specified by “FIELD_LEVEL”
OBS_FIELD_LEVEL_RAW tile, x, y Raw values for the observation field specified by “FIELD_LEVEL”
DIFF_FIELD_LEVEL_RAW tile, x, y Raw values for the difference field (f-o) specified by

“FIELD_LEVEL”
FCST_FIELD_LEVEL_THRESHtile, scale,

x, y
Wavelet scale-decomposition of the forecast field specified by
“FIELD_LEVEL_THRESH”

OBS_FIELD_LEVEL_THRESHtile, scale,
x, y

Wavelet scale-decomposition of the observation field specified by
“FIELD_LEVEL_THRESH”

Lastly, the Wavelet-Stat tool creates a PostScript plot summarizing the scale-decomposition approach used
in the verification. The PostScript plot is generated using internal libraries and does not depend on an
external plotting package. The generation of this PostScript output can be disabled using the ps_plot_flag
configuration file option.

The PostScript plot begins with one summary page illustrating the tiling method that was applied to the
domain. The remaining pages depict the Intensity-Scale method that was applied. For each combination
of field, tile, and threshold, the binary difference field (f-o) is plotted followed by the difference field for
each decomposed scale. Underneath each difference plot, the statistics applicable to that scale are listed.
Examples of the PostScript plots can be obtained by running the example cases provided with the MET
tarball.

14.3. Practical information 285

MET User’s Guide, version 11.1.0-beta2

286 Chapter 14. Wavelet-Stat Tool

Chapter 15

GSI Tools

Gridpoint Statistical Interpolation (GSI) diagnostic files are binary files written out from the data assimilation
code before the first and after each outer loop. The files contain useful information about how a single
observation was used in the analysis by providing details such as the innovation (O-B), observation values,
observation error, adjusted observation error, and quality control information.

For more detail on generating GSI diagnostic files and their contents, see the GSI User’s Guide.

When MET reads GSI diagnostic files, the innovation (O-B; generated prior to the first outer loop) or analysis
increment (O-A; generated after the final outer loop) is split into separate values for the observation (OBS)
and the forecast (FCST), where the forecast value corresponds to the background (O-B) or analysis (O-A).

MET includes two tools for processing GSI diagnostic files. The GSID2MPR tool reformats individual GSI
diagnostic files into the MET matched pair (MPR) format, similar to the output of the Point-Stat tool. The
GSIDENS2ORANK tool processes an ensemble of GSI diagnostic files and reformats them into the MET
observation rank (ORANK) line type, similar to the output of the Ensemble-Stat tool. The output of both
tools may be passed to the Stat-Analysis tool to compute a wide variety of continuous, categorical, and
ensemble statistics.

15.1 GSID2MPR tool

This section describes how to run the GSID2MPR tool. The GSID2MPR tool reformats one or more GSI
diagnostic files into an ASCII matched pair (MPR) format, similar to the MPR output of the Point-Stat tool.
The output MPR data may be passed to the Stat-Analysis tool to compute a wide variety of continuous or
categorical statistics.

287

http://www.dtcenter.org/com-GSI/users/docs/index.php

MET User’s Guide, version 11.1.0-beta2

15.1.1 gsid2mpr usage

The usage statement for the GSID2MPR tool is shown below:

Usage: gsid2mpr
gsi_file_1 [gsi_file_2 ... gsi_file_n]
[-swap]
[-no_check_dup]
[-channel n]
[-set_hdr col_name value]
[-suffix string]
[-outdir path]
[-log file]
[-v level]

gsid2mpr has one required argument and accepts several optional ones.

15.1.1.1 Required arguments for gsid2mpr

1. The gsi_file_1 [gsi_file2 . . . gsi_file_n] argument indicates the GSI diagnostic files (conventional or
radiance) to be reformatted.

15.1.1.2 Optional arguments for gsid2mpr

2. The -swap option switches the endianness when reading the input binary files.

3. The -no_check_dup option disables the checking for duplicate matched pairs which slows down the
tool considerably for large files.

4. The -channel n option overrides the default processing of all radiance channels with the values of a
comma-separated list.

5. The -set_hdr col_name value option specifies what should be written to the output header columns.

6. The -suffix string option overrides the default output filename suffix (.stat).

7. The -outdir path option overrides the default output directory (./).

8. The -log file option outputs log messages to the specified file.

9. The -v level option overrides the default level of logging (2).

An example of the gsid2mpr calling sequence is shown below:

gsid2mpr diag_conv_ges.mem001 \
-set_hdr MODEL GSI_MEM001 \
-outdir out

In this example, the GSID2MPR tool will process a single input file named diag_conv_ges.mem001 file, set
the output MODEL header column to GSI_MEM001, and write output to the out directory. The output file
is named the same as the input file but a .stat suffix is added to indicate its format.

288 Chapter 15. GSI Tools

MET User’s Guide, version 11.1.0-beta2

15.1.2 gsid2mpr output

The GSID2MPR tool performs a simple reformatting step and thus requires no configuration file. It can read
both conventional and radiance binary GSI diagnostic files. Support for additional GSI diagnostic file type
may be added in future releases. Conventional files are determined by the presence of the string conv in the
filename. Files that are not conventional are assumed to contain radiance data. Multiple files of either type
may be passed in a single call to the GSID2MPR tool. For each input file, an output file will be generated
containing the corresponding matched pair data.

The GSID2MPR tool writes the same set of MPR output columns for the conventional and radiance data
types. However, it also writes additional columns at the end of the MPR line which depend on the input file
type. Those additional columns are described in the following tables.

Table 15.1: Format information for GSI Diagnostic Conven-
tional MPR (Matched Pair) output line type.

GSI DIAGNOSTIC CONVENTIONAL MPR OUTPUT FILE
Column Number Column Name Description
1-37 Standard MPR columns described in Table 11.20.
38 OBS_PRS Model pressure value at the observation height (hPa)
39 OBS_ERR_IN PrepBUFR inverse observation error
40 OBS_ERR_ADJ read_PrepBUFR inverse observation error
41 OBS_ERR_FIN Final inverse observation error
42 PREP_USE read_PrepBUFR usage
43 ANLY_USE Analysis usage (1 for yes, -1 for no)
44 SETUP_QC Setup quality control
45 QC_WGHT Non-linear quality control relative weight

Table 15.2: Format information for GSI Diagnostic Radiance
MPR (Matched Pair) output line type.

GSI DIAGNOSTIC RADIANCE MPR OUTPUT FILE
Column Number Column Name Description
1-37 Standard MPR columns described in Table 11.20.
38 CHAN_USE Channel used (1 for yes, -1 for no)
39 SCAN_POS Sensor scan position
40 SAT_ZNTH Satellite zenith angle (degrees)
41 SAT_AZMTH Satellite azimuth angle (degrees)
42 SUN_ZNTH Solar zenith angle (degrees)
43 SUN_AZMTH Solar azimuth angle (degrees)
44 SUN_GLNT Sun glint angle (degrees)
45 FRAC_WTR Fractional coverage by water
46 FRAC_LND Fractional coverage by land
47 FRAC_ICE Fractional coverage by ice
48 FRAC_SNW Fractional coverage by snow
49 SFC_TWTR Surface temperature over water (K)

continues on next page

15.1. GSID2MPR tool 289

MET User’s Guide, version 11.1.0-beta2

Table 15.2 – continued from previous page
GSI DIAGNOSTIC RADIANCE MPR OUTPUT FILE

Column Number Column Name Description
50 SFC_TLND Surface temperature over land (K)
51 SFC_TICE Surface temperature over ice (K)
52 SFC_TSNW Surface temperature over snow (K)
53 TSOIL Soil temperature (K)
54 SOILM Soil moisture
55 LAND_TYPE Surface land type
56 FRAC_VEG Vegetation fraction
57 SNW_DPTH Snow depth
58 SFC_WIND Surface wind speed (m/s)
59 FRAC_CLD CLD_LWC Cloud fraction (%) Cloud liquid water (kg/m**2) (microwave only)
60 CTOP_PRS TC_PWAT Cloud top pressure (hPa) Total column precip. water (km/m**2) (microwave only)
61 TFND Foundation temperature: Tr
62 TWARM Diurnal warming: d(Tw) at depth zob
63 TCOOL Sub-layer cooling: d(Tc) at depth zob
64 TZFND d(Tz)/d(Tr)
65 OBS_ERR Inverse observation error
66 FCST_NOBC Brightness temperature with no bias correction (K)
67 SFC_EMIS Surface emissivity
68 STABILITY Stability index
69 PRS_MAX_WGT Pressure of the maximum weighing function

The gsid2mpr output may be passed to the Stat-Analysis tool to derive additional statistics. In particular,
users should consider running the aggregate_stat job type to read MPR lines and compute partial sums
(SL1L2), continuous statistics (CNT), contingency table counts (CTC), or contingency table statistics (CTS).
Stat-Analysis has been enhanced to parse any extra columns found at the end of the input lines. Users can
filter the values in those extra columns using the -column_thresh, -column_str, and -column_str_exc job
command options.

An example of the Stat-Analysis calling sequence is shown below:

stat_analysis -lookin diag_conv_ges.mem001.stat \
-job aggregate_stat -line_type MPR -out_line_type CNT \
-fcst_var t -column_thresh ANLY_USE eq1

In this example, the Stat-Analysis tool will read MPR lines from the input file named
diag_conv_ges.mem001.stat, retain only those lines where the FCST_VAR column indicates temperature
(t) and where the ANLY_USE column has a value of 1.0, and derive continuous statistics.

290 Chapter 15. GSI Tools

MET User’s Guide, version 11.1.0-beta2

15.2 GSIDENS2ORANK tool

This section describes how to run the GSIDENS2ORANK tool. The GSIDENS2ORANK tool processes an
ensemble of GSI diagnostic files and reformats them into the MET observation rank (ORANK) line type,
similar to the output of the Ensemble-Stat tool. The ORANK line type contains ensemble matched pair
information and is analogous to the MPR line type for a deterministic model. The output ORANK data may
be passed to the Stat-Analysis tool to compute ensemble statistics.

15.2.1 gsidens2orank usage

The usage statement for the GSIDENS2ORANK tool is shown below:

Usage: gsidens2orank
ens_file_1 ... ens_file_n | ens_file_list
-out path
[-ens_mean path]
[-swap]
[-rng_name str]
[-rng_seed str]
[-set_hdr col_name value]
[-log file]
[-v level]

gsidens2orank has three required arguments and accepts several optional ones.

15.2.1.1 Required arguments for gsidens2orank

1. The ens_file_1 . . . ens_file_n argument is a list of ensemble binary GSI diagnostic files to be refor-
matted.

2. The ens_file_list argument is an ASCII file containing a list of ensemble GSI diagnostic files.

3. The -out path argument specifies the name of the output .stat file.

15.2.1.2 Optional arguments for gsidens2orank

4. The -ens_mean path option is the ensemble mean binary GSI diagnostic file.

5. The -swap option switches the endianness when reading the input binary files.

6. The -channel n option overrides the default processing of all radiance channels with a comma-
separated list.

7. The -rng_name str option overrides the default random number generator name (mt19937).

8. The -rng_seed str option overrides the default random number generator seed.

9. The -set_hdr col_name value option specifies what should be written to the output header columns.

15.2. GSIDENS2ORANK tool 291

MET User’s Guide, version 11.1.0-beta2

10. The -log file option outputs log messages to the specified file.

11. The -v level option overrides the default level of logging (2).

An example of the gsidens2orank calling sequence is shown below:

gsidens2orank diag_conv_ges.mem* \
-ens_mean diag_conv_ges.ensmean \
-out diag_conv_ges_ens_mean_orank.txt

In this example, the GSIDENS2ORANK tool will process all of the ensemble members whose file name
matches diag_conv_ges.mem*, write output to the file named diag_conv_ges_ens_mean_orank.txt, and
populate the output ENS_MEAN column with the values found in the diag_conv_ges.ensmean file rather
than computing the ensemble mean values from the ensemble members on the fly.

15.2.2 gsidens2orank output

The GSIDENS2ORANK tool performs a simple reformatting step and thus requires no configuration file. The
multiple files passed to it are interpreted as members of the same ensemble. Therefore, each call to the tool
processes exactly one ensemble. All input ensemble GSI diagnostic files must be of the same type. Mixing
conventional and radiance files together will result in a runtime error. The GSIDENS2ORANK tool processes
each ensemble member and keeps track of the observations it encounters. It constructs a list of the ensemble
values corresponding to each observation and writes an output ORANK line listing the observation value, its
rank, and all the ensemble values. The random number generator is used by the GSIDENS2ORANK tool to
randomly assign a rank value in the case of ties.

The GSID2MPR tool writes the same set of ORANK output columns for the conventional and radiance data
types. However, it also writes additional columns at the end of the ORANK line which depend on the input
file type. The extra columns are limited to quantities which remain constant over all the ensemble members
and are therefore largely a subset of the extra columns written by the GSID2MPR tool. Those additional
columns are described in the following tables.

Table 15.3: Format information for GSI Diagnostic Conven-
tional ORANK (Observation Rank) output line type.

GSI DIAGNOSTIC CONVENTIONAL ORANK OUTPUT FILE
Column Number Column Name Description
1-? Standard ORANK columns described in Table 13.7.
Last-2 N_USE Number of members with ANLY_USE = 1
Last-1 PREP_USE read_PrepBUFR usage
Last SETUP_QC Setup quality control

292 Chapter 15. GSI Tools

MET User’s Guide, version 11.1.0-beta2

Table 15.4: Format information for GSI Diagnostic Radiance
ORANK (Observation Rank) output line type.

GSI DIAGNOSTIC RADIANCE ORANK OUTPUT FILE
Column Number Column Name Description
1-? Standard ORANK columns described in Table 13.7.
Last-24 N_USE Number of members with OBS_QC = 0
Last-23 CHAN_USE Channel used (1 for yes, -1 for no)
Last-22 SCAN_POS Sensor scan position
Last-21 SAT_ZNTH Satellite zenith angle (degrees)
Last-20 SAT_AZMTH Satellite azimuth angle (degrees)
Last-19 SUN_ZNTH Solar zenith angle (degrees)
Last-18 SUN_AZMTH Solar azimuth angle (degrees)
Last-17 SUN_GLNT Sun glint angle (degrees)
Last-16 FRAC_WTR Fractional coverage by water
Last-15 FRAC_LND Fractional coverage by land
Last-14 FRAC_ICE Fractional coverage by ice
Last-13 FRAC_SNW Fractional coverage by snow
Last-12 SFC_TWTR Surface temperature over water (K)
Last-11 SFC_TLND Surface temperature over land (K)
Last-10 SFC_TICE Surface temperature over ice (K)
Last-9 SFC_TSNW Surface temperature over snow (K)
Last-8 TSOIL Soil temperature (K)
Last-7 SOILM Soil moisture
Last-6 LAND_TYPE Surface land type
Last-5 FRAC_VEG Vegetation fraction
Last-4 SNW_DPTH Snow depth
Last-3 TFND Foundation temperature: Tr
Last-2 TWARM Diurnal warming: d(Tw) at depth zob
Last-1 TCOOL Sub-layer cooling: d(Tc) at depth zob
Last TZFND d(Tz)/d(Tr)

The gsidens2orank output may be passed to the Stat-Analysis tool to derive additional statistics. In particular,
users should consider running the aggregate_stat job type to read ORANK lines and ranked histograms
(RHIST), probability integral transform histograms (PHIST), and spread-skill variance output (SSVAR). Stat-
Analysis has been enhanced to parse any extra columns found at the end of the input lines. Users can
filter the values in those extra columns using the -column_thresh, -column_str, and -column_str_exc job
command options.

An example of the Stat-Analysis calling sequence is shown below:

stat_analysis -lookin diag_conv_ges_ens_mean_orank.txt \
-job aggregate_stat -line_type ORANK -out_line_type RHIST \
-by fcst_var -column_thresh N_USE eq20

In this example, the Stat-Analysis tool will read ORANK lines from diag_conv_ges_ens_mean_orank.txt, re-
tain only those lines where the N_USE column indicates that all 20 ensemble members were used, and write

15.2. GSIDENS2ORANK tool 293

MET User’s Guide, version 11.1.0-beta2

ranked histogram (RHIST) output lines for each unique value of encountered in the FCST_VAR column.

294 Chapter 15. GSI Tools

Chapter 16

Stat-Analysis Tool

16.1 Introduction

The Stat-Analysis tool ties together results from the Point-Stat, Grid-Stat, Ensemble-Stat, Wavelet-Stat, and
TC-Gen tools by providing summary statistical information and a way to filter their STAT output files. It
processes the STAT output created by the other MET tools in a variety of ways which are described in this
section.

MET version 9.0 adds support for the passing matched pair data (MPR) into Stat-Analysis using a Python
script with the “-lookin python . . . ” option. An example of running Stat-Analysis with Python embedding
can be found in Appendix F, Section 36.

16.2 Scientific and statistical aspects

The Stat-Analysis tool can perform a variety of analyses, and each type of analysis is called a “job”. The job
types include the ability to (i) aggregate results over a user-specified time; (ii) stratify statistics based on time
of day, model initialization time, lead-time, model run identifier, output filename, or wavelet decomposition
scale; and (iii) compute specific verification indices such as the GO Index1 and wind direction statistics.
Future functionality may include information about time-trends and/or calculations based on climatology
(e.g., anomaly correlation). This section summarizes the capabilities of the supported Stat-Analysis jobs.

1 The GO Index is a summary measure for NWP models that is used by the US Air Force. It combines verification statistics for
several forecast variables and lead times.

295

MET User’s Guide, version 11.1.0-beta2

16.2.1 Filter STAT lines

The Stat-Analysis “filter” job simply filters out specific STAT lines based on user-specified search criteria. All
of the STAT lines that are retained from one or many files are written to a single output file. The output file
for filtered STAT lines must be specified using the -dump_row job command option.

16.2.2 Summary statistics for columns

The Stat-Analysis “summary” job produces summary information for columns of data. After the user speci-
fies the column(s) of interest and any other relevant search criteria, summary information is produced from
values in those column(s) of data. The summary statistics produced are: mean, standard deviation, mini-
mum, maximum, the 10th, 25th, 50th, 75th, and 90th percentiles, the interquartile range, the range, and
both weighted and unweighted means using the logic prescribed by the World Meteorological Organization
(WMO).

Confidence intervals are computed for the mean and standard deviation of the column of data. For the
mean, the confidence interval is computed two ways - based on an assumption of normality and also using
the bootstrap method. For the standard deviation, the confidence interval is computed using the bootstrap
method. In this application of the bootstrap method, the values in the column of data being summarized are
resampled, and for each replicated sample, the mean and standard deviation are computed.

The columns to be summarized can be specified in one of two ways. Use the -line_type option exactly once
to specify a single input line type and use the -column option one or more times to select the columns of
data to be summarized. Alternatively, use the -column option one or more times formatting the entries
as LINE_TYPE:COLUMN. For example, the RMSE column from the CNT line type can be selected using
-line_type CNT -column RMSE or using -column CNT:RMSE. With the second option, columns from multi-
ple input line types may be selected. For example, -column CNT:RMSE,CNT:MAE,CTS:CSI select two CNT
columns and one CTS column.

The WMO mean values are computed in one of three ways, as determined by the configuration file settings
for wmo_sqrt_stats and wmo_fisher_stats. The statistics listed in the first option are square roots. When
computing WMO means, the input values are first squared, then averaged, and the square root of the average
value is reported. The statistics listed in the second option are correlations to which the Fisher transforma-
tion is applied. For any statistic not listed, the WMO mean is computed as a simple arithmetic mean. The
WMO_TYPE output column indicates the method applied (SQRT, FISHER, or MEAN). The WMO_MEAN
and WMO_WEIGHTED_MEAN columns contain the unweighted and weighted means, respectively. The
value listed in the TOTAL column of each input line is used as the weight.

The -derive job command option can be used to perform the derivation of statistics on the fly from input
partial sums and contingency table counts. When enabled, SL1L2 and SAL1L2 input lines are converted
to CNT statistics, VL1L2 input lines are converted to VCNT statistics, and CTC lines are converted to CTS
statistics. Users should take care with this option. If the data passed to this job contains both partial sums
and derived statistics, using the -derive option will effectively cause the statistics to be double counted. Use
the -line_type job command option to filter the data passed to Stat-Analysis jobs.

296 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

16.2.3 Aggregated values from multiple STAT lines

The Stat-Analysis “aggregate” job aggregates values from multiple STAT lines of the same type. The user
may specify the specific line type of interest and any other relevant search criteria. The Stat-Analysis tool
then creates sums of each of the values in all lines matching the search criteria. The aggregated data are
output as the same line type as the user specified. The STAT line types which may be aggregated in this
way are the contingency table (FHO, CTC, PCT, MCTC, NBRCTC), partial sums (SL1L2, SAL1L2, VL1L2, and
VAL1L2), and other (ISC, ECNT, RPS, RHIST, PHIST, RELP, NBRCNT, SSVAR, GRAD, and SEEPS) line types.

16.2.4 Aggregate STAT lines and produce aggregated statistics

The Stat-Analysis “aggregate-stat” job aggregates multiple STAT lines of the same type together and produces
relevant statistics from the aggregated line. This may be done in the same manner listed above in Section
16.2.3. However, rather than writing out the aggregated STAT line itself, the relevant statistics generated
from that aggregated line are provided in the output. Specifically, if a contingency table line type (FHO,
CTC, PCT, MCTC, or NBRCTC) has been aggregated, contingency table statistics (CTS, ECLV, PSTD, MCTS, or
NBRCTS) line types can be computed. If a partial sums line type (SL1L2 or SAL1L2) has been aggregated, the
continuous statistics (CNT) line type can be computed. If a vector partial sums line type (VL1L2 or VAL1L2)
has been aggregated, the vector continuous statistics (VCNT) line type can be computed. For ensembles, the
ORANK line type can be accumulated into ECNT, RPS, RHIST, PHIST, RELP, or SSVAR output. If a SEEPS
matched pair line type (SEEPS_MPR) has been aggregated, the aggregated SEEPS line type (SEEPS) can be
computed. If the matched pair line type (MPR) has been aggregated, may output line types (FHO, CTC, CTS,
CNT, MCTC, MCTS, SL1L2, SAL1L2, VL1L2, VCNT, WDIR, PCT, PSTD, PJC, PRC, or ECLV) can be computed.
Multiple output line types may be specified for each “aggregate-stat” job, as long as each output is derivable
from the input.

When aggregating the matched pair line type (MPR), additional required job command options are deter-
mined by the requested output line type(s). For example, the “-out_thresh” (or “-out_fcst_thresh” and “-
out_obs_thresh” options) are required to compute contingnecy table counts (FHO, CTC) or statistics (CTS).
Those same job command options can also specify filtering thresholds when computing continuous partial
sums (SL1L2, SAL1L2) or statistics (CNT). Output is written for each threshold specified.

When aggregating the matched pair line type (MPR) and computing an output contingency table statistics
(CTS) or continuous statistics (CNT) line type, the bootstrapping method can be applied to compute confi-
dence intervals. The bootstrapping method is applied here in the same way that it is applied in the statistics
tools. For a set of n matched forecast-observation pairs, the matched pairs are resampled with replacement
many times. For each replicated sample, the corresponding statistics are computed. The confidence intervals
are derived from the statistics computed for each replicated sample.

16.2. Scientific and statistical aspects 297

MET User’s Guide, version 11.1.0-beta2

16.2.5 Skill Score Index

The Stat-Analysis “ss_index”, “go_index”, and “cbs_index” jobs calculate skill score indices by weighting
scores for meteorological fields at different levels and lead times. Pre-defined configuration files are provided
for the GO Index and CBS Index which are special cases of the highly configurable skill score index job.

In general, a skill score index is computed over several terms and the number and definition of those terms
is configurable. It is computed by aggregating the output from earlier runs of the Point-Stat and/or Grid-Stat
tools over one or more cases. When configuring a skill score index job, the following requirements apply:

1. Exactly two models names must be chosen. The first is interpreted as the forecast model and the
second is the reference model, against which the performance of the forecast should be measured.
Specify this with the “model” configuration file entry or using the “-model” job command option.

2. The forecast variable name, level, lead time, line type, column, and weight options must be specified.
If the value remains constant for all the terms, set it to an array of length one. If the value changes
for at least one term, specify an array entry for each term. Specify these with the “fcst_var”, “fcst_lev”,
“lead_time”, “line_type”, “column”, and “weight” configuration file entries, respectively, or use the
corresponding job command options.

3. While these line types are required, additional options may be provided for each term, including the ob-
servation type (“obtype”), verification region (“vx_mask”), and interpolation method (“interp_mthd”).
Specify each as single value or provide a value for each term.

4. Only the SL1L2 and CTC input line types are supported, and the input Point-Stat and/or Grid-Stat
output must contain these line types.

5. For the SL1L2 line type, set the “column” entry to the CNT output column that contains the statistic
of interest (e.g. RMSE for root-mean-squared-error). Note, only those continuous statistics that are
derivable from SL1L2 lines can be used.

6. For the CTC line type, set the “column” entry to the CTS output column that contains the statistic of
intereest (e.g. PODY for probability of detecting yes). Note, consider specifying the “fcst_thresh” for
the CTC line type.

For each term, all matching SL1L2 (or CTC) input lines are aggregated separately for the forecast and
reference models. The requested statistic (“column”) is derived from the aggregated partial sums or counts.
For each term, a skill score is defined as:

𝑠𝑠 = 1.0−
𝑠2𝑓𝑐𝑠𝑡
𝑠2𝑟𝑒𝑓

Where 𝑠𝑓𝑐𝑠𝑡 and 𝑠𝑟𝑒𝑓 are the aggregated forecast and reference statistics, respectively. Next, a weighted
average is computed from the skill scores for each term:

𝑠𝑠𝑎𝑣𝑔 =
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 * 𝑠𝑠𝑖

Where, 𝑤𝑖 and 𝑠𝑠𝑖 are the weight and skill score for each term and 𝑛 is the number of terms. Finally, the

298 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

skill score index is computed as:

𝑖𝑛𝑑𝑒𝑥 =

√︃
1.0

1.0− 𝑠𝑠𝑎𝑣𝑔

A value greater than 1.0 indicates that the forecast model outperforms the reference, while a value less than
1.0 indicates that the reference outperforms the forecast.

The default skill score index name (SS_INDEX) can be overridden using the “ss_index_name” option in the
configuration file. The pre-defined configuration files for the GO Index and CBS Index use “GO_INDEX” and
“CBS_INDEX”, respectively.

When running a skill score index job using the “-out_stat” job command option, a .stat output file is written
containing the skill score index (SSIDX) output line type. If the “-by” job command option is specified, the
skill score index will be computed separately for each unique combination of values found in the column(s)
specified. For example, “-by FCST_INIT_BEG,VX_MASK” runs the job separately for each combination of
model initialization time and verification region found in the input. Note that increasing the Stat-Analysis
verbosity level (-v 3) on the command line prints detailed information about each skill score index term.

16.2.6 GO Index

The “go_index” job is a special case of the “ss_index” job, described in Section 16.2.5. The GO Index is a
weighted average of 48 skill scores of RMSE statistics for wind speed, dew point temperature, temperature,
height, and pressure at several levels in the atmosphere. The variables, levels, and lead times included in the
index are listed in Table 16.1 and are defined by the default “STATAnalysisConfig_GO_Index” configuration
file. The partial sums (SL1L2 lines in the STAT output) for each of these variables at each level and lead time
must have been computed in a previous step. The Stat-Analysis tool then uses the weights in Table 16.1 to
compute values for the GO Index.

Table 16.1: Variables, levels, and weights used to compute
the GO Index.

Variable Level Weights by Lead time
12 h 24 h 36 h 48 h

Wind speed 250 hPa 4 3 2 1
400 hPa 4 3 2 1
850 hPa 4 3 2 1
Surface 8 6 4 2

Dew point temperature 400 hPa 8 6 4 2
700 hPa 8 6 4 2
850 hPa 8 6 4 2
Surface 8 6 4 2

Temperature 400 hPa 4 3 2 1
Surface 8 6 4 2

Height 400 hPa 4 3 2 1
Pressure Mean sea level 8 6 4 2

16.2. Scientific and statistical aspects 299

MET User’s Guide, version 11.1.0-beta2

16.2.7 CBS Index

The “cbs_index” job is a special case of the “ss_index” job, described in Section 16.2.5. The CBS Index
is a weighted average of 40 skill scores of RMSE statistics for mean sea level pressure, height, and wind
speed at multiple levels computed over the northern hemisphere, southern hemisphere and the tropics. The
variables, levels, lead times, and regions included in the index are listed in Table 16.2 and are defined by
the default “STATAnalysisConfig_CBS_Index” configuration file. The partial sums (SL1L2 lines in the STAT
output) for each of these variables for each level, lead time, and masking region must have been computed
in a previous step. The Stat-Analysis tool then uses the weights in Table 16.2 to compute values for the CBS
Index.

Table 16.2: Variables, levels, and weights used to compute
the CBS Index for 24, 48, 72, 96 and 120 hour lead times.

Variable Level Weights by Region
North Hem Tropics South Hem

Pressure Mean sea level 6.4 x 3.2
Height 500 hPa 2.4 x 1.2
Wind speed 250 hPa 2.4 1.2 1.2

850 hPa x 2.0 x

16.2.8 Ramp Events

The Stat-Analysis “ramp” job identifies ramp events (large increases or decreases in values over a time
window) in both the forecast and observation data. It categorizes these events as hits, misses, false alarms,
or correct negatives by applying a configurable matching time window and computes the corresponding
categorical statistics.

16.2.9 Wind Direction Statistics

The Stat-Analysis “aggregate_stat” job can read vector partial sums and derive wind direction error statistics
(WDIR). The vector partial sums (VL1L2 or VAL1L2) or matched pairs (MPR) for the UGRD and VGRD must
have been computed in a previous step, i.e. by Point-Stat or Grid-Stat tools. This job computes an average
forecast wind direction and an average observed wind direction along with their difference. The output is in
degrees. In Point-Stat and Grid-Stat, the UGRD and VGRD can be verified using thresholds on their values
or on the calculated wind speed. If thresholds have been applied, the wind direction statistics are calculated
for each threshold.

The first step in verifying wind direction is running the Grid-Stat and/or Point-Stat tools to verify each
forecast of interest and generate the VL1L2 or MPR line(s). When running these tools, please note:

1. To generate VL1L2 or MPR lines, the user must request the verification of both the U-component and
V-component of wind at the same vertical levels.

2. To generate VL1L2 or MPR lines, the user must set the “output_flag” to indicate that the VL1L2 or MPR
line should be computed and written out.

3. The user may select one or more spatial verification regions over which to accumulate the statistics.

300 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

4. The user may select one or more wind speed thresholds to be applied to the U and V wind components
when computing the VL1L2 lines. It may be useful to investigate the performance of wind forecasts
using multiple wind speed thresholds. For MPR line types, the wind speed threshold can be applied
when computing the MPR lines, or the MPR output may be filtered afterwards by the Stat-Analysis
tool.

Once the appropriate lines have been generated for each verification time of interest, the user may run the
Stat-Analysis tool to analyze them. The Stat-Analysis job “aggregate_stat”, along with the “-output_line_type
WDIR” option, reads all of the input lines and computes statistics about the wind direction. When running
this job the user is encouraged to use the many Stat-Analysis options to filter the input lines down to the set
of lines of interest. The output of the wind direction analysis job consists of two lines with wind direction
statistics computed in two slightly different ways. The two output lines begin with “ROW_MEAN_WDIR”
and “AGGR_WDIR”, and the computations are described below:

1. For the “ROW_MEAN_WDIR” line, each of the input VL1L2 lines is treated separately and given equal
weight. The mean forecast wind direction, mean observation wind direction, and the associated error
are computed for each of these lines. Then the means are computed across all of these forecast wind
directions, observation wind directions, and their errors.

2. For the “AGGR_WDIR” line, the input VL1L2 lines are first aggregated into a single line of partial
sums where the weight for each line is determined by the number of points it represents. From this
aggregated line, the mean forecast wind direction, observation wind direction, and the associated error
are computed and written out.

16.3 Practical information

The following sections describe the usage statement, required arguments and optional arguments for the
Stat-Analysis tool.

16.3.1 stat_analysis usage

The usage statement for the Stat-Analysis tool is shown below:

Usage: stat_analysis
-lookin path
[-out file]
[-tmp_dir path]
[-log file]
[-v level]
[-config config_file] | [JOB COMMAND LINE]

stat_analysis has two required arguments and accepts several optional ones.

In the usage statement for the Stat-Analysis tool, some additional terminology is introduced. In the Stat-
Analysis tool, the term “job” refers to a set of tasks to be performed after applying user-specified options
(i.e., “filters”). The filters are used to pare down a collection of output from the MET statistics tools to only
those lines that are desired for the analysis. The job and its filters together comprise the “job command
line”. The “job command line” may be specified either on the command line to run a single analysis job or

16.3. Practical information 301

MET User’s Guide, version 11.1.0-beta2

within the configuration file to run multiple analysis jobs at the same time. If jobs are specified in both the
configuration file and the command line, only the jobs indicated in the configuration file will be run. The
various jobs types are described in Table 16.3 and the filtering options are described in Section 16.3.2.

16.3.1.1 Required arguments for stat_analysis

1. The -lookin path specifies the name of a directory to be searched recursively for STAT files (ending
in “.stat”) or any explicit file name with any suffix (such as “_ctc.txt”) to be read. This option may be
used multiple times to specify multiple directories and/or files to be read. If “-lookin python” is used,
it must be followed by a Python embedding script and any command line arguments it takes. Python
embedding can be used to pass only matched pair (MPR) lines as input to Stat-Analysis.

2. Either a configuration file must be specified with the -config option, or a JOB COMMAND LINE must
be denoted. The JOB COMMAND LINE is described in Section 16.3.2

16.3.1.2 Optional arguments for stat_analysis

3. The -config config_file specifies the configuration file to be used. The contents of the configuration
file are discussed below.

4. The -out file option indicates the file to which output data should be written. If this option is not used,
the output is directed to standard output.

5. The -tmp_dir path option selects the directory for writing out temporary files.

6. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

7. The -v level indicates the desired level of verbosity. The contents of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

An example of the stat_analysis calling sequence is shown below.

stat_analysis -lookin ../out/point_stat \
-config STATAnalysisConfig

In this example, the Stat-Analysis tool will search for valid STAT lines located in the ../out/point_stat direc-
tory that meet the options specified in the configuration file, config/STATAnalysisConfig.

302 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

16.3.2 stat_analysis configuration file

The default configuration file for the Stat-Analysis tool named STATAnalysisConfig_default can be found in
the installed share/met/config directory. The version used for the example run in Section 3 is also available
in scripts/config. Like the other configuration files described in this document, it is recommended that users
make a copy of these files prior to modifying their contents.

The configuration file for the Stat-Analysis tool is optional. Users may find it more convenient initially to
run Stat-Analysis jobs on the command line specifying job command options directly. Once the user has a
set of or more jobs they would like to run routinely on the output of the MET statistics tools, they may find
grouping those jobs together into a configuration file to be more convenient.

Most of the user-specified parameters listed in the Stat-Analysis configuration file are used to filter the ASCII
statistical output from the MET statistics tools down to a desired subset of lines over which statistics are to
be computed. Only output that meets all of the parameters specified in the Stat-Analysis configuration file
will be retained.

The Stat-Analysis tool actually performs a two step process when reading input data. First, it stores the
filtering information defined top section of the configuration file. It applies that filtering criteria when
reading the input STAT data and writes the filtered data out to a temporary file. Second, each job defined in
the jobs entry reads data from that temporary file and performs the task defined for the job. After all jobs
have run, the Stat-Analysis tool deletes the temporary file.

This two step process enables the Stat-Analysis tool to run more efficiently when many jobs are defined in
the configuration file. If only operating on a small subset of the input data, the common filtering criteria
can be applied once rather than re-applying it for each job. In general, filtering criteria common to all tasks
defined in the jobs entry should be moved to the top section of the configuration file.

As described above, filtering options specified in the first section of the configuration file will be applied to
every task in the jobs entry. However, if an individual job specifies a particular option that was specified
above, it will be applied for that job. For example, if the model[] option is set at the top to [“Run 1”,
“Run2”], but a job in the joblist sets the -model option as “Run1”, that job will be performed only on “Run1”
data. Also note that environment variables may be used when editing configuration files, as described in the
Section 7.1.2 for the PB2NC tool.

boot = { interval = PCTILE; rep_prop = 1.0; n_rep = 1000;
rng = "mt19937"; seed = ""; }

hss_ec_value = NA;
rank_corr_flag = TRUE;
tmp_dir = "/tmp";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

model = [];

The user may specify a comma-separated list of model names to be used for all analyses performed. The
names must be in double quotation marks. If multiple models are listed, the analyses will be performed on

16.3. Practical information 303

MET User’s Guide, version 11.1.0-beta2

their union. These selections may be further refined by using the “-model” option within the job command
lines.

desc = [];

The user may specify a comma-separated list of description strings to be used for all analyses performed.
The names must be in double quotation marks. If multiple description strings are listed, the analyses will
be performed on their union. These selections may be further refined by using the “-desc” option within the
job command lines.

fcst_lead = [];
obs_lead = [];

The user may specify a comma-separated list of forecast and observation lead times in HH[MMSS] format
to be used for any analyses to be performed. If multiple times are listed, the analyses will be performed
on their union. These selections may be further refined by using the “-fcst_lead” and “-obs_lead” options
within the job command lines.

fcst_valid_beg = "";
fcst_valid_end = "";
fcst_valid_inc = [];
fcst_valid_exc = [];
fcst_valid_hour = [];

obs_valid_beg = "";
obs_valid_end = "";
obs_valid_inc = [];
obs_valid_exc = [];
obs_valid_hour = [];

The user may filter data based on its valid time. The fcst/obs_valid_beg and fcst/obs_valid_end options
are strings in YYYYMMDD[_HH[MMSS]] format which define retention time windows for all analyses to be
performed. The analyses are performed on all data whose valid time falls within these windows. If left as
empty strings, no valid time window filtering is applied.

The fcst/obs_valid_hour options are arrays of strings in HH format which define the valid hour(s) of the
data to be used. If specified, only data whose valid hour appears in the list of hours is used. The
fcst/obs_valid_inc/exc options are arrays of strings in YYYYMMDD[_HH[MMSS]] format which explicitly
define the valid times for data to be included or excluded from all analyses.

These selections may be further refined by using the “-fcst_valid_beg”, “-fcst_valid_end”, “-
fcst_valid_inc”, “-fcst_valid_exc”, “-fcst_valid_hour”, “-obs_valid_beg”, “-obs_valid_end”, “-
obs_valid_inc”, “-obs_valid_exc”, and “-obs_valid_hour” options within the job command line.

304 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

fcst_init_beg = "";
fcst_init_end = "";
fcst_init_inc = [];
fcst_init_exc = [];
fcst_init_hour = [];

obs_init_beg = "";
obs_init_end = "";
obs_init_inc = [];
obs_init_exc = [];
obs_init_hour = [];

These time filtering options are the same as described above but applied to initialization times rather than
valid times. These selections may be further refined by using the “-fcst_init_beg”, “-fcst_init_end”, “-
fcst_init_inc”, “-fcst_init_exc”, “-fcst_init_hour”,” “-obs_init_beg”, “-obs_init_end”, “-obs_init_inc”, “-
obs_init_exc” and “-obs_init_hour” options within the job command line.

fcst_var = [];
obs_var = [];

The user may specify a comma-separated list of forecast and observation variable types to be used for any
analyses to be performed. If multiple variable types are listed, the analyses will be performed on their
union. These selections may be further refined by using the “-fcst_var” and “-obs_var” options within the
job command lines.

fcst_units = [];
obs_units = [];

The user may specify a comma-separated list of forecast and observation units to be used for any analyses
to be performed. If multiple units are listed, the analyses will be performed on their union. These selections
may be further refined by using the “-fcst_units” and “-obs_units” options within the job command lines.

fcst_lev = [];
obs_lev = [];

The user may specify a comma-separated list of forecast and observation level types to be used for any
analyses to be performed. If multiple level types are listed, the analyses will be performed on their union.
These selections may be further refined by using the “-fcst_lev” and “-obs_lev” options within the job
command lines.

obtype = [];

16.3. Practical information 305

MET User’s Guide, version 11.1.0-beta2

The user may specify a comma-separated list of observation types to be used for all analyses. If multiple
observation types are listed, the analyses will be performed on their union. These selections may be further
refined by using the “-obtype” option within the job command line.

vx_mask = [];

The user may specify a comma-separated list of verification masking regions to be used for all analyses.
If multiple verification masking regions are listed, the analyses will be performed on their union. These
selections may be further refined by using the “-vx_mask” option within the job command line.

interp_mthd = [];

The user may specify a comma-separated list of interpolation methods to be used for all analyses. If multiple
interpolation methods are listed, the analyses will be performed on their union. These selections may be
further refined by using the “-interp_mthd” option within the job command line.

interp_pnts = [];

The user may specify a comma-separated list of interpolation points to be used for all analyses. If multiple
interpolation points are listed, the analyses will be performed on their union. These selections may be
further refined by using the “-interp_pnts” option within the job command line.

fcst_thresh = [];
obs_thresh = [];
cov_thresh = [];

The user may specify comma-separated lists of forecast, observation, and coverage thresholds to be used
for any analyses to be performed. If multiple thresholds are listed, the analyses will be performed on
their union. These selections may be further refined by using the “-fcst_thresh”, “-obs_thresh”, and “-
cov_thresh” options within the job command lines.

alpha = [];

The user may specify a comma-separated list alpha confidence values to be used for all analyses. If alpha
values are listed, the analyses will be performed on their union. These selections may be further refined by
using the “-alpha” option within the job command line.

line_type = [];

306 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

The user may specify a comma-separated list of line types to be used for all analyses. If multiple line types
are listed, the analyses will be performed on their union. These selections may be further refined by using
the “-line_type” option within the job command line.

column = [];
weight = [];

The column and weight entries are used to define a skill score index. They can either be set to a constant
value of length one or specify a separate value for each term of the index.

ss_index_name = "SS_INDEX";
ss_index_vld_thresh = 1.0;

The ss_index_name and ss_index_vld_thresh options are used to define a skill score index. The
ss_index_name entry is a string which defines the output name for the current skill score index configu-
ration. The ss_index_vld_thresh entry is a number between 0.0 and 1.0 that defines the required ratio of
valid terms. If the ratio of valid skill score index terms to the total is less than than this number, no output
is written for that case. The default value of 1.0 indicates that all terms are required.

jobs = [
"-job filter -dump_row ./filter_job.stat"
];

The user may specify one or more analysis jobs to be performed on the STAT lines that remain after applying
the filtering parameters listed above. Each entry in the joblist contains the task and additional filtering
options for a single analysis to be performed. The format for an analysis job is as follows:

-job_name REQUIRED and OPTIONAL ARGUMENTS

All possible tasks for job_name are listed in Table 16.3.

16.3. Practical information 307

MET User’s Guide, version 11.1.0-beta2

Table 16.3: Description of components of the job command
lines for the Stat-Analysis tool.Variables, levels, and weights
used to compute the GO Index.

Job Name Job commandDescription Required Arguments
filter Filters out the statistics lines based on applying options* (See

note below table)
-dump_row

summary Computes the mean, standard deviation, percentiles (min, 10th,
25th, 50th, 75th, 90th, and max), interquartile range, range,
wmo_mean, and wmo_weighted_mean

-line_type -column

aggregate Aggregates the statistics output, computing the statistic speci-
fied for the entire collection of valid lines

-line_type

aggregate_stat Aggregates the statistics output, and converts the input line type
to the output line type specified

-line_type -
out_line_type

ss_index Calculates a user-defined Skill Score index as described in sec-
tion Section 16.2.5.

-model forecast -
model reference

go_index Calculates the GO Index as described in section Section 16.2.6. -model forecast -
model reference

cbs_index Calculates the CBS Index as described in section Section 16.2.7. -model forecast -
model reference

ramp Defines a ramp event on a time-series of forecast and observed
values. The amount of change from one time to the next is
computed for forecast and observed values. Those changes are
thresholded to define events which are used to populate a 2x2
contingency table.

-ramp_type -
ramp_thresh -
out_line_type -
column -ramp_time
-ramp_exact -
ramp_window

out_alpha = 0.05;

This entry specifies the alpha value to be used when computing confidence intervals for output statistics. It
is similar to the ci_alpha entry described in Section 5.

wmo_sqrt_stats = ["CNT:FSTDEV", "CNT:OSTDEV", "CNT:ESTDEV",
"CNT:RMSE", "CNT:RMSFA", "CNT:RMSOA",
"VCNT:FS_RMS", "VCNT:OS_RMS", "VCNT:RMSVE",
"VCNT:FSTDEV", "VCNT:OSTDEV"];

wmo_fisher_stats = ["CNT:PR_CORR", "CNT:SP_CORR",
"CNT:KT_CORR", "CNT:ANOM_CORR", "CNT:ANOM_CORR_UNCNTR"];

These entries specify lists of statistics in the form LINE_TYPE:COLUMN to which the various WMO mean
logic types should be applied for the summary job type.

308 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

vif_flag = FALSE;

The variance inflation factor (VIF) flag indicates whether to apply a first order variance inflation when
calculating normal confidence intervals for an aggregated time series of contingency table counts or partial
sums. The VIF adjusts the variance estimate for the lower effective sample size caused by autocorrelation of
the statistics through time. A value of FALSE will not compute confidence intervals using the VIF. A value of
TRUE will include the VIF, resulting in a slightly wider normal confidence interval.

The Stat-Analysis tool supports several additional job command options which may be specified either on
the command line when running a single job or within the jobs entry within the configuration file. These
additional options are described below:

-by col_name

This job command option is extremely useful. It can be used multiple times to specify a list of STAT header
column names. When reading each input line, the Stat-Analysis tool concatenates together the entries in
the specified columns and keeps track of the unique cases. It applies the logic defined for that job to each
unique subset of data. For example, if your output was run over many different model names and masking
regions, specify -by MODEL,VX_MASK to get output for each unique combination rather than having to run
many very similar jobs.

-column_min col_name value
-column_max col_name value
-column_eq col_name value
-column_thresh col_name thresh
-column_str col_name string
-column_str_exc col_name string

The column filtering options may be used when the -line_type has been set to a single value. These options
take two arguments, the name of the data column to be used followed by a value, string, or threshold to be
applied. If multiple column_min/max/eq/thresh/str options are listed, the job will be performed on their
intersection. Each input line is only retained if its value meets the numeric filtering criteria defined, matches
one of the strings defined by the -column_str option, or does not match any of the string defined by the
-column_str_exc option. Multiple filtering strings may be listed using commas. Defining thresholds in MET
is described in Section 5.

-dump_row file

Each analysis job is performed over a subset of the input data. Filtering the input data down to a desired
subset is often an iterative process. The -dump_row option may be used for each job to specify the name of
an output file to which the exact subset of data used for that job will be written. When initially constructing
Stat-Analysis jobs, users are strongly encouraged to use the option and check its contents to ensure that the
analysis was actually done over the intended subset.

-out_line_type name

This option specifies the desired output line type(s) for the aggregate_stat job type.

16.3. Practical information 309

MET User’s Guide, version 11.1.0-beta2

-out_stat file
-set_hdr col_name string

The Stat-Analysis tool writes its output to either the log file or the file specified using the -out command
line option. However the aggregate and aggregate_stat jobs create STAT output lines and the standard
output written lacks the full set of STAT header columns. The -out_stat job command option may be used
for these jobs to specify the name of an output file to which full STAT output lines should be written. When
the -out_stat job command option is used for aggregate and aggregate_stat jobs the output is sent to the
-out_stat file instead of the log or -out file.

Jobs will often combine output with multiple entries in the header columns. For example, a job may aggre-
gate output with three different values in the VX_MASK column, such as “mask1”, “mask2”, and “mask3”.
The output VX_MASK column will contain the unique values encountered concatenated together with com-
mas: “mask1,mask2,mask3”. Alternatively, the -set_hdr option may be used to specify what should be
written to the output header columns, such as “-set_hdr VX_MASK all_three_masks”.

When using the “-out_stat” option to create a .stat output file and stratifying results using one or more “-by”
job command options, those columns may be referenced in the “-set_hdr” option. When using multiple “-by”
options, use “CASE” to reference the full case information string:

-job aggregate_stat -line_type MPR -out_line_type CNT -by FCST_VAR,OBS_SID \
-set_hdr VX_MASK OBS_SID -set_hdr DESC CASE

The example above reads MPR lines, stratifies the data by forecast variable name and station ID, and writes
the output for each case to a .stat output file. When creating the .stat file, write the full case information to
the DESC output column and the station ID to the VX_MASK column.

-mask_grid name
-mask_poly file
-mask_sid file|list

When processing input MPR lines, these options may be used to define a masking grid, polyline, or list
of station ID’s to filter the matched pair data geographically prior to computing statistics. The -mask_sid
option is a station ID masking file or a comma-separated list of station ID’s for filtering the matched pairs
spatially. See the description of the “sid” entry in Section 5.

-out_fcst_thresh thresh
-out_obs_thresh thresh
-out_thresh thresh
-out_cnt_logic string

When processing input MPR lines, these options are used to define the forecast, observation, or both thresh-
olds to be applied when computing statistics. For categorical output line types (FHO, CTC, CTS, MCTC,
MCTS) these define the categorical thresholds. For continuous output line types (SL1L2, SAL1L2, CNT),
these define the continuous filtering thresholds and -out_cnt_logic defines how the forecast and observed
logic should be combined.

310 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

-out_fcst_wind_thresh thresh
-out_obs_wind_thresh thresh
-out_wind_thresh thresh
-out_wind_logic string

These job command options are analogous to the options listed above but apply when processing input MPR
lines and deriving wind direction statistics.

-out_bin_size value

When processing input ORANK lines and writing output RHIST or PHIST lines, this option defines the output
histogram bin width to be used.

16.3.3 stat-analysis tool output

The output generated by the Stat-Analysis tool contains statistics produced by the analysis. It also records
information about the analysis job that produced the output for each line. Generally, the output is printed
to the screen. However, it can be redirected to an output file using the “-out” option. The format of output
from each STAT job command is described below.

The “-by column” job command option may be used to run the same job multiple times on unique subsets
of data. Specify the “-by column” option one or more times to define a search key, and that job will be run
once for each unique search key found. For example, use “-by VX_MASK” to run the same job for multiple
masking regions, and output will be generated for each unique masking region found. Use “-by VX_MASK
-by FCST_LEAD” to generate output for each unique combination of masking region and lead time.

16.3.3.1 Job: filter

This job command finds and filters STAT lines down to those meeting criteria specified by the filter’s options.
The filtered STAT lines are written to a file specified by the “-dump_row” option.

The output of this job is the same STAT format described in sections Section 11.3.3, Section 12.3.3, and
Section 14.3.3.

16.3.3.2 Job: summary

This job produces summary statistics for the column name and line type specified by the “-column” and
“-line_type” options. The output of this job type consists of three lines. The first line contains “JOB_LIST”,
followed by a colon, then the filtering and job definition parameters used for this job. The second line
contains “COL_NAME”, followed by a colon, then the column names for the data in the next line. The third
line contains the word “SUMMARY”, followed by a colon, then the total, mean with confidence intervals,
standard deviation with confidence intervals, minimum value, percentiles (10th, 25th, 50th, 75th, and 90th),
the maximum value, the interquartile range, the range, and WMO mean information. The output columns
are shown in Table 16.4 below.

16.3. Practical information 311

MET User’s Guide, version 11.1.0-beta2

Table 16.4: Columnar output of “summary” job output from
the Stat-Analysis tool.

Column Number Description
1 SUMMARY: (job type)
2 Total
3-7 Mean including normal and bootstrap upper and lower confidence limits
8-10 Standard deviation including bootstrap upper and lower confidence limits
11 Minimum value
12 10th percentile
13 25th percentile
14 Median (50th percentile)
15 75th percentile
16 90th percentile
17 Maximum value
18 Interquartile range (75th - 25th percentile)
19 Range (Maximum - Minimum)
20 WMO Mean type
21 WMO Unweighted Mean value
22 WMO Weighted Mean value

16.3.3.3 Job: aggregate

This job aggregates output from the STAT line type specified using the “-line_type” argument. The output of
this job type is in the same format as the line type specified (see Section 11.3.3, Section 12.3.3, and Section
14.3.3). Again the output consists of three lines. The first line contains “JOB_LIST”, as described above. The
second line contains “COL_NAME”, followed by a colon, then the column names for the line type selected.
The third line contains the name of the line type selected followed by the statistics for that line type.

The STAT line types which may be aggregated in this way are the contingency table (FHO, CTC, PCT, MCTC,
NBRCTC), partial sums (SL1L2, SAL1L2, VL1L2, and VAL1L2), and other (ISC, ECNT, RPS, RHIST, PHIST,
RELP, NBRCNT, SSVAR, and GRAD) line types.

312 Chapter 16. Stat-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

16.3.3.4 Job: aggregate_stat

This job is similar to the “aggregate” job listed above, however the format of its output is determined by
the “-out_line_type” argument. Again the output consists of three lines for “JOB_LIST”, “COL_NAME”,
and the name of the output STAT line, as described above. Valid combinations of the “-line_type” and
“-out_line_type” arguments are listed in Table 16.5 below.

Table 16.5: Valid combinations of “-line_type” and “-
out_line_type” arguments for the “aggregate_stat” job.

Input Line
Type

Output Line Type

FHO or CTC CTS
MCTC MCTS
SL1L2 or
SAL1L2

CNT

VL1L2 or
VAL1L2

WDIR (wind direction), VCNT

PCT PSTD, PJC, PRC
NBRCTC NBRCTS
ORANK RHIST, PHIST, RELP, SSVAR
MPR CNT, SL1L2, SAL1L2, WDIR
MPR FHO, CTC, CTS, MCTC, MCTS, PCT, PSTD, PJC, or PRC (must specify “-out_fcst_thresh”

and “-out_obs_thresh” arguments)

16.3.3.5 Job: ss_index, go_index, cbs_index

While the inputs for the “ss_index”, “go_index”, and “cbs_index” jobs may vary, the output is the same. By
default, the job output is written to the screen or to a “-out” file, if specified. If the “-out_stat” job command
option is specified, a STAT output file is written containing the skill score index (SSIDX) output line type.

The SSIDX line type consists of the common STAT header columns described in Table 11.1 followed by the
columns described below. In general, when multiple input header strings are encountered, the output is
reported as a comma-separated list of the unique values. The “-set_hdr” job command option can be used
to override any of the output header strings (e.g. “-set_hdr VX_MASK MANY” sets the output VX_MASK
column to “MANY”). Special logic applied to some of the STAT header columns are also described below.

16.3. Practical information 313

MET User’s Guide, version 11.1.0-beta2

Table 16.6: Format information for the SSIDX (Skill Score
Index) output line type.

SSIDX OUTPUT FOR-
MAT
Column Number SSIDX Column

Name
Description

4 FCST_LEAD Maximum input forecast lead time
5 FCST_VALID_BEG Minimum input forecast valid start time
6 FCST_VALID_END Maximum input forecast valid end time
7 OBS_LEAD Maximum input observation lead time
8 OBS_VALID_BEG Minimum input observation valid start time
9 OBS_VALID_END Maximum input observation valid end time
10 FCST_VAR Skill score index name from the “ss_index_name” option
11 OBS_VAR Skill score index name from the “ss_index_name” option
24 SSIDX Skill score index line type
25 FCST_MODEL Forecast model name
26 REF_MODEL Reference model name
27 N_INIT Number of unique input model initialization times
28 N_TERM Number of skill score index terms
29 N_VLD Number of terms for which a valid skill score was com-

puted
30 SS_INDEX Skill score index value

16.3.3.6 Job: ramp

The ramp job operates on a time-series of forecast and observed values and is analogous to the RIRW (Rapid
Intensification and Weakening) job described in Section 25.3.2. The amount of change from one time to the
next is computed for forecast and observed values. Those changes are thresholded to define events which
are used to populate a 2x2 contingency table.

See Section 5 for a detailed description of the job command options available for ramp job type.

The default output for this job is contingency table counts and statistics (-out_line_type CTC,CTS). Matched
pair information may also be output by requesting MPR output (-out_line_type CTC,CTS,MPR).

314 Chapter 16. Stat-Analysis Tool

Chapter 17

Series-Analysis Tool

17.1 Introduction

The Series-Analysis Tool accumulates statistics separately for each horizontal grid location over a series.
Often, this series is over time or height, though any type of series is possible. This differs from the Grid-Stat
tool in that Grid-Stat verifies all grid locations together as a group. Thus, the Series-Analysis Tool can be
used to find verification information specific to certain locations or see how model performance varies over
the domain.

17.2 Practical Information

This Series-Analysis tool performs verification of gridded model fields using matching gridded observation
fields. It computes a variety of user-selected statistics. These statistics are a subset of those produced by the
Grid-Stat tool, with options for statistic types, thresholds, and conditional verification options as discussed
in Section 12. However, these statistics are computed separately for each grid location and accumulated
over some series such as time or height, rather than accumulated over the whole domain for a single time
or height as is done by Grid-Stat.

This tool computes statistics for exactly one series each time it is run. Multiple series may be processed by
running the tool multiple times. The length of the series to be processed is determined by the first of the
following that is greater than one: the number of forecast fields in the configuration file, the number of ob-
servation fields in the configuration file, the number of input forecast files, the number of input observation
files. Several examples of defining series are described below.

To define a time series of forecasts where the valid time changes for each time step, set the forecast and
observation fields in the configuration file to single values and pass the tool multiple forecast and observation
files. The tool will loop over the forecast files, extract the specified field from each, and then search the
observation files for a matching record with the same valid time.

To define a time series of forecasts that all have the same valid time, set the forecast and observation fields
in the configuration file to single values. Pass the tool multiple forecast files and a single observation file
containing the verifying observations. The tool will loop over the forecast files, extract the specified field
from each, and then retrieve the verifying observations.

315

MET User’s Guide, version 11.1.0-beta2

To define a series of vertical levels all contained in a single input file, set the forecast and observation fields
to a list of the vertical levels to be used. Pass the tool single forecast and observation files containing the
vertical level data. The tool will loop over the forecast field entries, extract that field from the input forecast
file, and then search the observation file for a matching record.

17.2.1 series_analysis usage

The usage statement for the Series-Analysis tool is shown below:

Usage: series_analysis
-fcst file_1 ... file_n | fcst_file_list
-obs file_1 ... file_n | obs_file_list
[-both file_1 ... file_n | both_file_list]
[-paired]
-out file
-config file
[-log file]
[-v level]
[-compress level]

series_analysis has four required arguments and accepts several optional ones.

17.2.1.1 Required arguments series_stat

1. The -fcst file_1 . . . file_n | fcst_file_list options specify the gridded forecast files or ASCII files
containing lists of file names to be used.

2. The -obs file_1 . . . file_n | obs_file_list are the gridded observation files or ASCII files containing
lists of file names to be used.

3. The -out file is the NetCDF output file containing computed statistics.

4. The -config file is a Series-Analysis Configuration file containing the desired settings.

17.2.1.2 Optional arguments for series_analysis

5. To set both the forecast and observations to the same set of files, use the optional -both file_1 . . . file_n
| both_file_list option to the same set of files. This is useful when reading the NetCDF matched pair
output of the Grid-Stat tool which contains both forecast and observation data.

6. The -paired option indicates that the -fcst and -obs file lists are already paired, meaning there is a
one-to-one correspondence between the files in those lists. This option affects how missing data is
handled. When -paired is not used, missing or incomplete files result in a runtime error with no output
file being created. When -paired is used, missing or incomplete files result in a warning with output
being created using the available data.

7. The -log file outputs log messages to the specified file.

8. The -v level overrides the default level of logging (2).

316 Chapter 17. Series-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

9. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the series_analysis calling sequence is shown below:

series_analysis \
-fcst myfcstfilelist.txt \
-obs myobsfilelist.txt \
-config SeriesAnalysisConfig \
-out out/my_series_statistics.nc

In this example, the Series-Analysis tool will process the list of forecast and observation files specified in the
text file lists into statistics for each grid location using settings specified in the configuration file. Series-
Analysis will create an output NetCDF file containing requested statistics.

17.2.2 series_analysis output

The Series-Analysis tool produces NetCDF files containing output statistics for each grid location from the
input files. The details about the output statistics available from each output line type are detailed in Chapter
5 since they are also produced by the Grid-Stat Tool. A subset of these can be produced by this tool, with the
most notable exceptions being the wind vector and neighborhood statistics. Users can inventory the contents
of the Series-Analysis output files using the ncdump -h command to view header information. Additionally,
ncview or the Plot-Data-Plane tool can be used to visualize the output. An example of Series-Analysis output
is shown in Figure 17.1 below.

17.2. Practical Information 317

MET User’s Guide, version 11.1.0-beta2

Figure 17.1: An example of the Gilbert Skill Score for precipitation forecasts at each grid location for a
month of files.

17.2.3 series_analysis configuration file

The default configuration file for the Series-Analysis tool named SeriesAnalysisConfig_default can be found
in the installed share/met/config directory. The contents of the configuration file are described in the sub-
sections below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

model = "WRF";
desc = "NA";
obtype = "ANALYS";
regrid = { ... }
fcst = { ... }
obs = { ... }
climo_mean = { ... }
climo_stdev = { ... }
ci_alpha = [0.05];
boot = { interval = PCTILE; rep_prop = 1.0; n_rep = 1000;

rng = "mt19937"; seed = ""; }
(continues on next page)

318 Chapter 17. Series-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

mask = { grid = ["FULL"]; poly = []; }
hss_ec_value = NA;
rank_corr_flag = TRUE;
tmp_dir = "/tmp";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

block_size = 1024;

Number of grid points to be processed concurrently. Set smaller to use less memory but increase the number
of passes through the data. The amount of memory the Series-Analysis tool consumes is determined by the
size of the grid, the length of the series, and the block_size entry defined above. The larger this entry is set
the faster the tool will run, subject to the amount of memory available on the machine. If set less than or
equal to 0, it is automatically reset to the number of grid points, and they are all processed concurrently.

vld_thresh = 1.0;

Ratio of valid matched pairs for the series of values at each grid point required to compute statistics. Set to
a lower proportion to allow some missing values. Setting it to 1.0 requires that every data point be valid
over the series to compute statistics.

output_stats = {
fho = [];
ctc = [];
cts = [];
mctc = [];
mcts = [];
cnt = ["RMSE", "FBAR", "OBAR"];
sl1l2 = [];
sal1l2 = [];
pct = [];
pstd = [];
pjc = [];
prc = [];

}

The output_stats array controls the type of output that the Series-Analysis tool generates. Each flag corre-
sponds to an output line type in the STAT file and is used to specify the comma-separated list of statistics to
be computed. Use the column names from the tables listed below to specify the statistics. The output flags
correspond to the following types of output line types:

1. FHO for Forecast, Hit, Observation Rates (See Table 11.2)

17.2. Practical Information 319

MET User’s Guide, version 11.1.0-beta2

2. CTC for Contingency Table Counts (See Table 11.3)

3. CTS for Contingency Table Statistics (See Table 11.4)

4. MCTC for Multi-Category Contingency Table Counts (See Table 11.8)

5. MCTS for Multi-Category Contingency Table Statistics (See Table 11.9)

6. CNT for Continuous Statistics (See Table 11.6)

7. SL1L2 for Scalar L1L2 Partial Sums (See Table 11.15)

8. SAL1L2 for Scalar Anomaly L1L2 Partial Sums climatological data is supplied (See Table 11.16)

9. PCT for Contingency Table Counts for Probabilistic forecasts (See Table 11.10)

10. PSTD for Contingency Table Statistics for Probabilistic forecasts (See Table 11.11)

11. PJC for Joint and Conditional factorization for Probabilistic forecasts (See Table 11.12)

12. PRC for Receiver Operating Characteristic for Probabilistic forecasts (See Table 11.13)

320 Chapter 17. Series-Analysis Tool

Chapter 18

Grid-Diag Tool

18.1 Introduction

The Grid-Diag tool creates histograms (probability distributions when normalized) for an arbitrary collection
of data fields and levels. Joint histograms will be created for all possible pairs of variables. Masks can be
used to subset the data fields spatially. The histograms are accumulated over a time series of input data files,
similar to Series-Analysis.

18.2 Practical information

18.2.1 grid_diag usage

The following sections describe the usage statement, required arguments, and optional arguments for
grid_diag.

Usage: grid_diag
-data file_1 ... file_n | data_file_list
-out file
-config file
[-log file]
[-v level]
[-compress level]

NOTE: The "-data" option can be used once to read all fields from each input file or once␣
→˓for each field to be processed.

grid_diag has required arguments and can accept several optional arguments.

321

MET User’s Guide, version 11.1.0-beta2

18.2.1.1 Required arguments for grid_diag

1. The -data file_1 . . . file_n | data_file_list options specify the gridded data files or an ASCII file
containing a list of file names to be used.

When -data is used once, all fields are read from each input file. When used multiple times, it must match
the number of fields to be processed. In this case the first field in the config data field list is read from the
files designated by the first -data, the second field in the field list is read from files designated by the second
-data, and so forth. All files within each set must be of the same file type, but the file types of each set may
differ. A typical use case for this option is for the first -data to specify forecast data files and the second
-data the observation data files.

2. The -out argument is the NetCDF output file.

3. The -config file is the configuration file to be used. The contents of the configuration file are discussed
below.

18.2.1.2 Optional arguments for grid_diag

4. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

5. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

6. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

18.2.2 grid_diag configuration file

The default configuration file for the Grid-Diag tool named GridDiagConfig_default can be found in the
installed share/met/config/ directory. It is encouraged for users to copy these default files before modifying
their contents. The contents of the configuration file are described in the subsections below.

desc = "GFS";
regrid = { ... }
censor_thresh = [];
censor_val = [];
mask = { grid = ""; poly = ""; }
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

322 Chapter 18. Grid-Diag Tool

MET User’s Guide, version 11.1.0-beta2

data = {
field = [

{
name = "APCP";
level = ["L0"];
n_bins = 30;
range = [0, 12];

},
{

name = "PWAT";
level = ["L0"];
n_bins = 35;
range = [35, 70];

}
];

}

The name and level entries in the data dictionary define the data to be processed. The n_bins parameter
specifies the number of histogram bins for that variable, and the range parameter the lower and upper
bounds of the histogram. The interval length is the upper and lower difference divided by n_bins. Each bin
is inclusive on the left side and exclusive on the right, such as [a,b).

Grid-Diag prints a warning message if the actual range of data values falls outside the range defined for that
variable in the configuration file. Any data values less than the configured range are counted in the first bin,
while values greater than the configured range are counted in the last bin.

18.2.3 grid_diag output file

The NetCDF file has a dimension for each of the specified data variable and level combinations, e.g. APCP_L0
and PWAT_L0. The bin minimum, midpoint, and maximum values are indicated with an _min, _mid, or _max
appended to the variable/level.

For each variable/level combination in the data dictionary, a corresponding histogram will be written to the
NetCDF output file. For example, hist_APCP_L0 and hist_PWAT_L0 are the counts of all data values falling
within the bin. Data values below the minimum or above the maximum are included in the lowest and
highest bins, respectively. A warning message is printed when the range of the data falls outside the range
defined in the configuration file. In addition to 1D histograms, 2D histograms for all variable/level pairs
are written. For example, hist_APCP_L0_PWAT_L0 is the joint histogram for those two variables/levels. The
output variables for grid_size, mask_size, and n_series specify the number of points in the grid, the number
of grid points in the mask, and the number of files that were processed, respectively. The range of the
initialization, valid, and lead times processed is written to the global attributes.

18.2. Practical information 323

MET User’s Guide, version 11.1.0-beta2

324 Chapter 18. Grid-Diag Tool

Chapter 19

MODE Tool

19.1 Introduction

This section provides a description of the Method for Object-Based Diagnostic Evaluation (MODE) tool,
which was developed at the Research Applications Laboratory, NCAR/Boulder, USA. More information about
MODE can be found in Davis et al. (2006a,b) (page 448), Brown et al. (2007) (page 448) and Bullock et al.
(2016) (page 448).

MODE was developed in response to a need for verification methods that can provide diagnostic information
that is more directly useful and meaningful than the information that can be obtained from traditional
verification approaches, especially in application to high-resolution NWP output. The MODE approach was
originally developed for application to spatial precipitation forecasts, but it can also be applied to other
fields with coherent spatial structures (e.g., clouds, convection). MODE is only one of a number of different
approaches that have been developed in recent years to meet these needs. In the future, we expect that the
MET package will include additional methods. References for many of these methods are provided at the
MesoVict website.

MODE may be used in a generalized way to compare any two fields. For simplicity, field_1 may be thought
of in this section as “the forecast”, while field_2 may be thought of as “the observation”, which is usually a
gridded analysis of some sort. The convention of field_1/field_2 is also used in Table 19.2. MODE resolves
objects in both the forecast and observed fields. These objects mimic what humans would call “regions of
interest”. Object attributes are calculated and compared, and are used to associate (“merge”) objects within a
single field, as well as to “match” objects between the forecast and observed fields. Finally, summary statistics
describing the objects and object pairs are produced. These statistics can be used to identify correlations and
differences among the objects, leading to insights concerning forecast strengths and weaknesses.

325

http://www.rap.ucar.edu/projects/icp/index.html.

MET User’s Guide, version 11.1.0-beta2

19.2 Scientific and statistical aspects

The methods used by the MODE tool to identify and match forecast and observed objects are briefly described
in this section.

19.2.1 Resolving objects

The process used for resolving objects in a raw data field is called convolution thresholding. The raw data
field is first convolved with a simple filter function as follows:

𝐶(𝑥, 𝑦) =
∑︁
𝑢,𝑣

𝜑(𝑢, 𝑣) 𝑓(𝑥− 𝑢, 𝑦 − 𝑣)

In this formula, 𝑓 is the raw data field, 𝜑 is the filter function, and 𝐶 is the resulting convolved field. The
variables (𝑥, 𝑦) and (𝑢, 𝑣) are grid coordinates. The filter function 𝜑 is a simple circular filter determined by
a radius of influence 𝑅 , and a height 𝐻 :

𝜑(𝑥, 𝑦) =

{︃
𝐻 if 𝑥2 + 𝑦2 ≤ 𝑅2

0 otherwise.
(19.1)

The parameters 𝑅 and 𝐻 are not independent. They are related by the requirement that the integral of 𝜑
over the grid be unity:

𝜋𝑅2𝐻 = 1.

Thus, the radius of influence 𝑅 is the only tunable parameter in the convolution process. Once 𝑅 is chosen,
𝐻 is determined by the above equation.

Once the convolved field 𝐶 is in hand, it is thresholded to create a mask field 𝑀 :

𝑀(𝑥, 𝑦) =

{︃
1 if 𝐶(𝑥, 𝑦) ≥ 𝑇

0 otherwise.
(19.2)

where 𝑇 is the threshold. The objects are the connected regions where 𝑀 = 1 . Finally, the raw data are
restored to object interiors to obtain the object field 𝐹 :

𝐹 (𝑥, 𝑦) = 𝑀(𝑥, 𝑦)𝑓(𝑥, 𝑦).

Thus, two parameters - the radius of influence 𝑅, and the threshold 𝑇 - control the entire process of resolving
objects in the raw data field.

An example of the steps involved in resolving objects is shown in Figure 19.1. It shows a “raw” precipitation
field, where the vertical coordinate represents the precipitation amount. Part (b) shows the convolved field,
and part (c) shows the masked field obtained after the threshold is applied. Finally, Figure 19.1 shows the
objects once the original precipitation values have been restored to the interiors of the objects.

326 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

Figure 19.1: Example of an application of the MODE object identification process to a model precipitation
field.

19.2. Scientific and statistical aspects 327

MET User’s Guide, version 11.1.0-beta2

19.2.2 Attributes

Object attributes are defined both for single objects and for object pairs. One of the objects in a pair is from
the forecast field and the other is taken from the observed field.

Area is simply a count of the number of grid squares an object occupies. If desired, a true area (say, in 𝑘𝑚2)
can be obtained by adding up the true areas of all the grid squares inside an object, but in practice this is
seldom necessary.

Moments are used in the calculation of several object attributes. If we define 𝜉(𝑥, 𝑦) to be 1 for points (𝑥, 𝑦)
inside our object, and zero for points outside, then the first-order moments, 𝑆𝑥 and 𝑆𝑦, are defined as

𝑆𝑥 =
∑︁
𝑥,𝑦

𝑥𝜉(𝑥, 𝑦) and 𝑆𝑦 =
∑︁
𝑥,𝑦

𝑦𝜉(𝑥, 𝑦)

Higher order moments are similarly defined and are used in the calculation of some of the other attributes.
For example, the centroid is a kind of geometric center of an object, and can be calculated from first
moments. It allows one to assign a single point location to what may be a large, extended object.

Axis Angle, denoted by 𝜃, is calculated from the second-order moments. It gives information on the orien-
tation or “tilt” of an object. Curvature is another attribute that uses moments in its calculation, specifically,
third-order moments.

Aspect Ratio is computed by fitting a rectangle around an object. The rectangle is aligned so that it has the
same axis angle as the object, and the length and width are chosen so as to just enclose the object. We make
no claim that the rectangle so obtained is the smallest possible rectangle enclosing the given object. However,
this rectangle is much easier to calculate than a smaller enclosing rectangle and serves our purposes just as
well. Once the rectangle is determined, the aspect ratio of the object is defined to be the width of the fitted
rectangle divided by its length.

Another object attribute defined by MODE is complexity. Complexity is defined by comparing the area of
an object to the area of its convex hull.

All the attributes discussed so far are defined for single objects. Once these are determined, they can be used
to calculate attributes for pairs of objects. One example is the centroid difference. This measure is simply
the (vector) difference between the centroids of the two objects. Another example is the angle difference.
This is the difference between the axis angles.

Several area measures are also used for pair attributes. Union Area is the total area that is in either one (or
both) of the two objects. Intersection Area is the area that is inside both objects simultaneously. Symmetric
Difference is the area inside at least one object, but not inside both.

19.2.3 Fuzzy logic

Once object attributes 𝛼1, 𝛼2, . . . , 𝛼𝑛 are estimated, some of them are used as input to a fuzzy logic engine
that performs the matching and merging steps. Merging refers to grouping together objects in a single field,
while matching refers to grouping together objects in different fields, typically the forecast and observed
fields. Interest maps 𝐼𝑖 are applied to the individual attributes 𝛼𝑖 to convert them into interest values, which
range from zero (representing no interest) to one (high interest). For example, the default interest map for
centroid difference is one for small distances, and falls to zero as the distance increases. For other attributes
(e.g., intersection area), low values indicate low interest, and high values indicate more interest.

328 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

The next step is to define confidence maps 𝐶𝑖 for each attribute. These maps (again with values ranging
from zero to one) reflect how confident we are in the calculated value of an attribute. The confidence maps
generally are functions of the entire attribute vector 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛), in contrast to the interest maps,
where each 𝐼𝑖 is a function only of 𝛼𝑖. To see why this is necessary, imagine an electronic anemometer that
outputs a stream of numerical values of wind speed and direction. It is typically the case for such devices
that when the wind speed becomes small enough, the wind direction is poorly resolved. The wind must be
at least strong enough to overcome friction and turn the anemometer. Thus, in this case, our confidence
in one attribute (wind direction) is dependent on the value of another attribute (wind speed). In MODE,
all of the confidence maps except the map for axis angle are set to a constant value of 1. The axis angle
confidence map is a function of aspect ratio, with values near one having low confidence, and values far
from one having high confidence.

Next, scalar weights 𝑤𝑖 are assigned to each attribute, representing an empirical judgment regarding the
relative importance of the various attributes. As an example, the initial development of MODE, centroid
distance was weighted more heavily than other attributes, because the location of storm systems close to
each other in space seemed to be a strong indication (stronger than that given by any other attribute) that
they were related.

Finally, all these ingredients are collected into a single number called the total interest, 𝑇 , given by:

𝑇 (𝛼) =

∑︀
𝑖𝑤𝑖𝐶𝑖(𝛼)𝐼𝑖(𝛼𝑖)∑︀

𝑖𝑤𝑖𝐶𝑖(𝛼)

This total interest value is then thresholded, and pairs of objects that have total interest values above the
threshold are merged (if they are in the same field) or matched (if they are in different fields).

Another merging method is available in MODE, which can be used instead of, or along with, the fuzzy logic
based merging just described. Recall that the convolved field is thresholded to produce the mask field. A
second (lower) threshold can be specified so that objects that are separated at the higher threshold but
joined at the lower threshold are merged.

19.2.4 Summary statistics

Once MODE has been run, summary statistics are written to an output file. These files contain information
about all single and cluster objects and their attributes. Total interest for object pairs is also output, as
are percentiles of intensity inside the objects. The output file is in a simple flat ASCII tabular format (with
one header line) and thus should be easily readable by just about any programming language, scripting
language, or statistics package. Refer to Section 19.3.3 for lists of the statistics included in the MODE output
files. Example scripts will be posted on the MET website in the future.

19.2.5 Multi-Variate MODE

Traditionally, MODE defines objects by smoothing and thresholding data from a single input field. MET
version 10.1.0 extends MODE by adding the option to define objects using multiple input fields.

As described in Section 19.3.2, the field entry in the forecast and observation dictionaries define the input
data to be processed. If field is defined as a dictionary, the traditional method for running MODE is invoked,
where objects are defined using a single input field. If field is defined as an array of dictionaries, each spec-
ifying a different input field, then the multi-variate MODE logic is invoked and requires the multivar_logic

19.2. Scientific and statistical aspects 329

MET User’s Guide, version 11.1.0-beta2

configuration entry to be set. Traditional MODE is run once for each input field to define objects for that
field. Note that the object definition criteria can be defined separately for each field array entry. The objects
from each input field are combined into a super object for both the forecast and observation data.

The multivar_logic configuration entry, described in Section 19.3.2, defines the boolean logic for combining
objects from multiple fields into a super object. If this configuration option is set, there must be an equal or
greater number of fields defined in an array of dictionaries for it define a super object of more than one field.
Note that the multi-variate MODE forecast and observation input fields and combination logic do not need
to match. The resulting forecast and observation super objects are written to NetCDF output files. Users can
then configure and run traditional MODE to compare the forecast super object to the observed super object.

19.3 Practical information

This section contains a description of how MODE can be configured and run. The MODE tool is used to
perform a features-based verification of gridded model data using gridded observations. The input gridded
model and observation datasets must be in one of the MET supported gridded file formats. If the input
datasets are not already on a common grid, MODE can interpolate them to a common grid. The regrid
option in the configuration file enables the user to specify the grid upon which the scores will be computed.
The gridded analysis data may be based on observations, such as Stage II or Stage IV data for verifying
accumulated precipitation, or a model analysis field may be used. However, users are cautioned that it is
generally unwise to verify model output using an analysis field produced by the same model.

MODE provides the capability to select a single model variable/level from which to derive objects to be
analyzed. MODE was developed and tested using accumulated precipitation. However, the code has been
generalized to allow the use of any gridded model and observation field. Based on the options specified
in the configuration file, MODE will define a set of simple objects in the model and observation fields. It
will then compute an interest value for each pair of objects across the fields using a fuzzy engine approach.
Those interest values are thresholded, and any pairs of objects above the threshold will be matched/merged.
Through the configuration file, MODE offers a wide range of flexibility in how the objects are defined,
processed, matched, and merged.

19.3.1 mode usage

The usage statement for the MODE tool is listed below:

Usage: mode
fcst_file
obs_file
config_file
[-config_merge merge_config_file]
[-outdir path]
[-log file]
[-v level]
[-compress level]

The MODE tool has three required arguments and can accept several optional arguments.

330 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

19.3.1.1 Required arguments for mode

1. The fcst_file argument indicates the gridded file containing the model field to be verified.

2. The obs_file argument indicates the gridded file containing the gridded observations to be used for
the verification of the model.

3. The config_file argument indicates the name of the configuration file to be used. The contents of the
configuration file are discussed below.

19.3.1.2 Optional arguments for mode

4. The -config_merge merge_config_file option indicates the name of a second configuration file to be
used when performing fuzzy engine merging by comparing the model or observation field to itself.
The MODE tool provides the capability of performing merging within a single field by comparing the
field to itself. Interest values are computed for each object and all of its neighbors. If an object and
its neighbor have an interest value above some threshold, they are merged. The merge_config_file
controls the settings of the fuzzy engine used to perform this merging step. If a merge_config_file is
not provided, the configuration specified by the config_file in the previous argument will be used.

5. The -outdir path option indicates the directory where output files should be written.

6. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

7. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

8. The -compress level option indicates the desired level of compression (deflate level) for NetCDF
variables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0
from the configuration file or the environment variable MET_NC_COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and
higher number is for better compression.

An example of the MODE calling sequence is listed below:

Example 1:

mode sample_fcst.grb \
sample_obs.grb \
MODEConfig_grb

In Example 1, the MODE tool will verify the model data in the sample_fcst.grb GRIB file using the observa-
tions in the sample_obs.grb GRIB file applying the configuration options specified in the MODEConfig_grb
file.

A second example of the MODE calling sequence is presented below:

Example 2:

19.3. Practical information 331

MET User’s Guide, version 11.1.0-beta2

mode sample_fcst.nc \
sample_obs.nc \
MODEConfig_nc

In Example 2, the MODE tool will verify the model data in the sample_fcst.nc NetCDF output of pcp_combine
using the observations in the sample_obs.nc NetCDF output of pcp_combine, using the configuration options
specified in the MODEConfig_nc file. Since the model and observation files contain only a single field
of accumulated precipitation, the MODEConfig_nc file should specify that accumulated precipitation be
verified.

19.3.2 mode configuration file

The default configuration file for the MODE tool, MODEConfig_default, can be found in the installed
share/met/config directory. Another version of the configuration file is provided in scripts/config. We en-
courage users to make a copy of the configuration files prior to modifying their contents. Descriptions of
MODEConfig_default and the required variables for any MODE configuration file are also provided below.
While the configuration file contains many entries, most users will only need to change a few for their use.
Specific options are described in the following subsections.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

model = "WRF";
desc = "NA";
obtype = "ANALYS";
regrid = { ... }
met_data_dir = "MET_BASE";
output_prefix = "";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

grid_res = 4;

The grid_res entry is the nominal spacing for each grid square in kilometers. This entry is not used directly
in the code, but subsequent entries in the configuration file are defined in terms of it. Therefore, setting this
appropriately will help ensure that appropriate default values are used for these entries.

quilt = FALSE;

The quilt entry indicates whether all permutations of convolution radii and thresholds should be run.

• If FALSE, the number of forecast and observation convolution radii and thresholds must all match.
One configuration of MODE will be run for each group of settings in those lists.

332 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

• If TRUE, the number of forecast and observation convolution radii must match and the number of
forecast and observation convolution thresholds must match. For N radii and M thresholds, NxM
configurations of MODE will be run.

multivar_logic = "#1 && #2 && #3";

The multivar_logic entry appears only in the MODEMultivarConfig_default file. This option applies to
running multi-variate MODE by setting field to an array of dictionaries to define multiple input fields.
Objects are defined separately for each input field based on the configuration settings specified for each field
array entry. The multivar_logic entry is a string which defines how objects for each field are combined
into a final super object. The objects for each field are referred to as ‘#N’ where N is the N-th field array
entry. The ‘&&’ and ‘||’ strings define intersection and union logic, respectively. For example, “#1 && #2”
is the intersection of the objects from the first and second fields. “(#1 && #2) || #3” is the union of that
intersection with the objects from the third field.

The multivar_logic entry is parsed separately from the fcst and obs dictionaries and can be defined differ-
ently in each.

fcst = {
field = {

name = "APCP";
level = "A03";

}
censor_thresh = [];
censor_val = [];
conv_radius = 60.0/grid_res; // in grid squares
conv_thresh = >=5.0;
vld_thresh = 0.5;
filter_attr_name = [];
filter_attr_thresh = [];
merge_thresh = >=1.25;
merge_flag = THRESH;

}
obs = fcst;

The field entries in the forecast and observation dictionaries specify the model and observation variables
and level to be compared. See a more complete description of them in Section 5. In the above example, the
forecast settings are copied into the observation dictionary using obs = fcst;.

When field is set to an array of dictionaries rather than a single one, the multi-variate MODE logic is invoked.
Please see Section 19.2.5 for a description of that logic.

The censor_thresh and censor_val entries are used to censor the raw data as described in Section 5. Their
functionality replaces the raw_thresh entry, which is deprecated in met-6.1. Prior to defining objects, it is
recommended that the raw fields should be made to look similar to each other. For example, if the model
only predicts values for a variable above some threshold, the observations should be thresholded at that

19.3. Practical information 333

MET User’s Guide, version 11.1.0-beta2

same level. The censor thresholds can be specified using symbols. By default, no censor thresholding is
applied.

The conv_radius entry defines the radius of the circular convolution applied to smooth the raw fields. The
radii are specified in terms of grid units. The default convolution radii are defined in terms of the previously
defined grid_res entry. Multiple convolution radii may be specified as an array (e.g. conv_radius = [5, 10,
15];).

The conv_thresh entry specifies the threshold values to be applied to the convolved field to define objects.
By default, objects are defined using a convolution threshold of 5.0. Multiple convolution thresholds may be
specified as an array (e.g. conv_thresh = [>=5.0, >=10.0, >=15.0];).

Multiple convolution radii and thresholds and processed using the logic defined by the quilt entry.

The vld_thresh entry must be set between 0 and 1. When performing the circular convolution step if the
proportion of bad data values in the convolution area is greater than or equal to this threshold, the resulting
convolved value will be bad data. If the proportion is less than this threshold, the convolution will be
performed on only the valid data. By default, the vld_thresh is set to 0.5.

The filter_attr_name and filter_attr_thresh entries are arrays of the same length which specify object
filtering criteria. By default, no object filtering criteria is defined.

The filter_attr_name entry is an array of strings specifying the MODE output header column names for
the object attributes of interest, such as AREA, LENGTH, WIDTH, and INTENSITY_50. In addition, AS-
PECT_RATIO specifies the aspect ratio (width/length), INTENSITY_101 specifies the mean intensity value,
and INTENSITY_102 specifies the sum of the intensity values.

The filter_attr_thresh entry is an array of thresholds for these object attributes. Any simple objects not
meeting all of the filtering criteria are discarded.

Note that the area_thresh and inten_perc_thresh entries from earlier versions of MODE are replaced by
these options and are now deprecated.

The merge_thresh entry is used to define larger objects for use in merging the original objects. It defines the
threshold value used in the double thresholding merging technique. Note that in order to use this merging
technique, it must be requested for both the forecast and observation fields. These thresholds should be
chosen to define larger objects that fully contain the originally defined objects. For example, for objects
defined as >=5.0, a merge threshold of >=2.5 will define larger objects that fully contain the original
objects. Any two original objects contained within the same larger object will be merged. By default, the
merge thresholds are set to be greater than or equal to 1.25. Multiple merge thresholds may be specified as
an array (e.g. merge_thresh = [>=1.0, >=2.0, >=3.0];). The number of merge_thresh entries must
match the number of conv_thresh entries.

The merge_flag entry controls what type of merging techniques will be applied to the objects defined in
each field.

• NONE indicates that no merging should be applied.

• THRESH indicates that the double thresholding merging technique should be applied.

• ENGINE indicates that objects in each field should be merged by comparing the objects to themselves
using a fuzzy engine approach.

• BOTH indicates that both techniques should be used.

334 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

By default, the double thresholding merging technique is applied.

mask_missing_flag = NONE;

The mask_missing_flag entry specifies how missing data in the raw model and observation fields will be
treated.

• NONE indicates no additional processing is to be done.

• FCST indicates missing data in the observation field should be used to mask the forecast field.

• OBS indicates missing data in the forecast field should be used to mask the observation field.

• BOTH indicates masking should be performed in both directions (i.e., mask the forecast field with the
observation field and vice-versa).

Prior to defining objects, it is recommended that the raw fields be made to look similar to each other by
assigning a value of BOTH to this parameter. However, by default no masking is performed.

match_flag = MERGE_BOTH;

The match_flag entry controls how matching will be performed when comparing objects from the forecast
field to objects from the observation field. An interest value is computed for each possible pair of fore-
cast/observation objects. The interest values are then thresholded to define which objects match. If two
objects in one field happen to match the same object in the other field, then those two objects could be
merged. The match_flag entry controls what type of merging is allowed in this context.

• NONE indicates that no matching should be performed between the fields at all.

• MERGE_BOTH indicates that additional merging is allowed in both fields.

• MERGE_FCST indicates that additional merging is allowed only in the forecast field.

• NO_MERGE indicates that no additional merging is allowed in either field, meaning that each object
will match at most one object in the other field.

By default, additional merging is allowed in both fields.

max_centroid_dist = 800/grid_res;

Computing the attributes for all possible pairs of objects can take some time depending on the numbers
of objects. The max_centroid_dist entry is used to specify how far apart objects should be in order to
conclude that they have no chance of matching. No pairwise attributes are computed for pairs of objects
whose centroids are farther away than this distance, defined in terms of grid units. Setting this entry to
a reasonable value will improve the execution time of the MODE tool. By default, the maximum centroid
distance is defined in terms of the previously defined grid_res entry.

19.3. Practical information 335

MET User’s Guide, version 11.1.0-beta2

mask = {
grid = "";
grid_flag = NONE; // Apply to NONE, FCST, OBS, or BOTH
poly = "";
poly_flag = NONE; // Apply to NONE, FCST, OBS, or BOTH

}

Defining a grid and poly masking region is described in Section 5. Applying a masking region when running
MODE sets all grid points falling outside of that region to missing data, effectively limiting the area of which
objects should be defined.

The grid_flag and poly_flag entries specify how the grid and polyline masking should be applied:

• NONE indicates that the masking grid should not be applied.

• FCST indicates that the masking grid should be applied to the forecast field.

• OBS indicates that the masking grid should be applied to the observation field.

• BOTH indicates that the masking grid should be applied to both fields.

By default, no masking grid or polyline is applied.

weight = {
centroid_dist = 2.0;
boundary_dist = 4.0;
convex_hull_dist = 0.0;
angle_diff = 1.0;
aspect_diff = 0.0;
area_ratio = 1.0;
int_area_ratio = 2.0;
curvature_ratio = 0.0;
complexity_ratio = 0.0;
inten_perc_ratio = 0.0;
inten_perc_value = 50;

}

The weight entries listed above control how much weight is assigned to each pairwise attribute when com-
puting a total interest value for object pairs. The weights listed above correspond to the centroid distance
between the objects, the boundary distance (or minimum distance), the convex hull distance (or mini-
mum distance between the convex hulls of the objects), the orientation angle difference, the aspect ratio
difference, the object area ratio (minimum area divided by maximum area), the intersection divided by
the minimum object area ratio, the curvature ratio, the complexity ratio, and the intensity ratio. The
weights need not sum to any particular value. When the total interest value is computed, the weighted sum
is normalized by the sum of the weights listed above.

The inten_perc_value entry corresponds to the inten_perc_ratio. The inten_perc_value should be set
between 0 and 102 to define which percentile of intensity should be compared for pairs of objects. 101 and
102 specify the intensity mean and sum, respectively. By default, the 50th percentile, or median value, is
chosen.

336 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

interest_function = {
centroid_dist = (...);
boundary_dist = (...);
convex_hull_dist = (...);
angle_diff = (...);
aspect_diff = (...);
corner = 0.8;
ratio_if = ((0.0, 0.0)

(corner, 1.0)
(1.0, 1.0));

area_ratio = ratio_if;
int_area_ratio = (...);
curvature_ratio = ratio_if;
complexity_ratio = ratio_if;
inten_perc_ratio = ratio_if;

}

The set of interest function entries listed above define which values are of interest for each pairwise attribute
measured. The interest functions may be defined as a piecewise linear function or as an algebraic expression.
A piecewise linear function is defined by specifying the corner points of its graph. An algebraic function may
be defined in terms of several built-in mathematical functions. See Section 20.2 for how interest values are
used by the fuzzy logic engine. By default, many of these functions are defined in terms of the previously
defined grid_res entry.

total_interest_thresh = 0.7;

The total_interest_thresh entry should be set between 0 and 1. This threshold is applied to the total interest
values computed for each pair of objects. Object pairs that have an interest value that is above this threshold
will be matched, while those with an interest value that is below this threshold will remain unmatched.
Increasing the threshold will decrease the number of matches while decreasing the threshold will increase
the number of matches. By default, the total interest threshold is set to 0.7.

print_interest_thresh = 0.0;

The print_interest_thresh entry determines which pairs of object attributes will be written to the output
object attribute ASCII file. The user may choose to set the print_interest_thresh to the same value as the
total_interest_thresh, meaning that only object pairs that actually match are written to the output file. By
default, the print interest threshold is set to zero, meaning that all object pair attributes will be written as
long as the distance between the object centroids is less than the max_centroid_dist entry.

19.3. Practical information 337

MET User’s Guide, version 11.1.0-beta2

fcst_raw_plot = {
color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;

}
obs_raw_plot = {

color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;

}
object_plot = {

color_table = "MET_BASE/colortables/mode_obj.ctable";
}

Specifying dictionaries to define the color_table, plot_min, and plot_max entries are described in Section
5.

The MODE tool generates a color bar to represent the contents of the colortable that was used to plot a field
of data. The number of entries in the color bar matches the number of entries in the color table. The values
defined for each color in the color table are also plotted next to the color bar.

plot_valid_flag = FALSE;

When applied, the plot_valid_flag entry indicates that only the region containing valid data after masking
is applied should be plotted.

• FALSE indicates the entire domain should be plotted.

• TRUE indicates only the region containing valid data after masking should be plotted.

The default value of this flag is FALSE.

plot_gcarc_flag = FALSE;

When applied, the plot_gcarc_flag entry indicates that the edges of polylines should be plotted using great
circle arcs as opposed to straight lines in the grid. The default value of this flag is FALSE.

ps_plot_flag = TRUE;
ct_stats_flag = TRUE;

These flags can be set to TRUE or FALSE to produce additional output, in the form of PostScript plots and
contingency table counts and statistics, respectively.

338 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

nc_pairs_flag = {
latlon = TRUE;
raw = TRUE;
object_raw = TRUE;
object_id = TRUE;
cluster_id = TRUE;
polylines = TRUE;

}

Each component of the pairs information in the NetCDF file can be turned on or off. The old syntax is still
supported: TRUE means accept the defaults, FALSE means no NetCDF output is generated. NetCDF output
can also be turned off by setting all the individual dictionary flags to false.

The nc_pairs_flag is described in Section 12.3.2

shift_right = 0;

When MODE is run on global grids, this parameter specifies how many grid squares to shift the grid to
the right. MODE does not currently connect objects from one side of a global grid to the other, potentially
causing objects straddling the “cut” longitude to be separated into two objects. Shifting the grid by integer
number of grid units enables the user to control where that longitude cut line occurs.

19.3.3 mode output

MODE produces output in ASCII, NetCDF, and PostScript formats.

ASCII output

The MODE tool creates two ASCII output files. The first ASCII file contains contingency table counts and
statistics for comparing the forecast and observation fields. This file consists of 4 lines. The first is a header
line containing column names. The second line contains data comparing the two raw fields after any masking
of bad data or based on a grid or lat/lon polygon has been applied. The third contains data comparing the
two fields after any raw thresholds have been applied. The fourth, and last, line contains data comparing
the derived object fields scored using traditional measures.

Table 19.1: Format of MODE CTS output file.

mode ASCII CONTINGENCY TABLE OUTPUT FORMAT
Column Number MODE CTS Column Name Description
1 VERSION Version number
2 MODEL User provided text string designating model name
3 N_VALID Number of valid data points
4 GRID_RES User provided nominal grid resolution
5 DESC User provided text string describing the verification task
6 FCST_LEAD Forecast lead time in HHMMSS format
7 FCST_VALID Forecast valid start time in YYYYMMDD_HHMMSS format

continues on next page

19.3. Practical information 339

MET User’s Guide, version 11.1.0-beta2

Table 19.1 – continued from previous page
mode ASCII CONTINGENCY TABLE OUTPUT FORMAT
Column Number MODE CTS Column Name Description
8 FCST_ACCUM Forecast accumulation time in HHMMSS format
9 OBS_LEAD Observation lead time in HHMMSS format; when field2 is actually an observation, this should be “000000”
10 OBS_VALID Observation valid start time in YYYYMMDD_HHMMSS format
11 OBS_ACCUM Observation accumulation time in HHMMSS format
12 FCST_RAD Forecast convolution radius in grid squares
13 FCST_THR Forecast convolution threshold
14 OBS_RAD Observation convolution radius in grid squares
15 OBS_THR Observation convolution threshold
16 FCST_VAR Forecast variable
17 FCST_UNITS Units for model variable
18 FCST_LEV Forecast vertical level
19 OBS_VAR Observation variable
20 OBS_UNITS Units for observation variable
21 OBS_LEV Observation vertical level
22 OBTYPE User provided observation type
23 FIELD Field type for this line:* RAW for the raw input fields * OBJECT for the resolved object fields
24 TOTAL Total number of matched pairs
25 FY_OY Number of forecast yes and observation yes
26 FY_ON Number of forecast yes and observation no
27 FN_OY Number of forecast no and observation yes
28 FN_ON Number of forecast no and observation no
29 BASER Base rate
30 FMEAN Forecast mean
31 ACC Accuracy
32 FBIAS Frequency Bias
33 PODY Probability of detecting yes
34 PODN Probability of detecting no
35 POFD Probability of false detection
36 FAR False alarm ratio
37 CSI Critical Success Index
38 GSS Gilbert Skill Score
39 HK Hanssen-Kuipers Discriminant
40 HSS Heidke Skill Score
41 ODDS Odds Ratio

This first file uses the following naming convention:

mode_PREFIX_FCST_VAR_LVL_vs_OBS_VAR_LVL_HHMMSSL_YYYYMMDD_HHMMSSV_HHMMSSA_cts.txt

where PREFIX indicates the user-defined output prefix, FCST_VAR_LVL is the forecast variable and vertical
level being used, OBS_VAR_LVL is the observation variable and vertical level being used, HHMMSSL indicates
the forecast lead time, YYYYMMDD_HHMMSSV indicates the forecast valid time, and HHMMSSA indicates
the accumulation period. The {tt cts} string stands for contingency table statistics. The generation of this file
can be disabled using the ct_stats_flag option in the configuration file. This CTS output file differs somewhat
from the CTS output of the Point-Stat and Grid-Stat tools. The columns of this output file are summarized

340 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

in Table 19.1.

The second ASCII file the MODE tool generates contains all of the attributes for simple objects, the merged
cluster objects, and pairs of objects. Each line in this file contains the same number of columns, though
those columns not applicable to a given line contain fill data. The first row of every MODE object attribute
file is a header containing the column names. The number of lines in this file depends on the number of
objects defined. This file contains lines of 6 types that are indicated by the contents of the OBJECT_ID
column. The OBJECT_ID can take the following 6 forms: FNN, ONN, FNNN_ONNN, CFNNN, CONNN,
CFNNN_CONNN. In each case, NNN is a three-digit number indicating the object index. While all lines have
the first 18 header columns in common, these 6 forms for OBJECT_ID can be divided into two types - one
for single objects and one for pairs of objects. The single object lines (FNN, ONN, CFNNN, and CONNN)
contain valid data in columns 19-39 and fill data in columns 40-51. The object pair lines (FNNN_ONNN and
CFNNN_CONNN) contain valid data in columns 40-51 and fill data in columns 19-39.

These object identifiers are described in Table 19.2.

Table 19.2: Object identifier descriptions for MODE object
attribute output file.

mode ASCII OB-
JECT

IDENTIFIER DESCRIPTIONS

Object identifier (ob-
ject_id)

Valid Data
Columns

Description of valid data

FNNN, ONNN 1-18,19-39 Attributes for simple forecast, observation objects
FNNN_ ONNN 1-18, 40-51 Attributes for pairs of simple forecast and observation ob-

jects
CFNNN, CONNN 1-18,19-39 Attributes for merged cluster objects in forecast, observa-

tion fields
CFNNN_ CONNN 1-18, 40-51 Attributes for pairs of forecast and observation cluster ob-

jects

A note on terminology: a cluster (referred to as “composite” in earlier versions) object need not necessarily
consist of more than one simple object. A cluster object is by definition any set of one or more objects in
one field which match a set of one or more objects in the other field. When a single simple forecast object
matches a single simple observation object, they are each considered to be cluster objects as well.

The contents of the columns in this ASCII file are summarized in Table 19.3.

Table 19.3: Format of MODE object attribute output files.

mode ASCII OBJECT ATTRIBUTE OUTPUT FORMAT
Column MODE Column Name Description
1 VERSION Version number
2 MODEL User provided text string designating model name
3 N_VALID Number of valid data points
4 GRID_RES User provided nominal grid resolution
5 DESC User provided text string describing the verification task

continues on next page

19.3. Practical information 341

MET User’s Guide, version 11.1.0-beta2

Table 19.3 – continued from previous page
mode ASCII OBJECT ATTRIBUTE OUTPUT FORMAT
Column MODE Column Name Description
6 FCST_LEAD Forecast lead time in HHMMSS format
7 FCST_VALID Forecast valid start time in YYYYMMDD_HHMMSS format
8 FCST_ACCUM Forecast accumulation time in HHMMSS format
9 OBS_LEAD Observation lead time in HHMMSS format; when field2 is actually an observation, this should be “000000”
10 OBS_VALID Observation valid start time in YYYYMMDD_HHMMSS format
11 OBS_ACCUM Observation accumulation time in HHMMSS format
12 FCST_RAD Forecast convolution radius in grid squares
13 FCST_THR Forecast convolution threshold
14 OBS_RAD Observation convolution radius in grid squares
15 OBS_THR Observation convolution threshold
16 FCST_VAR Forecast variable
17 FCST_UNITS Units for forecast variable
18 FCST_LEV Forecast vertical level
19 OBS_VAR Observation variable
20 OBS_UNITS Units for observation variable
21 OBS_LEV Observation vertical level
22 OBTYPE User provided observation type
23 OBJECT_ID Object numbered from 1 to the number of objects in each field
24 OBJECT_CAT Object category indicating to which cluster object it belongs
25-26 CENTROID_X, _Y Location of the centroid (in grid units)
27-28 CENTROID_LAT, _LON Location of the centroid (in lat/lon degrees)
29 AXIS_ANG Object axis angle (in degrees)
30 LENGTH Length of the enclosing rectangle (in grid units)
31 WIDTH Width of the enclosing rectangle (in grid units)
32 AREA Object area (in grid squares)
33 AREA_THRESH Area of the object containing data values in the raw field that meet the object definition threshold criteria (in grid squares)
34 CURVATURE Radius of curvature of the object defined in terms of third order moments (in grid units)
35-36 CURVATURE_X, _Y Center of curvature (in grid coordinates)
37 COMPLEXITY Ratio of the difference between the area of an object and the area of its convex hull divided by the area of the complex hull (unitless)
38-42 INTENSITY_10, _25, _50, _75, _90 10th, 25th, 50th, 75th, and 90th percentiles of intensity of the raw field within the object (various units)
43 INTENSITY_NN The percentile of intensity chosen for use in the PERCENTILE_INTENSITY_RATIO column (variable units)
44 INTENSITY_SUM Sum of the intensities of the raw field within the object (variable units)
45 CENTROID_DIST Distance between two objects centroids (in grid units)
46 BOUNDARY_DIST Minimum distance between the boundaries of two objects (in grid units)
47 CONVEX_HULL _DIST Minimum distance between the convex hulls of two objects (in grid units)
48 ANGLE_DIFF Difference between the axis angles of two objects (in degrees)
49 ASPECT_DIFF Absolute value of the difference between the aspect ratios of two objects (unitless)
50 AREA_RATIO The forecast object area divided by the observation object area (unitless) NOTE: Prior to met-10.0.0, defined as the lesser of the two object areas divided by the greater of the two
51 INTERSECTION _AREA Intersection area of two objects (in grid squares)
52 UNION_AREA Union area of two objects (in grid squares)
53 SYMMETRIC_DIFF Symmetric difference of two objects (in grid squares)
54 INTERSECTION _OVER_AREA Ratio of intersection area to the lesser of the forecast and observation object areas (unitless)
55 CURVATURE _RATIO Ratio of the curvature of two objects defined as the lesser of the two divided by the greater of the two (unitless)

continues on next page

342 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

Table 19.3 – continued from previous page
mode ASCII OBJECT ATTRIBUTE OUTPUT FORMAT
Column MODE Column Name Description
56 COMPLEXITY _RATIO Ratio of complexities of two objects defined as the lesser of the forecast complexity divided by the observation complexity or its reciprocal (unitless)
57 PERCENTILE _INTENSITY _RATIO Ratio of the nth percentile (INTENSITY_NN column) of intensity of the two objects defined as the lesser of the forecast intensity divided by the observation intensity or its reciprocal (unitless)
58 INTEREST Total interest value computed for a pair of simple objects (unitless)

NetCDF Output

The MODE tool creates a NetCDF output file containing the object fields that are defined. The NetCDF file
contains gridded fields including indices for the simple forecast objects, indices for the simple observation
objects, indices for the matched cluster forecast objects, and indices for the matched cluster observation
objects. The NetCDF file also contains lat/lon and x/y data for the vertices of the polygons for the bound-
aries of the simple forecast and observation objects. The generation of this file can be disabled using the
nc_pairs_flag configuration file option.

The dimensions and variables included in the mode NetCDF files are described in Table 19.4 and Table 19.5.

Table 19.4: NetCDF dimensions for MODE output.

mode NETCDF DIMEN-
SIONS
NetCDF Dimension Description
lat Dimension of the latitude (i.e. Number of grid points in the North-South

direction)
lon Dimension of the longitude (i.e. Number of grid points in the East-West

direction)
fcst_thresh_length Number of thresholds applied to the forecast
obs_thresh_length Number of thresholds applied to the observations
fcst_simp Number of simple forecast objects
fcst_simp_bdy Number of points used to define the boundaries of all of the simple forecast

objects
fcst_simp_hull Number of points used to define the hull of all of the simple forecast objects
obs_simp Number of simple observation objects
obs_simp_bdy Number of points used to define the boundaries of all of the simple observa-

tion objects
obs_simp_hull Number of points used to define the hull of all of the simple observation

objects
fcst_clus Number of forecast clusters
fcst_clus_hull Number of points used to define the hull of all of the cluster forecast objects
obs_clus Number of observed clusters
obs_clus_hull Number of points used to define the hull of all of the cluster observation

objects

19.3. Practical information 343

MET User’s Guide, version 11.1.0-beta2

Table 19.5: Variables contained in MODE NetCDF output.

mode NETCDF VARIABLES
NetCDF Variable Dimension Description
lat lat, lon Latitude
lon lat, lon Longitude
fcst_raw lat, lon Forecast raw values
fcst_obj_raw lat, lon Forecast Object Raw Values
fcst_obj_id lat, lon Simple forecast object id number for each grid point
fcst_clus_id lat, lon Cluster forecast object id number for each grid point
obs_raw lat, lon Observation Raw Values
obs_obj_raw lat, lon Observation Object Raw Values
obs_obj_id - Simple observation object id number for each grid point
obs_clus_id - Cluster observation object id number for each grid point
fcst_conv_radius - Forecast convolution radius
obs_conv_radius - Observation convolution radius
fcst_conv _threshold - Forecast convolution threshold
obs_conv _threshold - Observation convolution threshold
n_fcst_simp - Number of simple forecast objects
n_obs_simp - Number of simple observation objects
n_clus - Number of cluster objects
fcst_simp_bdy _start fcst_simp Forecast Simple Boundary Starting Index
fcst_simp_bdy _npts fcst_simp Number of Forecast Simple Boundary Points
fcst_simp_bdy _lat fcst_simp_bdy Forecast Simple Boundary Latitude
fcst_simp_bdy _lon fcst_simp_bdy Forecast Simple Boundary Longitude
fcst_simp_bdy_x fcst_simp_bdy Forecast Simple Boundary X-Coordinate
fcst_simp_bdy_y fcst_simp_bdy Forecast Simple Boundary Y-Coordinate
fcst_simp_hull _start fcst_simp Forecast Simple Convex Hull Starting Index
fcst_simp_hull _npts fcst_simp Number of Forecast Simple Convex Hull Points
fcst_simp_hull _lat fcst_simp_hull Forecast Simple Convex Hull Point Latitude
fcst_simp_hull _lon fcst_simp_hull Forecast Simple Convex Hull Point Longitude
fcst_simp_hull_x fcst_simp_hull Forecast Simple Convex Hull Point X-Coordinate
fcst_simp_hull_y fcst_simp_hull Forecast Simple Convex Hull Point Y-Coordinate
obs_simp_bdy _start obs_simp Observation Simple Boundary Starting Index
obs_simp_bdy _npts obs_simp Number of Observation Simple Boundary Points
obs_simp_bdy _lat obs_simp_bdy Observation Simple Boundary Point Latitude
obs_simp_bdy _lon obs_simp_bdy Observation Simple Boundary Point Longitude
obs_simp_bdy_x obs_simp_bdy Observation Simple Boundary Point X-Coordinate
obs_simp_bdy_y obs_simp_bdy Observation Simple Boundary Point Y-Coordinate
obs_simp_hull _start obs_simp Observation Simple Convex Hull Starting Index
obs_simp_hull _npts obs_simp Number of Observation Simple Convex Hull Points
obs_simp_hull _lat obs_simp_hull Observation Simple Convex Hull Point Latitude
obs_simp_hull _lon obs_simp_hull Observation Simple Convex Hull Point Longitude
obs_simp_hull_x obs_simp_hull Observation Simple Convex Hull Point X-Coordinate
obs_simp_hull_y obs_simp_hull Observation Simple Convex Hull Point Y-Coordinate
fcst_clus_hull _start fcst_clus Forecast Cluster Convex Hull Starting Index
fcst_clus_hull _npts fcst_clus Number of Forecast Cluster Convex Hull Points

continues on next page

344 Chapter 19. MODE Tool

MET User’s Guide, version 11.1.0-beta2

Table 19.5 – continued from previous page
mode NETCDF VARIABLES

NetCDF Variable Dimension Description
fcst_clus_hull _lat fcst_clus_hull Forecast Cluster Convex Hull Point Latitude
fcst_clus_hull _lon fcst_clus_hull Forecast Cluster Convex Hull Point Longitude
fcst_clus_hull_x fcst_clus_hull Forecast Cluster Convex Hull Point X-Coordinate
fcst_clus_hull_y fcst_clus_hull Forecast Cluster Convex Hull Point Y-Coordinate
obs_clus_hull _start obs_clus Observation Cluster Convex Hull Starting Index
obs_clus_hull _npts obs_clus Number of Observation Cluster Convex Hull Points
obs_clus_hull _lat obs_clus_hull Observation Cluster Convex Hull Point Latitude
obs_clus_hull _lon obs_clus_hull Observation Cluster Convex Hull Point Longitude
obs_clus_hull_x obs_clus_hull Observation Cluster Convex Hull Point X-Coordinate
obs_clus_hull_y obs_clus_hull Observation Cluster Convex Hull Point Y-Coordinate

Postscript File

Lastly, the MODE tool creates a PostScript plot summarizing the features-based approach used in the verifi-
cation. The PostScript plot is generated using internal libraries and does not depend on an external plotting
package. The generation of this PostScript output can be disabled using the ps_plot_flag configuration file
option.

The PostScript plot will contain 5 summary pages at a minimum, but the number of pages will depend on
the merging options chosen. Additional pages will be created if merging is performed using the double
thresholding or fuzzy engine merging techniques for the forecast and/or observation fields. Examples of the
PostScript plots can be obtained by running the example cases provided with the MET tarball.

The first page of PostScript output contains a great deal of summary information. Six tiles of images provide
thumbnail images of the raw fields, matched/merged object fields, and object index fields for the forecast
and observation grids. In the matched/merged object fields, matching colors of objects across fields indicate
that the corresponding objects match, while within a single field, black outlines indicate merging. Note that
objects that are colored royal blue are unmatched. Along the bottom of the page, the criteria used for object
definition and matching/merging are listed. Along the right side of the page, total interest values for pairs
of simple objects are listed in sorted order. The numbers in this list correspond to the object indices shown
in the object index plots.

The second and third pages of the PostScript output file display enlargements of the forecast and observation
raw and object fields, respectively. The fourth page displays the forecast object with the outlines of the
observation objects overlaid, and vice versa. The fifth page contains summary information about the pairs
of matched cluster objects.

If the double threshold merging or the fuzzy engine merging techniques have been applied, the output from
those steps is summarized on additional pages.

19.3. Practical information 345

MET User’s Guide, version 11.1.0-beta2

346 Chapter 19. MODE Tool

Chapter 20

MODE-Analysis Tool

20.1 Introduction

Users may wish to summarize multiple ASCII files produced by MODE across many cases. The MODE output
files contain many output columns making it very difficult to interpret the results by simply browsing the
files. Furthermore, for particular applications some data fields in the MODE output files may not be of
interest. The MODE-Analysis tool provides a simple way to compute basic summary statistics and filtering
capabilities for these files. Users who are not proficient at writing scripts can use the tool directly, and even
those using their own scripts can use this tool as a filter, to extract only the MODE output lines that are
relevant for their application.

20.2 Scientific and statistical aspects

The MODE-Analysis tool operates in two modes, called “summary” and “bycase”. In summary mode, the
user specifies on the command line the MODE output columns of interest as well as filtering criteria that
determine which input lines should be used. For example, a user may be interested in forecast object
areas, but only if the object was matched, and only if the object centroid is inside a particular region. The
summary statistics generated for each specified column of data are the minimum, maximum, mean, standard
deviation, and the 10th, 25th, 50th, 75th and 90th percentiles. In addition, the user may specify a “dump’”
file: the individual MODE lines used to produce the statistics will be written to this file. This option provides
the user with a filtering capability. The dump file will consist only of lines that match the specified criteria.

The other option for operating the analysis tool is “bycase”. Given initial and final values for forecast lead
time, the tool will output, for each valid time in the interval, the matched area, unmatched area, and the
number of forecast and observed objects that were matched or unmatched. For the areas, the user can
specify forecast or observed objects, and also simple or cluster objects. A dump file may also be specified in
this mode.

347

MET User’s Guide, version 11.1.0-beta2

20.3 Practical information

The MODE-Analysis tool reads lines from MODE ASCII output files and applies filtering and computes basic
statistics on the object attribute values. For each job type, filter parameters can be set to determine which
MODE output lines are used. The following sections describe the mode_analysis usage statement, required
arguments, and optional arguments.

20.3.1 mode_analysis usage

The usage statement for the MODE-Analysis tool is shown below:

Usage: mode_analysis
-lookin path
-summary | -bycase
[-column name]
[-dump_row filename]
[-out filename]
[-log file]
[-v level]
[-help]
[MODE FILE LIST]
[-config config_file] | [MODE LINE OPTIONS]

The MODE-Analysis tool has two required arguments and can accept several optional arguments.

20.3.1.1 Required arguments for mode_analysis:

1. The -lookin path specifies the name of a specific STAT file (any file ending in .stat) or the name of
a directory where the Stat-Analysis tool will search for STAT files. This option may be used multiple
times to specify multiple locations.

2. The MODE-Analysis tool can perform two basic types of jobs -summary or -bycase. Exactly one of
these job types must be specified.

Specifying -summary will produce summary statistics for the MODE output column specified. For this job
type, a column name (or column number) must be specified using the -column option. Column names are
not case sensitive. The column names are the same as described in Section 19.3.3. More information about
this option is provided in subsequent sections.

Specifying -bycase will produce a table of metrics for each case undergoing analysis. Any columns specified
are ignored for this option.

348 Chapter 20. MODE-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

20.3.1.2 Optional arguments for mode_analysis

3. The mode_analysis options are described in the following section. These are divided into sub-sections
describing the analysis options and mode line options.

20.3.1.3 Analysis options

The general analysis options described below provide a way for the user to indicate configuration files to be
used, where to write lines used to perform the analysis, and over which fields to generate statistics.

-config filename

This option gives the name of a configuration file to be read. The contents of the configuration file are
described in Section 20.3.2.

-dump_row filename

Any MODE lines kept from the input files are written to filename.

-column column

Specifies which columns in the MODE output files to generate statistics for. Fields may be indicated by name
(case insensitive) or column number (beginning at one). This option can be repeated to specify multiple
columns.

20.3.1.4 MODE Command Line Options

MODE command line options are used to create filters that determine which of the MODE output lines that
are read in, are kept. The MODE line options are numerous. They fall into seven categories: toggles, mul-
tiple set string options, multiple set integer options, integer max/min options, date/time max/min options,
floating-point max/min options, and miscellaneous options. These options are described here.

20.3.1.5 Toggles

The MODE line options described in this section are shown in pairs. These toggles represent parameters that
can have only one (or none) of two values. Any of these toggles may be left unspecified. However, if neither
option for each toggle is indicated, the analysis will produce results that combine data from both toggles.
This may produce unintended results.

-fcst | -obs

20.3. Practical information 349

MET User’s Guide, version 11.1.0-beta2

This toggle indicates whether forecast or observed lines should be used for analysis.

-single | -pair

This toggle indicates whether single object or object pair lines should be used.

-simple | -cluster

This toggle indicates whether simple object or cluster object lines should be used.

-matched | -unmatched

This toggle indicates whether matched or unmatched object lines should be used.

20.3.1.6 Multiple-set string options

The following options set various string attributes. They can be set multiple times on the command line but
must be separated by spaces. Each of these options must be indicated as a string. String values that include
spaces may be used by enclosing the string in quotation marks.

-model value

This option specifies which model to use; value must be a string.

-fcst_thr value
-obs_thr value

These two options specify thresholds for forecast and observation objects to be used in the analysis, respec-
tively.

-fcst_var value
-obs_var value

These options indicate the names of variables to be used in the analysis for forecast and observed fields.

-fcst_units value
-obs_units value

These options indicate the units to be used in the analysis for forecast and observed fields.

350 Chapter 20. MODE-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

-fcst_lev value
-obs_lev value

These options indicate vertical levels for forecast and observed fields to be used in the analysis.

20.3.1.7 Multiple-set integer options

The following options set various integer attributes. They can be set multiple times on the command line
but must be separated by spaces. Each of the following options may only be indicated as an integer.

-fcst_lead value
-obs_lead value

These options are integers of the form HH[MMSS] specifying an (hour-minute-second) lead time.

-fcst_accum value
-obs_accum value

These options are integers of the form HHMMSS specifying an (hour-minute-second) accumulation time.

-fcst_rad value
-obs_rad value

These options indicate the convolution radius used for forecast or observed objects, respectively.

20.3.1.8 Integer max/min options

These options set limits on various integer attributes. Leaving a maximum value unset means no upper limit
is imposed on the value of the attribute. The option works similarly for minimum values.

-area_min value
-area_max value

These options are used to indicate minimum/maximum values for the area attribute to be used in the
analysis.

20.3. Practical information 351

MET User’s Guide, version 11.1.0-beta2

-area_filter_min value
-area_filter_max value

These options are used to indicate minimum/maximum values accepted for the area filter. The area filter
refers to the number of non-zero values of the raw data found within the object.

-area_thresh_min value
-area_thresh_max value

These options are used to indicate minimum/maximum values accepted for the area thresh. The area thresh
refers to the number of values of the raw data found within the object that meet the object definition
threshold criteria used.

-intersection_area_min value
-intersection_area_max value

These options refer to the minimum/maximum values accepted for the intersection area attribute.

-union_area_min value
-union_area_max value

These options refer to the minimum/maximum union area values accepted for analysis.

-symmetric_diff_min value
-symmetric_diff_max value

These options refer to the minimum/maximum values for symmetric difference for objects to be used in the
analysis.

20.3.1.9 Date/time max/min options

These options set limits on various date/time attributes. The values can be specified in one of three ways:

First, the options may be indicated by a string of the form YYYYMMDD_HHMMSS. This specifies a complete
calendar date and time.

Second, they may be indicated by a string of the form YYYYMMDD_HH. Here, the minutes and seconds are
assumed to be zero.

The third way of indicating date/time attributes is by a string of the form YYYYMMDD. Here, hours, minutes
and seconds are assumed to be zero.

352 Chapter 20. MODE-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

-fcst_valid_min YYYYMMDD[_HH[MMSS]]
-fcst_valid_max YYYYMMDD[_HH[MMSS]]
-obs_valid_min YYYYMMDD[_HH[MMSS]]
-obs_valid_max YYYYMMDD[_HH[MMSS]]

These options indicate minimum/maximum values for the forecast and observation valid times.

-fcst_init_min YYYYMMDD[_HH[MMSS]]
-fcst_init_max YYYYMMDD[_HH[MMSS]]
-obs_init_min YYYYMMDD[_HH[MMSS]]
-obs_init_max YYYYMMDD[_HH[MMSS]]

These two options indicate minimum/maximum values for forecast and observation initialization times.

20.3.1.10 Floating-point max/min options

Setting limits on various floating-point attributes. One may specify these as integers (i.e., without a decimal
point), if desired. The following pairs of options indicate minimum and maximum values for each MODE
attribute that can be described as a floating-point number. Please refer to Section 19.3.3 for a description of
these attributes as needed.

-centroid_x_min value
-centroid_x_max value

-centroid_y_min value
-centroid_y_max value

-centroid_lat_min value
-centroid_lat_max value

-centroid_lon_min value
-centroid_lon_max value

-axis_ang_min value
-axis_ang_max value

20.3. Practical information 353

MET User’s Guide, version 11.1.0-beta2

-length_min value
-length_max value

-width_min value
-width_max value

-curvature_min value
-curvature_max value

-curvature_x_min value
-curvature_x_max value

-curvature_y_min value
-curvature_y_max value

-complexity_min value
-complexity_max value

-intensity_10_min value
-intensity_10_max value

-intensity_25_min value
-intensity_25_max value

-intensity_50_min value
-intensity_50_max value

-intensity_75_min value
-intensity_75_max value

-intensity_90_min value
-intensity_90_max value

354 Chapter 20. MODE-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

-intensity_user_min value
-intensity_user_max value

-intensity_sum_min value
-intensity_sum_max value

-centroid_dist_min value
-centroid_dist_max value

-boundary_dist_min value
-boundary_dist_max value

-convex_hull_dist_min value
-convex_hull_dist_max value

-angle_diff_min value
-angle_diff_max value

-aspect_diff_min value
-aspect_diff_max value

-area_ratio_min value
-area_ratio_max value

-intersection_over_area_min value
-intersection_over_area_max value

-curvature_ratio_min value
-curvature_ratio_max value

-complexity_ratio_min value
-complexity_ratio_max value

20.3. Practical information 355

MET User’s Guide, version 11.1.0-beta2

-percentile_intensity_ratio_min value
-percentile_intensity_ratio_max value

-interest_min value
-interest_max value

20.3.1.11 Miscellaneous options

These options are used to indicate parameters that did not fall into any of the previous categories.

-mask_poly filename

This option indicates the name of a polygon mask file to be used for filtering. The format for these files is
the same as that of the polyline files for the other MET tools.

-help

This option prints the usage message.

20.3.2 mode_analysis configuration file

To use the MODE-Analysis tool, the user must un-comment the options in the configuration file to apply
them and comment out unwanted options. The options in the configuration file for the MODE-Analysis tools
are the same as the MODE command line options described in Section 20.3.1.

The parameters that are set in the configuration file either add to or override parameters that are set on the
command line. For the “set string” and “set integer type” options enclosed in brackets, the values specified
in the configuration file are added to any values set on the command line. For the “toggle” and “min/max
type” options, the values specified in the configuration file override those set on the command line.

20.3.3 mode_analysis output

The output of the MODE-Analysis tool is a self-describing tabular format written to standard output. The
length and contents of the table vary depending on whether -summary or -bycase is selected. The contents
also change for -summary depending on the number of columns specified by the user.

356 Chapter 20. MODE-Analysis Tool

Chapter 21

MODE Time Domain Tool

21.1 Introduction

21.1.1 Motivation

MODE Time Domain (MTD) is an extension of the MODE object-based approach to verification. In addition
to incorporating spatial information, MTD utilizes the time dimension to get at temporal aspects of forecast
verification. Since the two spatial dimensions of traditional meteorological forecasts are retained in addi-
tion to the time dimension, the method is inherently three dimensional. Given that, however, the overall
methodology has deliberately been kept as similar as possible to that of traditional MODE.

357

MET User’s Guide, version 11.1.0-beta2

Figure 21.1: MTD Spacetime Objects

A plot of some MTD precipitation objects is shown over the United States in Figure 21.1. The colors indicate
longitude, with red in the east moving through the spectrum to blue in the west. Time increases vertically
in this plot (and in most of the spacetime diagrams in this users’ guide). A few things are worthy of note
in this figure. First, the tendency of storm systems to move from west to east over time shows up clearly.
Second, tracking of storm objects over time is easily done: if we want to know if a storm at one time is a
later version of a storm at an earlier time, we need only see if they are part of the same 3D spacetime object.
Lastly, storms splitting up or merging over time are handled easily by this method.

The 2D (or traditional) MODE approach to object-base verification enabled users to analyze forecasts in
terms of location errors, intensity errors and shape, size and orientation errors. MTD retains all of that
capability, and adds new classes of forecast errors involving time information: speed and direction errors,
buildup and decay errors, and timing and duration errors. This opens up new ways of analyzing forecast
quality.

In the past, many MET users have performed separate MODE runs at a series of forecast valid times and
analyzed the resulting object attributes, matches and merges as functions of time in an effort to incorporate
temporal information in assessments of forecast quality. MTD was developed as a way to address this need
in a more systematic way. Most of the information obtained from such multiple coordinated MODE runs can
be obtained more simply from MTD.

At first glance, the addition of a third dimension would seem to entail no difficulties other than increased
memory and processing requirements to handle the three-dimensional datasets and objects, and that would

358 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

indeed be largely true of an extension of MODE that used three spatial dimensions. In fact, the implementa-
tion of MTD entailed both conceptual difficulties (mostly due to the fact that there is no distance function in
spacetime, so some MODE attributes, such as centroid distance, no longer even made sense), and engineer-
ing difficulties brought on by the need to redesign several core MODE algorithms for speed. It is planned
that in the future some of these improved algorithms will be incorporated into MODE.

In this section, we will assume that the reader has a basic familiarity with traditional MODE, its internal
operation, (convolution thresholding, fuzzy logic matching and merging) and its output. We will not review
these things here. Instead, we will point out differences in MTD from the way traditional MODE does things
when they come up. This release is a beta version of MTD, intended mostly to encourage users to experiment
with it and give us feedback and suggestions to be used in a more robust MTD release in the future.

21.2 Scientific and statistical aspects

21.2.1 Attributes

Object attributes are, for the most part, calculated in much the same way in MTD as they are in MODE,
although the fact that one of the dimensions is non-spatial introduces a few quirks. Several of the object
attributes that traditional MODE calculates assume that distances, angles and areas can be calculated in grid
coordinates via the usual Euclidean/Cartesian methods. That is no longer the case in spacetime, since there
is no distance function (more precisely, no metric) there. Given two points in this spacetime, say (𝑥1, 𝑦1, 𝑡1)
and (𝑥2, 𝑦2, 𝑡2), there is no way to measure their separation with a single nonnegative number in a physically
meaningful way. If all three of our dimensions were spatial, there would be no difficulties.

This means that some care must be taken both in determining how to generalize the calculation of a geomet-
ric attribute to three-dimensional spacetime, and also in interpreting the attributes even in the case where
the generalization is straightforward.

21.2.2 Convolution

As in MODE, MTD applies a convolution filter to the raw data as a preliminary step in resolving the field into
objects. The convolution step in MTD differs in several respects from that performed in MODE, however.

First, MTD typically reads in several planes of data for each data field-one plane for each time step, and
there is really no limit to the number of time steps. So MTD is convolving much more data than it would be
if it were simply analyzing a 2D data field. Secondly, MTD convolves in time as well as space, which again
increases the amount of data needing to be processed. The net effect of all this is to greatly increase the time
needed to perform the convolution step.

Because of this, the developers decided to make several changes in the way convolution was performed in
MTD. Most of the differences come from the need to make the convolution step as fast as possible.

The most basic change is to use a square convolution filter rather than the circular one that MODE uses. The
overall “size” of the filter is still determined by one parameter (denoted 𝑅, as in MODE), but this should not
be thought of as a radius. Instead, the size of the square is (2𝑅+ 1)× (2𝑅+ 1), as shown in Figure 21.2.

21.2. Scientific and statistical aspects 359

MET User’s Guide, version 11.1.0-beta2

Figure 21.2: Convolution Region

Another change is that we do not allow any bad data in the convolution square. In MODE, the user may
specify what percentage of bad data in the convolution region is permissible, and it will rescale the value of
the filter accordingly for each data point. For the sake of speed, MTD requires that there be no bad data in
the convolution region. If any bad data exists in the region, the convolved value there is set to a bad data
flag.

21.2.3 3D Single Attributes

MTD calculates several 3D attributes for single objects. The object could come from either the forecast field
or the observed field.

A 3D spacetime centroid (𝑥̄, 𝑦, 𝑡) is calculated. There are no statistical overtones here. The number 𝑥̄, for
example, is just the average value of the 𝑥 coordinate over the object.

The vector velocity (𝑣𝑥, 𝑣𝑦) is obtained by fitting a line to a 3D object. The requirement for fitting the line
is to minimize the sum of the squares of the spatial distances from each point of the object to the line to be
minimized. (We can’t measure distances in spacetime but at each fixed time t we can measure purely spatial
distances.) See Figure 21.3 for an illustration, where the solid line is the fitted axis, and the inclination
of the axis from the vertical is a measure of object speed. Thus, from this velocity we get the speed and
direction of movement of the object. As in MODE, where spatial separation is in units of the grid resolution,
so here in MTD the unit of length is the grid resolution, and the unit of time is whatever the time separation
between the input files is. Speed and velocity are thus in grid units per time unit.

360 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

Figure 21.3: Velocity

The spatial orientation of an object (what traditional MODE calls the axis angle of an object) is gotten by
fitting a plane to an object. As with the case of velocity, our optimization criterion is that the sum of the
squares of the spatial distances from each point of the object to the plane be minimized.

Figure 21.4 gives some idea of the reason for fitting a plane, rather than a line, as MODE does. On the left
in the figure, we see an object (in blue shaped like an “A”) at several time steps moving through the grid. For
simplicity, the object is not rotating as it moves (though of course real objects can certainly do this). At each
time step, the 2D MODE spatial axis of the object is indicated by the red line. In the center of the figure, we
see the same thing, just with more time steps. And on the right, even more time steps. We see that the axis
lines at each time step sweep out a plane in three dimensions, shown in red on the right. This plane is the
same one that MTD would calculate for this 3D object to determine its spatial orientation, i.e., axis angle.
Indeed, for the special case of an object that is not moving at all, the MTD calculation of axis angle reduces
to the same one that traditional MODE uses, as it should.

Figure 21.4: 3D axis

21.2. Scientific and statistical aspects 361

MET User’s Guide, version 11.1.0-beta2

A simple integer count of the number of grid squares in an object for all of it’s lifetime gives the volume of
the object. Remember that while we’re working in three dimensions, one of the dimensions is non-spatial,
so one should not attempt to convert this to a volume in, e.g., km3.

The start time and end time of an object are attributes as well. These are integers reflecting at which time
step an object starts and ends. These values are zero-based, so for example, if an object comes into existence
at the 3𝑟𝑑 time step and lasts until the 9𝑡ℎ time step, then the start time and end time will be listed as 2 and
8, respectively. Note that this object has a lifetime of 7 time steps, not 6.

Centroid distance traveled is the total great circle distance, in kilometers, traveled by the 2D spatial cen-
troid over the lifetime of the object. In other words, at each time 𝑡 for which the 3D object exists, the set
of points in the object also have that value of 𝑡 will together form a 2D spatial object. That 2D object will
have a spatial centroid, which will move around as 𝑡 varies. This attribute represents this total 2D centroid
movement over time.

Finally, MTD calculates several intensity percentiles of the raw data values inside each object. Not all of
the attributes are purely geometrical.

21.2.4 3D Pair Attributes

The next category of spatial attributes is for pairs of objects - one of the pair coming from the collection of
forecast objects, the other coming from the observation objects.

Note: whenever a pair attribute is described below as a delta, that means it’s a simple difference of two
single-object attributes. The difference is always taken as “forecast minus observed”.

The spatial centroid distance is the purely spatial part of the centroid separation of two objects. If one
centroid is at (𝑥̄1, 𝑦1, 𝑡1) and the other is at (𝑥̄2, 𝑦2, 𝑡2) then the distance is calculated as√︀

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

The time centroid delta is the difference between the time coordinates of the centroid. Since this is a simple
difference, it can be either positive or negative.

The axis difference is smaller of the two angles that the two spatial axis planes make with each other. Figure
21.5 shows the idea. In the figure, the axis angle would be reported as angle 𝛼, not angle 𝛽.

Speed delta and direction difference are obtained from the velocity vectors of the two objects. Speed delta
is the difference in the lengths of the vectors, and direction difference is the angle that the two vectors make
with each other.

Volume ratio is the volume of the forecast object divided by the volume of the observed object. Note that
any 3D object must necessarily have a nonzero volume, so there’s no chance of zeros in the denominator.

Start time delta and end time delta are the differences in the corresponding time steps associated with the
two objects and are computed as “forecast minus obs”.

Intersection volume measures the overlap of two objects. If the two objects do not overlap, then this will
be zero.

Duration difference is the difference in the lifetimes of the two objects constituting the pair, in the sense of
“forecast minus obs”. For example, if the forecast object of the pair has a lifetime of 5 time steps, and the

362 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

observed object has a lifetime of 3 time steps, then this attribute has the value 2. Note that we do not take
absolute values of the difference, so this attribute can be positive, negative, or zero.

Finally, the total interest gives the result of the fuzzy-logic matching and merging calculation for this pair
of objects. Note that this is provided only for simple objects, not for clusters.

Figure 21.5: Axis Angle Difference

21.2.5 2D Constant-Time Attributes

The final category of object attributes calculated by MTD are two-dimensional spatial attributes for horizon-
tal (i.e., constant-time) slices of a spacetime object. This is so that the behavior of these attributes over time
can be examined. These 2D constant-time attributes are written out for both simple and cluster objects.

For example, in our earlier discussion relating to Figure 21.4, we mentioned that for simplicity, the object in
the figure was not allowed to rotate as it moved. But what if the object (a hurricane, for example) is rotating
over time? In that case, it’s probably not meaningful to assign a single spatial orientation to the object over
its entire lifetime. If we had a spatial axis angle at each time, however, then we could fit a model such as
𝜃 = 𝜃0 + 𝜔𝑡 to the angles and test the goodness of fit.

For such reasons, having 2D spatial attributes (as in MODE) for each object at each time step can be useful.
The list of the 2D attributes calculated is:

◦ Centroid (𝑥, 𝑦)

◦ Centroid latitude and longitude

◦ Area

◦ Axis Angle

21.2. Scientific and statistical aspects 363

MET User’s Guide, version 11.1.0-beta2

21.2.6 Matching and Merging

Matching and merging operations in MTD are done in a simpler fashion than in MODE. In order to under-
stand this operation, it is necessary to discuss some very basic notions of graph theory.

A graph is a finite set of vertices (also called nodes) and edges, with each edge connecting two vertices.
Conceptually, it is enough for our purposes to think of vertices as points and edges as lines connecting
them. See Figure 21.6 for an illustration. In the figure we see a collection of 11 nodes, indicated by the
small circles, together with some edges indicated by straight line segments. A path is a sequence of vertices
(𝑣1, 𝑣2, . . . , 𝑣𝑛) such that for each 1 ≤ 𝑖 < 𝑛 there is an edge connecting 𝑣𝑖 to 𝑣𝑖+1. For example, in Figure
21.6, there is no edge connecting vertices #6 and #7, but there is a path connecting them. In illustrations,
graph vertices are often labelled with identifying information, such as the numbers in Figure 21.6.

If we consider two distinct nodes in a graph to be related if there is a path connecting them, then it’s easy
to see that this defines an equivalence relation on the set of nodes, partitioning the graph into equivalence
classes. Any node, such as #10 in Figure 21.6, that has no edges emanating from it is in a class by itself.

Figure 21.6: Basic Graph Example

We have barely scratched the surface of the enormous subject of graph theory, but this will suffice for
our purposes. How does MTD use graphs? Essentially the simple forecast and observed objects become
nodes in a graph. Each pair of objects that have sufficiently high total interest (as determined by the
fuzzy logic engine) generates an edge connecting the two corresponding nodes in the graph. The graph
is then partitioned into equivalence classes using path connectivity (as explained above), and the resulting
equivalence classes determine the matches and merges.

An example will hopefully make this clear. In parts (a) and (b) of Figure 21.7 we indicate the objects in
the forecast and observed field for this simple example. We have used 2D rather than 3D objects in this
example for simplicity. Also, to help distinguish the objects in each field, the forecast objects are labelled
by numbers and the observed object by letters. Each forecast and each observed object become nodes in a
graph as indicated in part (c) of the figure.

For the purposes of this example, suppose that the MTD fuzzy engine reports that observed simple object B
and forecast simple object 4 together have a total interest higher than the total interest threshold specified
in the config file. Also, observed simple object C and forecast simple object 4 have high enough interest to
pass the threshold. Furthermore, forecast simple objects 2 and 3 both have sufficiently high interest when
paired with observed simple object A.

These four pairings result in the 4 edges in the graph shown by the solid lines in part (c) of the figure.

364 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

Partitioning this graph into equivalence classes results in the three sets indicated in part (d) of the figure.
These three sets are the cluster objects determined by MTD. In this example, forecast objects 2 and 3 are
merged into forecast cluster object #1 which is matched to observed cluster object #1, consisting of observed
object A. (As in MODE, a cluster object may contain multiple simple objects, but may also consist of a single
simple object.) Essentially, forecast simple objects 2 and 3 are merged because there is a path connecting
them in the graph. This is indicated by the dashed line in the graph.

Continuing this example, forecast cluster object #2 (consisting only of forecast simple object 4) is matched to
observed cluster object #2 (consisting of observed simple objects B and C). Again, the merging of observed
simple objects is indicated by the dashed line in the graph.

Forecast cluster object #3 consists solely of forecast simple object 1. It is not matched to any observed cluster
object. Alternatively, one may take the viewpoint that forecast simple object 1 ended up not participating
in the matching and merging process; it is not merged with anything, it is not matched with anything.
Essentially it represents a false alarm.

To summarize: Any forecast simple objects that find themselves in the same equivalence class are merged.
Similarly, any observed objects in the same class are merged. Any forecast and observed objects in the same
class are matched.

Figure 21.7: Match & Merge Example

21.2. Scientific and statistical aspects 365

MET User’s Guide, version 11.1.0-beta2

21.3 Practical information

21.3.1 MTD input

The formats for two-dimensional data files used as input to MTD are the same ones supported by most of the
MET tools. Generally speaking, if MODE can use a forecast or observation data file as input, then that file
can also be used by MTD. The only difference is that while MODE takes only one forecast and one observed
data file as input, MTD takes a series of files.

As shown in the next section, filenames for each time used must be given. Thus, for example, if MTD is being
used for verification over a period of 24 hours, and the data file valid times are separated by one hour, then
a total of 48 filenames must be specified on the MTD command line - 24 filenames for the forecast files, and
24 for the observation files. Further, the filenames must be given in order of increasing valid time. Many
users will prefer to write scripts to automate this, rather than type in a lengthy command line by hand.

21.3.2 MTD usage

The usage statement for the MODE-TD tool is listed below: The command line switches may be given in any
order.

Usage: mtd
-fcst file_1 ... file_n | file_list
-obs file_1 ... file_n | file_list
-single file_1 ... file_n | file_list
-config config_file
[-outdir path]
[-log file]
[-v level]

The MODE-TD tool has three required arguments and can accept several optional arguments.

21.3.2.1 Required arguments for mtd

1. -fcst file_list gives a list of forecast 2D data files to be processed by MTD. The files should have
equally-spaced intervals of valid time.

2. -obs file_list gives a list of observation 2D data files to be processed by MTD. As with the {cb -fcst}
option, the files should have equally-spaced intervals of valid time. This valid time spacing should be
the same as for the forecast files.

3. -config config_file gives the path to a local configuration file that is specific to this particular run of
MTD. The default MTD configuration file will be read first, followed by this one. Thus, only configura-
tion options that are different from the default settings need be specified. Options set in this file will
override any corresponding options set in the default configuration file.

366 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

21.3.2.2 Optional arguments for mtd

4. -single file_list may be used instead of -fcst and -obs to define objects in a single field.

5. -log file gives the name of a file where a log of this MTD run will be written. All output that appears
on the screen during a MTD run will be duplicated in the log file.

6. -v level gives the verbosity level. As with the -log option described above, this option is present in
most of the MET tools. Increasing this value causes more diagnostic output to be written to the screen
(and also to the log file, if one has been specified).

7. -outdir path gives the name of the directory into which MTD will write its output files. If not specified,
then MTD will write its output into the current directory.

An example of the mtd calling sequence is listed below:

mtd -fcst fcst_files/*.grb \
-obs obs_files/*.grb \
-config MTDConfig_default \
-outdir out_dir/mtd \
-v 1

In this example, the MODE-TD tool will read in a list of forecast GRIB files in the fcst_files directory and
similarly spaced observation GRIB files in the obs_files directory. It uses a configuration file called MTDCon-
fig_default and writes the output to the out_dir/mtd directory.

21.3.3 MTD configuration file

The default configuration file for the MODE tool, MODEConfig_default, can be found in the installed
share/met/config directory. Another version of the configuration file is provided in scripts/config. We en-
courage users to make a copy of the configuration files prior to modifying their contents.Most of the entries
in the MTD configuration file should be familiar from the corresponding file for MODE. This initial beta re-
lease of MTD does not offer all the tunable options that MODE has accumulated over the years, however. In
this section, we will not bother to repeat explanations of config file details that are exactly the same as those
in MODE; we will only explain those elements that are different from MODE, and those that are unique to
MTD.

model = "WRF";
desc = "NA";
obtype = "ANALYS";
regrid = { ... }
met_data_dir = "MET_BASE";
output_prefix = "";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.

21.3. Practical information 367

MET User’s Guide, version 11.1.0-beta2

grid_res = 4;
fcst = {

field = {
name = "APCP";
level = "A03";

}
conv_time_window = { beg = -1; end = 1; }
conv_radius = 60.0/grid_res; // in grid squares
conv_thresh = >=5.0;

}
obs = fcst;
total_interest_thresh = 0.7;

The configuration options listed above are common to many MODE and are described in Section 19.3.2.

The conv_time_window entry is a dictionary defining how much smoothing in time should be done. The
beg and end entries are integers defining how many time steps should be used before and after the current
time. The default setting of beg = -1; end = 1; uses one time step before and after. Setting them both to 0
effectively disables smoothing in time.

inten_perc_value = 99;

The inten_perc_value entry is an integer between 0 and 100 which specifies a requested intensity percentile
value. By default, MTD writes 5 output columns for the 10th, 25th, 50th, 75th, and 90th percentile of object
intensities. The percentile value specified here indicates which percentile should be written to the 6th output
column.

min_volume = 2000;

The min_volume entry tells MTD to throw away objects whose “volume” (as described elsewhere in this
section) is smaller than the given value. Spacetime objects whose volume is less than this will not participate
in the matching and merging process, and no attribute information will be written to the ASCII output files.
The default value is 10,000. If this seems rather large, consider the following example: Suppose the user is
running MTD on a 600 × 400 grid, using 24 time steps. Then the volume of the whole data field is 600 ×
400 × 24 = 5,760,000 cells. An object of volume 10,000 represents only 10,000/5,760,000 = 1/576 of the
total data field. Setting min_volume too small will typically produce a very large number of small objects,
slowing down the MTD run and increasing the size of the output files.The configuration options listed above
are common to many MODE and are described in Section 19.3.2.

weight = {
space_centroid_dist = 1.0;
time_centroid_delta = 1.0;
speed_delta = 1.0;
direction_diff = 1.0;

(continues on next page)

368 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

volume_ratio = 1.0;
axis_angle_diff = 1.0;
start_time_delta = 1.0;
end_time_delta = 1.0;

}

The weight entries listed above control how much weight is assigned to each pairwise attribute when com-
puting a total interest value for object pairs. See Table 21.4 for a description of each weight option. When
the total interest value is computed, the weighted sum is normalized by the sum of the weights listed above.

interest_function = {
space_centroid_dist = (...);
time_centroid_delta = (...);
speed_delta = (...);
direction_diff = (...);
volume_ratio = (...);
axis_angle_diff = (...);
start_time_delta = (...);
end_time_delta = (...);

};

The interest_function entries listed above control how much weight is assigned to each pairwise attribute
when computing a total interest value for object pairs. See Table 21.4 for a description of each weight
option. The interest functions may be defined as a piecewise linear function or as an algebraic expression. A
piecewise linear function is defined by specifying the corner points of its graph. An algebraic function may
be defined in terms of several built-in mathematical functions. See Section 19.2 for how interest values are
used by the fuzzy logic engine. By default, many of these functions are defined in terms of the previously
defined grid_res entry.

nc_output = {
latlon = true;
raw = true;
object_id = true;
cluster_id = true;

};

The nc_output dictionary contains a collection of boolean flags controlling which fields are written to the
NetCDF output file. latlon controls the output of a pair of 2D fields giving the latitude and longitude of
each grid point. The raw entry controls the output of the raw input data for the MTD run. These will be 3D
fields, one for the forecast data and one for the observation data. Finally, the object_id and cluster_id flags
control the output of the object numbers and cluster numbers for the objects. This is similar to MODE.

21.3. Practical information 369

MET User’s Guide, version 11.1.0-beta2

txt_output = {
attributes_2d = true;
attributes_3d = true;

};

The txt_output dictionary also contains a collection of boolean flags, in this case controlling the output of
ASCII attribute files. The attributes_2d flag controls the output of the 2D object attributes for constant-time
slices of 3D objects, while the attributes_3d flag controls the output of single and pair 3D spacetime object
attributes.

21.3.4 mtd output

MTD creates several output files after each run in ASCII and NetCDF formats. There are text files giving 2D
and 3D attributes of spacetime objects and information on matches and merges, as well as a NetCDF file
giving the objects themselves, in case any further or specialized analysis of the objects needs to be done.

MODE, along with several other of the MET tools (wavelet_stat for example, and a few others), provides
PostScript-based graphics output to help visualize the output. Unfortunately, no similar graphics capabilities
are provided with MTD, mainly because of the complexity of producing 3D plots. This should not discourage
the user from making their own plots, however. There is enough information in the various output files
created by MTD to make a wide variety of plots. Highly motivated users who write their own plotting scripts
are encouraged to submit them to the user-contributed code area of the MET website. Due credit will be
given, and others will benefit from their creations.

ASCII output

Five ASCII output files are created:

• Single attributes for 3D simple objects

• Single attributes for 3D cluster objects

• Pair attributes for 3D simple objects

• Pair attributes for 3D cluster objects

• 2D spatial attributes for single simple objects for each time index of their existence.

Each ASCII file is laid out in tabular format, with the first line consisting of text strings giving names for each
column. The first 15 columns of each file are identical, and give information on timestamps, model names,
and the convolution radius and threshold used for the forecast and observation input data.

These columns are explained in Table 21.1. Each file contains additional columns that come after these.
Columns for 2D constant-time attributes are shown in Table 21.2. Columns for 3D single and pair attributes
are shown in Table 21.3 and Table 21.4 respectively.

The contents of the OBJECT_ID and OBJECT_CAT columns identify the objects using the same logic as the
MODE tool. In these columns, the F and O prefixes are used to indicate simple forecast and observation
objects, respectively. Similarly, the CF and CO prefixes indicate cluster forecast and observation objects,
respectively. Each prefix is followed by a 3-digit number, using leading zeros, to indicate the object number
(as in F001, O001, CF001, or CO000). Pairs of objects are indicated by listing the forecast object infor-
mation followed by the observation object information, separated by an underscore (as in F001_O001 or

370 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

CF001_CO001). The OBJECT_ID column indicates the single object or pair of objects being described in
that line. The OBJECT_CAT column indicates the cluster or pair of clusters to which these object(s) belong.
A simple object that is not part of a cluster is assigned a cluster number of zero (as in CF000 or CO000).
When pairs of objects belong to the same matching cluster, the OBJECT_CAT column indicates the matching
cluster number (as in CF001_CO001). When they do not, the OBJECT_CAT column is set to CF000_CO000.

Table 21.1: Text Header Columns

HEADER
Column Name Description
1 VERSION Version number
2 MODEL User provided text string giving model name
3 DESC User provided text string describing the verification task
4 FCST_LEAD Forecast lead time in HHMMSS format
5 FCST_VALID Forecast valid time in YYYYMMDD_HHMMSS format
6 OBS_LEAD Observation lead time in HHMMSS format
7 OBS_VALID Observation valid time in YYYYMMDD_HHMMSS format
8 T_DELTA Time separation between input data files in HHMMSS format
9 FCST_T_BEG Forecast time convolution begin offset
10 FCST_T_END Forecast time convolution end offset
11 FCST_RAD Forecast convolution radius in grid units
12 FCST_THR Forecast convolution threshold
13 OBS_T_BEG Observation time convolution begin offset
14 OBS_T_END Observation time convolution end offset
15 OBS_RAD Observation convolution radius in grid units
16 OBS_THR Observation convolution threshold
17 FCST_VAR Forecast variable
18 FCST_UNITS Units for forecast variable
19 FCST_LEV Forecast vertical level
20 OBS_VAR Observation variable
21 OBS_UNITS Units for observation variable
22 OBS_LEV Observation vertical level

21.3. Practical information 371

MET User’s Guide, version 11.1.0-beta2

Table 21.2: 2D Attribute

2D Attribute Columns
Column Name Description
23 OBJECT_ID Object number
24 OBJECT_CAT Object category
25 TIME_INDEX Time index of slice
26 AREA 2D cross-sectional area
27 CENTROID_X x coordinate of centroid
28 CENTROID_Y y coordinate of centroid
29 CENTROID_LAT Latitude of centroid
30 CENTROID_LON Longitude of centroid
31 AXIS_ANG Angle that the axis makes with the grid x direction
32 INTENSITY_10 10𝑡ℎ percentile intensity in time slice
33 INTENSITY_25 25𝑡ℎ percentile intensity in time slice
34 INTENSITY_50 60𝑡ℎ percentile intensity in time slice
35 INTENSITY_75 75𝑡ℎ percentile intensity in time slice
36 INTENSITY_90 90𝑡ℎ percentile intensity in time slice
37 INTENSITY_* User-specified percentile intensity in time slice

372 Chapter 21. MODE Time Domain Tool

MET User’s Guide, version 11.1.0-beta2

Table 21.3: 3D Single Attribute

3D Single Attribute Columns
Col-
umn

Name Description

23 OBJECT_ID Object number
24 OBJECT_CAT Object category
25 CENTROID_X x coordinate of centroid
26 CENTROID_Y y coordinate of centroid
27 CENTROID_T t coordinate of centroid
28 CEN-

TROID_LAT
Latitude of centroid

29 CEN-
TROID_LON

Longitude of centroid

30 X_DOT x component of object velocity
31 Y_DOT y component of object velocity
32 AXIS_ANG Angle that the axis plane of an object makes with the grid x direction
33 VOLUME Integer count of the number of 3D “cells” in an object
34 START_TIME Object start time
35 END_TIME Object end time
36 CDIST_TRAVELLEDTotal great circle distance travelled by the 2D spatial centroid over the lifetime

of the 3D object
37 INTENSITY_10 10𝑡ℎ percentile intensity inside object
38 INTENSITY_25 25𝑡ℎ percentile intensity inside object
39 INTENSITY_50 50𝑡ℎ percentile intensity inside object
40 INTENSITY_75 75𝑡ℎ percentile intensity inside object
41 INTENSITY_90 90𝑡ℎ percentile intensity inside object
42 INTENSITY_* User-specified percentile intensity inside object

21.3. Practical information 373

MET User’s Guide, version 11.1.0-beta2

Table 21.4: 3D Pair Attribute

3D Pair Attribute Columns
Col-
umn

Name Description

23 OBJECT_ID Object number
24 OBJECT_CAT Object category
25 SPACE_CENTROID_DIST Spatial distance between (𝑥, 𝑦) coordinates of object spacetime cen-

troid
26 TIME_CENTROID_DELTA Difference in t index of object spacetime centroid
27 AXIS_DIFF Difference in spatial axis plane angles
28 SPEED_DELTA Difference in object speeds
29 DIRECTION_DIFF Difference in object direction of movement
30 VOLUME_RATIO Forecast object volume divided by observation object volume
31 START_TIME_DELTA Difference in object starting time steps
32 END_TIME_DELTA Difference in object ending time steps
33 INTERSEC-

TION_VOLUME
“Volume” of object intersection

34 DURATION_DIFF Difference in the lifetimes of the two objects
35 INTEREST Total interest for this object pair

NetCDF File

MTD writes a NetCDF file containing various types of information as specified in the configuration file. The
possible output data are:

• Latitude and longitude of all the points in the 2D grid. Useful for geolocating points or regions given
by grid coordinates.

• Raw data from the input data files. This can be useful if the input data were grib format, since NetCDF
is often easier to read.

• Object ID numbers, giving for each grid point the number of the simple object (if any) that covers that
point. These numbers are one-based. A value of zero means that this point is not part of any object.

• Cluster ID numbers. As above, only for cluster objects rather than simple objects.

374 Chapter 21. MODE Time Domain Tool

Chapter 22

MET-TC Overview

22.1 Introduction

The purpose of this User’s Guide is to provide basic information to the users of the Model Evaluation Tools -
Tropical Cyclone (MET-TC) to enable users to apply MET-TC to their tropical cyclone datasets and evaluation
studies. MET-TC is intended for use with model forecasts run through a vortex tracking software or with
operational model forecasts in Automated Tropical Cyclone Forecast (ATCF) file format.

The following sections provide an overview of MET-TC and its components, as well as basic information on
the software build. The required input, including file format and the MET-TC are discussed followed by a
description of the TC-Dland tool, TC-Pairs, and TC-Stat tools. Each section covers the input, output and
practical usage including a description of the configuration files. This is followed by a short overview of
graphical utilities available within the MET-TC release.

22.2 MET-TC components

The MET tools used in the verification of Tropical Cyclones are referred to as MET-TC. These tools are shown
across the bottom of the flowchart in Figure 1.1. The MET-TC tools are described in more detail in later
sections.

The TC-Dland tool is used to generate a gridded file that determines the location of coastlines and islands,
and is used as input to the TC-Pairs tool to determine the distance from land of a particular track point. The
TC-Pairs tool matches pairs of input model data and BEST track (or any reference forecast) and calculates
position errors. The TC-Stat tool uses the TC-Pairs output to perform filter and summary jobs over the
matched pair dataset. The TC-Gen tool performs a categorical analysis for tropical cyclone genesis forecasts.
The TC-RMW tool performs a coordinate transformation of gridded model data, centered on the storm’s
location. The RMW-Analysis tool aggregates TC-RMW output across multiple cases.

375

MET User’s Guide, version 11.1.0-beta2

22.3 Input data format

This section discusses the input and output file formats expected and produced by MET-TC. When discussing
the input data, it is expected that users have run model output through vortex tracking software in order
to obtain position and intensity information in Automated Tropical Cyclone Forecasting System (ATCF) file
format. Best track and aids files in Automated Tropical Cyclone Forecasting System (ATCF) format (hereafter
referred to as ATCF format) are necessary for model data input into the TC-Pairs tool. The ATCF format was
first developed at the Naval Oceanographic and Atmospheric Research Laboratory (NRL), and is currently
used for the National Hurricane Center (NHC) operations. ATCF format must be adhered to in order for the
MET-TC tools to properly parse the input data.

The ATCF file format includes a section with common fields:

BASIN, CY, YYYYMMDDHH, TECHNUM/MIN, TECH, TAU, LatN/S, LonE/W, VMAX, MSLP, TY, RAD, WIND-
CODE, RAD1, RAD2, RAD3, RAD4, POUTER, ROUTER, RMW, GUSTS, EYE, SUBREGION, MAXSEAS, INI-
TIALS, DIR, SPEED, STORMNAME, DEPTH, SEAS, SEASCODE, SEAS1, SEAS2, SEAS3, SEAS4

BASIN: basin

CY: annual cyclone number: 1 - 99

YYYYMMDDHH: Warning Date-Time-Group.

TECHNUM/MIN: objective technique sorting number, minutes for best track: 00 - 99

TECH: acronym for each objective technique or CARQ or WRNG, BEST for best track

TAU: forecast period: -24 through 240 hours, 0 for best-track

LatN/S: Latitude for the date time group (DTG)

LonE/W: Longitude for the DTG

VMAX: Maximum sustained wind speed in knots

MSLP: Minimum sea level pressure, 850 - 1050 mb.

TY: Highest level of tropical cyclone development

RAD: Wind intensity for the radii defined in this record: 34, 50 or 64 kt.

WINDCODE: Radius code

RAD1: If full circle, radius of specified wind intensity, or radius of first quadrant wind intensity

RAD2: If full circle this field not used, or radius of 2nd quadrant wind intensity

RAD3: If full circle this field not used, or radius of 3rd quadrant wind intensity

RAD4: If full circle this field not used, or radius of 4th quadrant wind intensity

POUTER: pressure in millibars of the last closed isobar

ROUTER: radius of the last closed isobar

RMW: radius of max winds

GUSTS: gusts

376 Chapter 22. MET-TC Overview

MET User’s Guide, version 11.1.0-beta2

EYE: eye diameter

SUBREGION: subregion

MAXSEAS: max seas

INITIALS: Forecaster’s initials

DIR: storm direction

SPEED: storm speed

STORMNAME: literal storm name, number, NONAME or INVEST, or TCcyx

DEPTH: system depth

SEAS: Wave height for radii defined in SEAS1 - SEAS4

SEASCODE - Radius code

SEAS1: first quadrant seas radius as defined by SEASCODE

SEAS2: second quadrant seas radius as defined by SEASCODE

SEAS3: third quadrant seas radius as defined by SEASCODE

SEAS4: fourth quadrant seas radius as defined by SEASCODE

Of the above common fields in the ATCF file format, MET-TC requires the input file to have the first
8 comma-separated columns present. Although all 8 columns must exist, valid data in each field is not
required. In order to ensure proper matching, unique data in the BASIN, CY, YYYYMMDDHH, and TAU fields
should be present.

The TC-Pairs tool expects two input data sources in order to generate matched pairs and subsequent error
statistics. The expected input for MET-TC is an ATCF format file from model output, or the operational
aids files with the operational model output for the ‘adeck’ and the NHC best track analysis (BEST) for the
‘bdeck’. The BEST is a subjectively smoothed representation of the storm’s location and intensity over its
lifetime. The track and intensity values are based on a retrospective assessment of all available observations
of the storm.

The BEST is in ATCF file format and contains all the above listed common fields. Given the reference dataset
is expected in ATCF file format, any second ATCF format file from model output or operational model output
from the NHC aids files can be supplied as well. The expected use of the TC-Pairs tool is to generate
matched pairs between model output and the BEST. Note that some of the columns in the TC-Pairs output
are populated based on the BEST information (e.g. storm category), therefore use of a different baseline
may reduce the available filtering options.

All operational model aids and the BEST can be obtained from the NHC ftp server.

Click here for detailed information on the ATCF format description and specifications.

If a user has gridded model output, the model data must be run through a vortex tracking algorithm in
order to obtain the ATCF-formatted input that MET-TC requires. Many vortex tracking algorithms have been
developed in order to obtain basic position, maximum wind, and minimum sea level pressure information
from model forecasts. One vortex tracking algorithm that is supported and freely available is the GFDL
vortex tracker package.

22.3. Input data format 377

ftp://ftp.nhc.noaa.gov/atcf/archive/
http://www.nrlmry.navy.mil/atcf_web/docs/database/new/abdeck.txt
https://dtcenter.org/community-code/gfdl-vortex-tracker
https://dtcenter.org/community-code/gfdl-vortex-tracker

MET User’s Guide, version 11.1.0-beta2

22.4 Output data format

The MET package produces output in four basic file formats: STAT files, ASCII files, NetCDF files, and
Postscript plots. The MET-TC tool produces output in TCSTAT, which stands for Tropical Cyclone - STAT. This
output format consists of tabular ASCII data that can be easily read by many analysis tools and software
packages, making the output from MET-TC very versatile. Like STAT, TCSTAT is a specialized ASCII format
containing one record on each line. Currently, the only line type available in MET-TC is TCMPR (Tropical
Cyclone Matched Pairs). As more line types are included in future releases, all line types will be included
in a single TCSTAT file. MET-TC also outputs a NetCDF format file in the TC-Dland tool, as input to the
TC-Pairs tool.

378 Chapter 22. MET-TC Overview

Chapter 23

TC-Dland Tool

23.1 Introduction

Many filtering criteria within the MET-TC tools depend on the distinction between when a storm is over land
or water. The TC-dland tool was developed to aid in quickly parsing data for filter jobs that only verify over
water, threshold verification based on distance to land, and exclusion of forecasts outside a specified time
window of landfall. For each grid point in the user-specified grid, it computes the great circle arc distance
to the nearest coast line. Compared to the simple Euclidean distances, great circle arc distances are more
accurate but take considerably longer to compute. Grid points over water have distances greater than zero
while points over land have distances less than zero.

While the TC-dland tool is available to be run, most users will find the precomputed distance to land files
distributed with the release sufficient. Therefore, the typical user will not actually need to run this tool.

23.2 Input/output format

The input for the TC-dland tool is a file containing the longitude (degrees east) and latitude (degrees north)
of all the coastlines and islands considered to be a significant landmass. The default input is to use all three
land data files (aland.dat, shland.dat, wland.dat) found in the installed share/met/tc_data/ directory.
The use of all three files produces a global land data file. The aland.dat file contains the longitude and
latitude distinctions used by NHC for the Atlantic and eastern North Pacific basins, the shland.dat contains
longitude and latitude distinctions for the Southern Hemisphere (south Pacific and South Indian Ocean),
and the wland.dat contains the remainder of the Northern Hemisphere (western North Pacific and North
Indian Ocean). Users may supply their own input file in order to refine the definition of coastlines and a
significant landmass.

The output file from TC-dland is a NetCDF format file containing a gridded field representing the distance
to the nearest coastline or island, as specified in the input file. This file is used in the TC-Pairs tool to
compute the distance from land for each track point in the adeck and bdeck. As noted in Section 3.8,
precomputed distance to land (NetCDF output from TC-dland) files are available in the release. In the
installed share/met/tc_data directory:

dland_nw_hem_tenth_degree.nc: TC-dland output from aland.dat using a 1/10th degree grid

379

MET User’s Guide, version 11.1.0-beta2

dland_global_tenth_degree.nc: TC-dland output from all three land data files (global coverage) using a
1/10th degree grid.

23.3 Practical information

This section briefly describes how to run tc_dland. The default grid is set to 1/10th degree Northwest (NW)
hemispheric quadrant (over North America) grid.

23.3.1 tc_dland usage

Usage: tc_dland
out_file
[-grid spec]
[-noll]
[-land file]
[-log file]
[-v level]
[-compress level]

tc_dland has one required argument and accepts several optional ones.

23.3.1.1 Required arguments for tc_dland

1. The out_file argument indicates the NetCDF output file containing the computed distances to land.

23.3.1.2 Optional arguments for tc_dland

2. The -grid spec argument overrides the default grid (1/10th NH grid). Spec = lat_ll lon_ll delta_lat
delta_lon n_lat n_lon

3. The -noll argument skips writing the lon/lat variables in the output NetCDF file to reduce the file size.

4. The -land file argument overwrites the default land data files (aland.dat, shland.dat, and wland.dat).

5. The -log file argument outputs log messages to the specified file.

6. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

7. The -compress level option specifies the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. Setting the compression level to 0 will make no compression
for the NetCDF output. Lower numbers result in minimal compression and faster I/O processing speed;
higher numbers result in better compression, but at the expense of I/O processing speed.

380 Chapter 23. TC-Dland Tool

Chapter 24

TC-Pairs Tool

24.1 Introduction

The TC-Pairs tool provides verification for tropical cyclone forecasts in ATCF file format. It matches an ATCF
format tropical cyclone (TC) forecast with a second ATCF format reference TC dataset (most commonly the
Best Track analysis). The TC-Pairs tool processes both track and intensity adeck data and probabilistic edeck
data. The adeck matched pairs contain position errors, as well as wind, sea level pressure, and distance
to land values for each TC dataset. The edeck matched pairs contain probabilistic forecast values and the
verifying observation values. The pair generation can be subset based on user-defined filtering criteria.
Practical aspects of the TC-Pairs tool are described in Section 24.3.

24.2 Scientific and statistical aspects

24.2.1 TC Diagnostics

TC diagnostics provide information about a TC’s structure or its environment. Each TC diagnostic is a
single-valued measure that corresponds to some aspect of the storm itself or the surrounding large-scale
environment. TC diagnostics can be derived from observational analyses, model fields, or even satellite
observations. Examples include:

• Inner core diagnostics provide information about the structure of the storm near the storm center.
Examples include the intensity of the storm and the radius of maximum winds.

• Large scale diagnostics provide information about quantities that characterize its environment. Exam-
ples include environmental vertical wind shear, total precipitable water, the average relative humidity,
measures of convective instability, and the upper bound of intensity that a storm may be expected to
achieve in its current environment. These diagnostics are typically derived from model fields as an
average of the quantity of interest over either a circular area or an annulus centered on the storm
center. Often, the storm center is taken to be the underlying model’s storm center. In other cases, the
diagnostics may be computed along some other specified track.

• Ocean-based diagnostics provide information about the sea’s thermal characteristics in the vicinity of
the storm center. Examples include the sea surface temperature, ocean heat content, and the depth of

381

MET User’s Guide, version 11.1.0-beta2

warm water of a given temperature.

• Satellite-based diagnostics provide information about the storm structure as observed by geostationary
satellite infrared imagery. Examples include information about the shape and extent of the cold-cirrus
canopy of the TC and whether patterns are present that may portend intensification.

Diagnostics are critically important for training and running statistical-dynamical models that predict a TC’s
intensity or size. One of the most well-known diagnostics sets is that of the Statistical Hurricane Inten-
sity Prediction Scheme (SHIPS), which supports predictions of TC intensity. A large 30-year development
dataset of TC diagnostics has been retrospectively derived to support the training of the SHIPS intensity
model as well as other related models such as the Logistic Growth Equation Model (LGEM), SHIPS Rapid
Intensification Index (SHIPS-RII), and others. These diagnostics, called lsdiag for “large scale” environment,
are computed using a perfect prog approach in which the diagnostics are computed on the reference model’s
verifying analyses to generate a set of time-dependent diagnostics from t=0 out to the desired maximum
forecast lead time. This is repeated for each initialization, building up a full history of diagnostics for each
storm. By using the subsequent verifying analysis for later lead times, the model is taken to be “perfect”,
removing the impact of model forecast errors. The resulting developmental dataset is ideal for training
statistical-dynamical models such as SHIPS. To generate forecasts in real-time, the diagnostics are computed
along a forecast track (often taken to be the National Hurricane Center’s official forecast) using the fields of
the underlying NWP model (e.g, the Global Forecast System, or GFS model). The resulting diagnostics are
then used as predictors in models like SHIPS and LGEM to predict a TC’s future intensity or probability of
undergoing rapid intensification.

Beside their use in TC prediction, TC diagnostics can be very useful to forecasters to understand the forecast
scenario. They are also useful to model developers for evaluation of model errors and understanding model
performance under different environmental conditions. For instance, a modeler may wish to understand
their model’s track biases under conditions of high vertical wind shear. TC diagnostics can also be used to
understand the sensitivity of the model’s intensity predictions to oceanic conditions such as upwelling. The
TC-Pairs tool allows filtering and subsetting based on the values of one or several TC diagnostics.

As of MET v11.0.0, two types of TC diagnostics are supported in TC-Pairs:

• SHIPS_DIAG_RT: Real-time SHIPS diagnostics computed from a NWP model such as the
Global Forecast System (GFS) model along a GFS forecast track defined by a SHIPS-specific
tracker. Note that these SHIPS-derived forecast tracks do not appear in the NHC adeck data.

• CIRA_DIAG_RT: Real-time model-based diagnostics computed along the model’s predicted
track.

Diagnostics from the SHIPS Development Datasets (SHIPS_DIAG_DEV) will be supported in a future release
of MET.

A future version of MET will also allow the CIRA model diagnostics to be computed directly from model
forecast fields. Until then, users may obtain the SHIPS diagnostics at the following locations:

• SHIPS_DIAG_DEV: https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/
#DevelopmentalData

• SHIPS_DIAG_RT: https://ftp.nhc.noaa.gov/atcf/lsdiag/

382 Chapter 24. TC-Pairs Tool

https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/#DevelopmentalData
https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/#DevelopmentalData
https://ftp.nhc.noaa.gov/atcf/lsdiag/

MET User’s Guide, version 11.1.0-beta2

24.3 Practical information

This section describes how to configure and run the TC-Pairs tool. The TC-Pairs tool is used to match a trop-
ical cyclone model forecast to a corresponding reference dataset. Both tropical cyclone forecast/reference
data must be in ATCF format. Output from the TC-dland tool (NetCDF gridded distance file) is also a re-
quired input for the TC-Pairs tool. It is recommended to run tc_pairs on a storm-by-storm basis, rather than
over multiple storms or seasons to avoid memory issues.

24.3.1 tc_pairs usage

The usage statement for tc_pairs is shown below:

Usage: tc_pairs
-adeck path and/or -edeck path
-bdeck path
-config file
[-diag source path]
[-out base]
[-log file]
[-v level]

tc_pairs has required arguments and can accept several optional arguments.

24.3.1.1 Required arguments for tc_pairs

1. The -adeck path argument indicates the adeck TC-Pairs acceptable format data containing tropical
cyclone model forecast (output from tracker) data to be verified. Acceptable data formats are limited
to the standard ATCF format and the one column modified ATCF file, generated by running the tracker
in genesis mode. It specifies the name of a TC-Pairs acceptable format file or top-level directory
containing TC-Pairs acceptable format files ending in “.dat” to be processed. The -adeck or -edeck
option must be used at least once.

2. The -edeck path argument indicates the edeck ATCF format data containing probabilistic track data to
be verified. It specifies the name of an ATCF format file or top-level directory containing ATCF format
files ending in “.dat” to be processed. The -adeck or -edeck option must be used at least once.

3. The -bdeck path argument indicates the TC-Pairs acceptable format data containing the tropical cy-
clone reference dataset to be used for verifying the adeck data. This data is typically the NHC Best
Track Analysis, but could be any TC-Pairs acceptable formatted reference. The acceptable data formats
for bdecks are the same as those for adecks. This argument specifies the name of a TC-Pairs accept-
able format file or top-level directory containing TC-Pairs acceptable format files ending in “.dat” to be
processed.

4. The -config file argument indicates the name of the configuration file to be used. The contents of the
configuration file are discussed below.

24.3. Practical information 383

MET User’s Guide, version 11.1.0-beta2

24.3.1.2 Optional arguments for tc_pairs

5. The -diag source path argument indicates the TC-Pairs acceptable format data containing the tropical
cyclone diagnostics dataset corresponding to the adeck tracks. The source can be set to CIRA_DIAG_RT
or SHIPS_DIAG_RT to indicate the input diagnostics data source. The path argument specifies the
name of a TC-Pairs acceptable format file or top-level directory containing TC-Pairs acceptable format
files ending in “.dat” to be processed. Support for additional diagnostic sources will be added in future
releases.

6. The -out base argument indicates the path of the output file base. This argument overrides the default
output file base (./out_tcmpr).

7. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

8. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

This tool currently only supports the rapid intensification (RI) edeck probability type but support for addi-
tional edeck probability types will be added in future releases.

At least one -adeck or -edeck option must be specified. The -adeck, -edeck, and -bdeck options may
optionally be followed with suffix=string to append that string to all model names found within that data
source. This option may be useful when processing track data from two different sources which reuse the
same model names.

An example of the tc_pairs calling sequence is shown below:

tc_pairs -adeck aal092010.dat -bdeck bal092010.dat -config TCPairsConfig

In this example, the TC-Pairs tool matches the model track (aal092010.dat) and the best track analysis
(bal092010.dat) for the 9th Atlantic Basin storm in 2010. The track matching and subsequent error infor-
mation is generated with configuration options specified in the TCPairsConfig file.

The TC-Pairs tool implements the following logic:

• Parse the adeck, edeck, and bdeck data files and store them as track objects.

• Parse diagnostics data files and add the requested diagnostics to the existing adeck track objects.

• Apply configuration file settings to filter the adeck, edeck, and bdeck track data down to a subset of
interest.

• Apply configuration file settings to derive additional adeck track data, such as interpolated tracks,
consensus tracks, time-lagged tracks, and statistical track and intensity models.

• For each adeck track that was parsed or derived, search for a matching bdeck track with the same basin
and cyclone number and overlapping valid times. If not matching against the BEST track, also ensure
that the model initialization times match.

• For each adeck/bdeck track pair, match up their track points in time, lookup distances to land, compute
track location errors, and write an output TCMPR line for each track point.

384 Chapter 24. TC-Pairs Tool

MET User’s Guide, version 11.1.0-beta2

• For each set of edeck probabilities that were parsed, search for a matching bdeck track.

• For each edeck/bdeck pair, write paired edeck probabilities and matching bdeck values to output
PROBRIRW lines.

24.3.2 tc_pairs configuration file

The default configuration file for the TC-Pairs tool named TCPairsConfig_default can be found in the in-
stalled share/met/config/ directory. Users are encouraged to copy these default files before modifying their
contents. The contents of the configuration file are described in the subsections below.

The contents of the tc_pairs configuration file are described below.

storm_id = [];
basin = [];
cyclone = [];
storm_name = [];
init_beg = "";
init_end = "";
init_inc = [];
init_exc = [];
valid_beg = "";
valid_end = "";
valid_inc = [];
valid_exc = [];
init_hour = [];
init_mask = "";
valid_mask = "";
lead_req = [];
match_points = TRUE;
version = "VN.N";

The configuration options listed above are common to multiple MET tools and are described in Section 6.

model = ["DSHP", "LGEM", "HWRF"];

The model variable contains a list of comma-separated models to be used. Each model is identified with an
ATCF TECH ID (normally four unique characters). This model identifier should match the model column in
the ATCF format input file. An empty list indicates that all models in the input file(s) will be processed. Note
that when reading ATCF track data, all instances of the string AVN are automatically replaced with GFS.

write_valid = ["20101231_06"];

24.3. Practical information 385

MET User’s Guide, version 11.1.0-beta2

The write_valid entry specifies a comma-separated list of valid time strings in YYYYMMDD[_HH[MMSS]]
format for which output should be written. An empty list indicates that data for all valid times should be
written. This option may be useful when verifying track forecasts in realtime. If evaluating performance for
a single valid time, this option can limit the output to that time and skip output for earlier track points.

check_dup = FALSE;

The check_dup flag expects either TRUE and FALSE, indicating whether the code should check for duplicate
ATCF lines when building tracks. Setting check_dup to TRUE will check for duplicated lines, and produce
output information regarding the duplicate. Any duplicated ATCF line will not be processed in the tc_pairs
output. Setting check_dup to FALSE, will still exclude tracks that decrease with time, and will overwrite
repeated lines, but specific duplicate log information will not be output. Setting check_dup to FALSE will
make parsing the track quicker.

interp12 = NONE;

The interp12 flag expects the entry NONE, FILL, or REPLACE, indicating whether special processing should
be performed for interpolated forecasts. The NONE option indicates no changes are made to the interpolated
forecasts. The FILL and REPLACE (default) options determine when the 12-hour interpolated forecast (nor-
mally indicated with a “2” or “3” at the end of the ATCF ID) will be renamed with the 6-hour interpolated
ATCF ID (normally indicated with the letter “I” at the end of the ATCF ID). The FILL option renames the
12-hour interpolated forecasts with the 6-hour interpolated forecast ATCF ID only when the 6-hour inter-
polated forecasts is missing (in the case of a 6-hour interpolated forecast which only occurs every 12-hours
(e.g. EMXI, EGRI), the 6-hour interpolated forecasts will be “filled in” with the 12-hour interpolated fore-
casts in order to provide a record every 6-hours). The REPLACE option renames all 12-hour interpolated
forecasts with the 6-hour interpolated forecasts ATCF ID regardless of whether the 6-hour interpolated fore-
cast exists. The original 12-hour ATCF ID will also be retained in the output file (all modified ATCF entries
will appear at the end of the TC-Pairs output file). This functionality expects both the 12-hour and 6-hour
early (interpolated) ATCF IDs to be listed in the model field.

consensus = [
{

name = "CON1";
members = ["MOD1", "MOD2", "MOD3"];
required = [true, false, false];
min_req = 2;
write_members = TRUE;

}
];

The consensus field allows the user to generate a user-defined consensus forecasts from any number of
models. All models used in the consensus forecast need to be included in the model field (first entry in
TCPairsConfig_default). The name field is the desired consensus model name. The members field is
a comma-separated list of model IDs that make up the members of the consensus. The required field is a

386 Chapter 24. TC-Pairs Tool

MET User’s Guide, version 11.1.0-beta2

comma-separated list of true/false values associated with each consensus member. If a member is designated
as true, the member is required to be present in order for the consensus to be generated. If a member is
false, the consensus will be generated regardless of whether the member is present. The length of the
required array must be the same length as the members array. The min_req field is the number of members
required in order for the consensus to be computed. The required and min_req field options are applied
at each forecast lead time. If any member of the consensus has a non-valid position or intensity value, the
consensus for that valid time will not be generated. The write_members field is a boolean that indicates
whether or not to write output for the individual consensus members. If set to true, standard output will
show up for all members. If set to false, output for the consensus members is excluded from the output, even
if they are used to define other consensus tracks in the configuration file. If a consensus model is defined in
the configuration file, there will be non-missing output for the consensus track variables in the output file
(NUM_MEMBERS, TRACK_SPREAD, TRACK_STDEV, MSLP_STDEV, MAX_WIND_STDEV). See the TCMPR
line type definitions below.

lag_time = ["06", "12"];

The lag_time field is a comma-separated list of forecast lag times to be used in HH[MMSS] format. For
each adeck track identified, a lagged track will be derived for each entry. In the tc_pairs output, the original
adeck record will be retained, with the lagged entry listed as the adeck name with “_LAG_HH” appended.

best_technique = ["BEST"];
best_baseline = ["BCLP", "BCD5", "BCLA"];

The best_technique field specifies a comma-separated list of technique name(s) to be interpreted as BEST
track data. The default value (BEST) should suffice for most users. The best_baseline field specifies a
comma-separated list of CLIPER/SHIFOR baseline forecasts to be derived from the best tracks. Specifying
multiple best_technique values and at least one best_baseline value results in a warning since the derived
baseline forecast technique names may be used multiple times.

The following are valid baselines for the best_baseline field:

BTCLIP: Neumann original 3-day CLIPER in best track mode. Used for the Atlantic basin only. Specify model
as BCLP.

BTCLIP5: 5-day CLIPER (Aberson, 1998 (page 447))/SHIFOR (DeMaria and Knaff, 2003 (page 451)) in best
track mode for either Atlantic or eastern North Pacific basins. Specify model as BCS5.

BTCLIPA: Sim Aberson’s recreation of Neumann original 3-day CLIPER in best-track mode. Used for Atlantic
basin only. Specify model as BCLA.

oper_technique = ["CARQ"];
oper_baseline = ["OCLP", "OCS5", "OCD5"];

The oper_technique field specifies a comma-separated list of technique name(s) to be interpreted as opera-
tional track data. The default value (CARQ) should suffice for most users. The oper_baseline field specifies
a comma-separated list of CLIPER/SHIFOR baseline forecasts to be derived from the operational tracks.

24.3. Practical information 387

MET User’s Guide, version 11.1.0-beta2

Specifying multiple oper_technique values and at least one oper_baseline value results in a warning since
the derived baseline forecast technique names may be used multiple times.

The following are valid baselines for the oper_baseline field:

OCLIP: Merrill modified (operational) 3-day CLIPER run in operational mode. Used for Atlantic basin only.
Specify model as OCLP.

OCLIP5: 5-day CLIPER (Aberson, 1998 (page 447))/ SHIFOR (DeMaria and Knaff, 2003 (page 451)) in
operational mode, rerun using CARQ data. Specify model as OCS5.

OCLIPD5: 5-day CLIPER (Aberson, 1998 (page 447))/ DECAY-SHIFOR (DeMaria and Knaff, 2003
(page 451)). Specify model as OCD5.

anly_track = BDECK;

Analysis tracks consist of multiple track points with a lead time of zero for the same storm. An analysis
track may be generated by running model analysis fields through a tracking algorithm. The anly_track
field specifies which datasets should be searched for analysis track data and may be set to NONE, ADECK,
BDECK, or BOTH. Use BOTH to create pairs using two different analysis tracks.

match_points = TRUE;

The match_points field specifies whether only those track points common to both the adeck and bdeck
tracks should be written out. If match_points is selected as FALSE, the union of the adeck and bdeck tracks
will be written out, with “NA” listed for unmatched data.

dland_file = "MET_BASE/tc_data/dland_global_tenth_degree.nc";

The dland_file string specifies the path of the NetCDF format file (default file:
dland_global_tenth_degree.nc) to be used for the distance to land check in the tc_pairs code. This
file is generated using tc_dland (default file provided in installed share/met/tc_data directory).

watch_warn = {
file_name = "MET_BASE/tc_data/wwpts_us.txt";
time_offset = -14400;

}

The watch_warn field specifies the file name and time applied offset to the watch_warn flag. The file_name
string specifies the path of the watch/warning file to be used to determine when a watch or warning is in
effect during the forecast initialization and verification times. The default file is named wwpts_us.txt,
which is found in the installed share/met/tc_data/ directory within the MET build. The time_offset string
is the time window (in seconds) assigned to the watch/warning. Due to the non-uniform time watches and
warnings are issued, a time window is assigned for which watch/warnings are included in the verification
for each valid time. The default watch/warn file is static, and therefore may not include warned storms

388 Chapter 24. TC-Pairs Tool

MET User’s Guide, version 11.1.0-beta2

beyond the current MET code release date; therefore users may wish to create a post in the METplus GitHub
Discussions Forum in order to obtain the most recent watch/warning file if the static file does not contain
storms of interest.

diag_info_map = [
{

diag_source = "CIRA_DIAG_RT";
track_source = "GFS";
field_source = "GFS_0p50";
match_to_track = ["GFS"];
diag_name = [];

},
{

diag_source = "SHIPS_DIAG_RT";
track_source = "SHIPS_TRK";
field_source = "GFS_0p50";
match_to_track = ["OFCL"];
diag_name = [];

}
];

A TCMPR line is written to the output for each track point. If diagnostics data is also defined for that track
point, a TCDIAG line is written immediately after the corresponding TCMPR line. The contents of that
TCDIAG line is determined by the diag_info_map entry.

The diag_info_map entries define how the diagnostics read with the -diag command line option should be
used. Each array element is a dictionary consisting of entries for diag_source, track_source, field_source,
match_to_track, and diag_name.

The diag_source entry is one of the supported diagnostics data sources. The track_source entry is a string
defining the ATCF ID of the track data used to define the locations at which diagnostics are computed.
This string is written to the TRACK_SOURCE column of the TCDIAG output line. The field_source entry
is a string describing the gridded model data from which the diagnostics are computed. This string is
written to the FIELD_SOURCE column of the TCDIAG output line type. The match_to_track entry specifies
a comma-separated list of strings defining the ATCF ID(s) of the tracks to which these diagnostic values
should be matched. The diag_name entry specifies a comma-separated list of strings for the tropical cyclone
diagnostics of interest. If a non-zero list of diagnostic names is specified, only those diagnostics appearing
in the list are written to the TCDIAG output line type. If defined as an empty list (default), all diagnostics
found in the input are written to the TCDIAG output lines.

diag_convert_map = [
{

diag_source = "CIRA_DIAG";
key = ["(10C)", "(10KT)", "(10M/S)"];
convert(x) = x / 10;

},
(continues on next page)

24.3. Practical information 389

https://github.com/dtcenter/METplus/discussions
https://github.com/dtcenter/METplus/discussions

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

{
diag_source = "SHIPS_DIAG";
key = ["LAT", "LON", "CSST", "RSST", "DSST", "DSTA", "XDST", "XNST", "NSST",

→˓ "NSTA",
"NTMX", "NTFR", "U200", "U20C", "V20C", "E000", "EPOS", "ENEG", "EPSS",

→˓ "ENSS",
"T000", "TLAT", "TLON", "TWAC", "TWXC", "G150", "G200", "G250", "V000",

→˓ "V850",
"V500", "V300", "SHDC", "SHGC", "T150", "T200", "T250", "SHRD", "SHRS",

→˓ "SHRG",
"HE07", "HE05", "PW01", "PW02", "PW03", "PW04", "PW05", "PW06", "PW07",

→˓ "PW08",
"PW09", "PW10", "PW11", "PW12", "PW13", "PW14", "PW15", "PW16", "PW17",

→˓ "PW18",
"PW20", "PW21"];

convert(x) = x / 10;
},
{

diag_source = "SHIPS_DIAG";
key = ["VVAV", "VMFX", "VVAC"];
convert(x) = x / 100;

},
{

diag_source = "SHIPS_DIAG";
key = ["TADV"];
convert(x) = x / 1000000;

},
{

diag_source = "SHIPS_DIAG";
key = ["Z850", "D200", "TGRD", "DIVC"];
convert(x) = x / 10000000;

},
{

diag_source = "SHIPS_DIAG";
key = ["PENC", "PENV"];
convert(x) = x / 10 + 1000;

}
];

The diag_convert_map entries define conversion functions to be applied to diagnostics data read with the
-diag command line option. Each array element is a dictionary consisting of a diag_source, key, and
convert(x) entry.

The diag_source entry is one of the supported diagnostics data sources. Partial string matching logic is
applied, so SHIPS_DIAG entries are matched to both SHIPS_DIAG_RT and SHIPS_DIAG_DEV diagnostic
sources. The key entry is an array of strings. The strings can specify diagnostic names or units, although
units are only checked for CIRA_DIAG sources. If both the name and units are specified, the conversion

390 Chapter 24. TC-Pairs Tool

MET User’s Guide, version 11.1.0-beta2

function for the name takes precedence. The convert(x) entry is a function of one variable which defines
how the diagnostic data should be converted. The defined function is applied to any diagnostic value whose
name or units appears in the key.

basin_map = [
{ key = "SI"; val = "SH"; },
{ key = "SP"; val = "SH"; },
{ key = "AU"; val = "SH"; },
{ key = "AB"; val = "IO"; },
{ key = "BB"; val = "IO"; }

];

The basin_map entry defines a mapping of input names to output values. Whenever the basin string matches
“key” in the input ATCF files, it is replaced with “val”. This map can be used to modify basin names to make
them consistent across the ATCF input files.

Many global modeling centers use ATCF basin identifiers based on region (e.g., ‘SP’ for South Pacific Ocean,
etc.), however the best track data provided by the Joint Typhoon Warning Center (JTWC) use just one basin
identifier ‘SH’ for all of the Southern Hemisphere basins. Additionally, some modeling centers may report
basin identifiers separately for the Bay of Bengal (BB) and Arabian Sea (AB) whereas JTWC uses ‘IO’.

The basin mapping allows MET to map the basin identifiers to the expected values without having to modify
your data. For example, the first entry in the list below indicates that any data entries for ‘SI’ will be
matched as if they were ‘SH’. In this manner, all verification results for the Southern Hemisphere basins will
be reported together as one basin.

An empty list indicates that no basin mapping should be used. Use this if you are not using JTWC best tracks
and you would like to match explicitly by basin or sub-basin. Note that if your model data and best track
do not use the same basin identifier conventions, using an empty list for this parameter will result in missed
matches.

24.3.3 tc_pairs output

TC-Pairs produces output in TCST format. The default output file name can be overwritten using the -out
file argument in the usage statement. The TCST file output from TC-Pairs may be used as input into the
TC-Stat tool. The header column in the TC-Pairs output is described in Table 24.1.

24.3. Practical information 391

MET User’s Guide, version 11.1.0-beta2

Table 24.1: Header information for TC-Pairs TCST output.

HEADER
Column Num-
ber

Header Column
Name

Description

1 VERSION Version number
2 AMODEL User provided text string designating model name
3 BMODEL User provided text string designating model name
4 STORM_ID BBCCYYYY designation of storm
5 BASIN Basin (BB in STORM_ID)
6 CYCLONE Cyclone number (CC in STORM_ID)
7 STORM_NAME Name of Storm
8 INIT Initialization time of forecast in YYYYMMDD_HHMMSS for-

mat.
9 LEAD Forecast lead time in HHMMSS format.
10 VALID Forecast valid time in YYYYMMDD_HHMMSS format.
11 INIT_MASK Initialization time masking grid applied
12 VALID_MASK Valid time masking grid applied
13 LINE_TYPE Output line type (TCMPR or PROBRIRW)

Table 24.2: Format information for TCMPR (Tropical Cyclone
Matched Pairs) output line type.

TCMPR OUTPUT FORMAT
Column Number Header Column Name Description
13 TCMPR Tropical Cyclone Matched Pair line type
14 TOTAL Total number of pairs in track
15 INDEX Index of the current track pair
16 LEVEL Level of storm classification
17 WATCH_WARN HU or TS watch or warning in effect
18 INITIALS Forecaster initials
19 ALAT Latitude position of adeck model
20 ALON Longitude position of adeck model
21 BLAT Latitude position of bdeck model
22 BLON Longitude position of bdeck model
23 TK_ERR Track error of adeck relative to bdeck (nm)
24 X_ERR X component position error (nm)
25 Y_ERR Y component position error (nm)
26 ALTK_ERR Along track error (nm)
27 CRTK_ERR Cross track error (nm)
28 ADLAND adeck distance to land (nm)
29 BDLAND bdeck distance to land (nm)
30 AMSLP adeck mean sea level pressure
31 BMSLP bdeck mean sea level pressure
32 AMAX_WIND adeck maximum wind speed

continues on next page

392 Chapter 24. TC-Pairs Tool

MET User’s Guide, version 11.1.0-beta2

Table 24.2 – continued from previous page
TCMPR OUTPUT FORMAT

Column Number Header Column Name Description
33 BMAX_WIND bdeck maximum wind speed
34, 35 A/BAL_WIND_34 a/bdeck 34-knot radius winds in full circle
36, 37 A/BNE_WIND_34 a/bdeck 34-knot radius winds in NE quadrant
38, 39 A/BSE_WIND_34 a/bdeck 34-knot radius winds in SE quadrant
40, 41 A/BSW_WIND_34 a/bdeck 34-knot radius winds in SW quadrant
42, 43 A/BNW_WIND_34 a/bdeck 34-knot radius winds in NW quadrant
44, 45 A/BAL_WIND_50 a/bdeck 50-knot radius winds in full circle
46, 47 A/BNE_WIND_50 a/bdeck 50-knot radius winds in NE quadrant
48, 49 A/BSE_WIND_50 a/bdeck 50-knot radius winds in SE quadrant
50, 51 A/BSW_WIND_50 a/bdeck 50-knot radius winds in SW quadrant
52, 53 A/BNW_WIND_50 a/bdeck 50-knot radius winds in NW quadrant
54, 55 A/BAL_WIND_64 a/bdeck 64-knot radius winds in full circle
56, 57 A/BNE_WIND_64 a/bdeck 64-knot radius winds in NE quadrant
58, 59 A/BSE_WIND_64 a/bdeck 64-knot radius winds in SE quadrant
60, 61 A/BSW_WIND_64 a/bdeck 64-knot radius winds in SW quadrant
62, 63 A/BNW_WIND_64 a/bdeck 64-knot radius winds in NW quadrant
64, 65 A/BRADP pressure in millibars of the last closed isobar, 900 - 1050 mb
66, 67 A/BRRP radius of the last closed isobar in nm, 0 - 9999 nm
68, 69 A/BMRD radius of max winds, 0 - 999 nm
70, 71 A/BGUSTS gusts, 0 through 995 kts
72, 73 A/BEYE eye diameter, 0 through 999 nm
74, 75 A/BDIR storm direction in compass coordinates, 0 - 359 degrees
76, 77 A/BSPEED storm speed, 0 - 999 kts
78, 79 A/BDEPTH system depth, D-deep, M-medium, S-shallow, X-unknown
80 NUM_MEMBERS consensus variable: number of models (or ensemble members) that were used to build the consensus track
81 TRACK_SPREAD consensus variable: the mean of the distances from the member location to the consensus track location (nm)
82 TRACK_STDEV consensus variable: the standard deviation of the distances from the member locations to the consensus track location (nm)
83 MSLP_STDEV consensus variable: the standard deviation of the member’s mean sea level pressure values
84 MAX_WIND_STDEV consensus variable: the standard deviation of the member’s maximum wind speed values

24.3. Practical information 393

MET User’s Guide, version 11.1.0-beta2

Table 24.3: Format information for TCDIAG (Tropical Cy-
clone Diagnostics) output line type.

TCDIAG OUTPUT FORMAT
Column Num-
ber

Header Column
Name

Description

13 TCDIAG Tropical Cyclone Diagnostics line type
14 TOTAL Total number of pairs in track
15 INDEX Index of the current track pair
16 DIAG_SOURCE Diagnostics data source indicated by the -diag command line op-

tion
17 TRACK_SOURCE ATCF ID of the track data used to define the diagnostics
18 FIELD_SOURCE Description of gridded field data source used to define the diag-

nostics
19 N_DIAG Number of storm diagnostic name and value columns to follow
20 DIAG_i Name of the of the ith storm diagnostic (repeated)
21 VALUE_i Value of the ith storm diagnostic (repeated)

394 Chapter 24. TC-Pairs Tool

MET User’s Guide, version 11.1.0-beta2

Table 24.4: Format information for PROBRIRW (Probability
of Rapid Intensification/Weakening) output line type.

PROBRIRW OUTPUT FORMAT
Column Number Header Column Name Description
13 PROBRIRW Probability of Rapid Intensification/Weakening line type
14 ALAT Latitude position of edeck model
15 ALON Longitude position of edeck model
16 BLAT Latitude position of bdeck model
17 BLON Longitude position of bdeck model
18 INITIALS Forecaster initials
19 TK_ERR Track error of adeck relative to bdeck (nm)
20 X_ERR X component position error (nm)
21 Y_ERR Y component position error (nm)
22 ADLAND adeck distance to land (nm)
23 BDLAND bdeck distance to land (nm)
24 RI_BEG Start of RI time window in HH format
25 RI_END End of RI time window in HH format
26 RI_WINDOW Width of RI time window in HH format
27 AWIND_END Forecast maximum wind speed at RI end
28 BWIND_BEG Best track maximum wind speed at RI begin
29 BWIND_END Best track maximum wind speed at RI end
30 BDELTA Exact Best track wind speed change in RI window
31 BDELTA_MAX Maximum Best track wind speed change in RI window
32 BLEVEL_BEG Best track storm classification at RI begin
33 BLEVEL_END Best track storm classification at RI end
34 N_THRESH Number of probability thresholds
35 THRESH_i The ith probability threshold value (repeated)
36 PROB_i The ith probability value (repeated)

24.3. Practical information 395

MET User’s Guide, version 11.1.0-beta2

396 Chapter 24. TC-Pairs Tool

Chapter 25

TC-Stat Tool

25.1 Introduction

The TC-Stat tool ties together results from the TC-Pairs tool by providing summary statistics and filtering
jobs on TCST output files. The TC-Stat tool requires TCST output from the TC-Pairs tool. See Section 25.3.2
of this user’s guide for information on the TCST output format of the TC-Pairs tool. The TC-Stat tool supports
several analysis job types. The filter job stratifies the TCST data using various conditions and thresholds
described in Section 25.3.1.3. The summary job produces summary statistics including frequency of superior
performance, time-series independence calculations, and confidence intervals on the mean. The rirw job
processes TCMPR lines, identifies adeck and bdeck rapid intensification or weakening events, populates a
2x2 contingency table, and derives contingency table statistics. The probrirw job processes PROBRIRW
lines, populates an Nx2 probabilistic contingency table, and derives probabilistic statistics. The statistical
aspects are described in Section 25.2, and practical use information for the TC-Stat tool is described in
Section 25.3.

25.2 Statistical aspects

25.2.1 Filter TCST lines

The TC-Stat tool can be used to simply filter specific lines of the TCST file based on user-defined filtering
criteria. All of the TCST lines that are retained from one or more files are written out to a single output file.
The output file is also in TCST format.

Filtering options are outlined below in Section 25.3.1.3 (configuration file). If multiple filtering options are
listed, the job will be performed on their intersection.

397

MET User’s Guide, version 11.1.0-beta2

25.2.2 Summary statistics for columns

The TC-Stat tool can be used to produce summary information for a single column of data. After the user
specifies the specific column of interest, and any other relevant search criteria, summary information is
produced from values in that column of data. The summary statistics produced are listed in Table 25.1.

Confidence intervals are computed for the mean of the column of data. Confidence intervals are computed
using the assumption of normality for the mean. For further information on computing confidence intervals,
refer to Section 34 of the MET user’s guide.

When operating on columns, a specific column name can be listed (e.g. TK_ERR), as well as the differ-
ences of two columns (e.g. AMAX_WIND-BMAX_WIND), and the absolute difference of the column(s) (e.g.
abs(AMAX_WIND-BMAX_WIND)). Additionally, several shortcuts can be applied to choose multiple columns
with a single entry. Shortcut options for the -column entry are as follows:

TRACK: track error (TK_ERR), along-track error (ALTK_ERR), and cross-track error (CRTK_ERR)

WIND: all wind radii errors (34-, 50-, and 64-kt) for each quadrant

TI: track error (TK_ERR) and absolute intensity error (abs(AMAX_WIND-BMAX_WIND))

AC: along- and cross-track errors (ALTK_ERR, CRTK_ERR)

XY: X- and Y-component track errors (X_ERR, Y_ERR)

The TC-Stat tool can also be used to generate frequency of superior performance and the time to indepen-
dence calculations when using the TC-Stat summary job.

25.2.2.1 Frequency of Superior Performance

The frequency of superior performance (FSP) looks at multiple model forecasts (adecks), and ranks each
model relative to other model performance for the column specified in the summary job. The summary job
output lists the total number of cases included in the FSP, the number of cases where the model of interest
is the best (e.g.: lowest track error), the number of ties between the models, and the FSP (percent). Ties are
not included in the FSP percentage; therefore the percentage may not equal 100%.

25.2.2.2 Time-Series Independence

The time-series independence evaluates effective forecast separation time using the Siegel method, by com-
paring the number of runs above and below the mean error to an expected value. This calculation expects
the columns in the summary job to be a time series. The output includes the forecast hour interval and the
number of hours to independence.

398 Chapter 25. TC-Stat Tool

MET User’s Guide, version 11.1.0-beta2

25.2.3 Rapid Intensification/Weakening

The TC-Stat tool can be used to read TCMPR lines and compare the occurrence of rapid intensification
(i.e. increase in intensity) or weakening (i.e. decrease in intensity) between the adeck and bdeck. The
rapid intensification or weakening is defined by the change of maximum wind speed (i.e. AMAX_WIND and
BMAX_WIND columns) over a specified amount of time. Accurately forecasting large changes in intensity is
a challenging problem and this job helps quantify a model’s ability to do so.

Users may specify several job command options to configure the behavior of this job. Using these config-
urable options, the TC-Stat tool analyzes paired tracks and for each track point (i.e. each TCMPR line)
determines whether rapid intensification or weakening occurred. For each point in time, it uses the forecast
and BEST track event occurrence to populate a 2x2 contingency table. The job may be configured to require
that forecast and BEST track events occur at exactly the same time to be considered a hit. Alternatively,
the job may be configured to define a hit as long as the forecast and BEST track events occurred within
a configurable time window. Using this relaxed matching criteria false alarms may be considered hits and
misses may be considered correct negatives as long as the adeck and bdeck events were close enough in
time. Each rirw job applies a single intensity change threshold. Therefore, assessing a model’s performance
with rapid intensification and weakening requires that two separate jobs be run.

25.2.4 Probability of Rapid Intensification

The TC-Stat tool can be used to accumulate multiple PROBRIRW lines and derive probabilistic statistics
summarizing performance. The PROBRIRW line contains a probabilistic forecast for a specified intensity
change along with the actual intensity change that occurred in the BEST track. Accurately forecasting the
likelihood of large changes in intensity is a challenging problem and this job helps quantify a model’s ability
to do so.

Users may specify several job command options to configure the behavior of this job. The TC-Stat tools
reads the input PROBI lines, applies the configurable options to extract a forecast probability value and
BEST track event, and bins those probabilistic pairs into an Nx2 contingency table. This job writes up to four
probabilistic output line types summarizing the performance.

25.3 Practical information

The following sections describe the usage statement, required arguments, and optional arguments for tc_stat.

25.3.1 tc_stat usage

The usage statement for tc_stat is shown below:

Usage: tc_stat
-lookin source
[-out file]
[-log file]
[-v level]
[-config file] | [JOB COMMAND LINE]

25.3. Practical information 399

MET User’s Guide, version 11.1.0-beta2

TC-Stat has one required argument and accepts optional ones.

The usage statement for the TC-Stat tool includes the “job” term, which refers to the set of tasks to be
performed after applying user-specified filtering options. The filtering options are used to pare down the
TC-Pairs output to only those lines that are desired for the analysis. The job and its filters together comprise
a “job command line”. The “job command line” may be specified either on the command line to run a single
analysis job or within the configuration file to run multiple analysis jobs at the same time. If jobs are specified
in both the configuration file and the command line, only the jobs indicated in the configuration file will be
run. The various jobs are described in Table 25.1 and the filtering options are described in Section 25.3.1.3.

25.3.1.1 Required arguments for tc_stat

1. The -lookin source argument indicates the location of the input TCST files generated from tc_pairs.
This argument can be used one or more times to specify the name of a TCST file or top-level directory
containing TCST files to be processed. Multiple tcst files may be specified by using a wild card (*).

2. Either a configuration file must be specified with the -config option, or a JOB COMMAND LINE must
be denoted. The JOB COMMAND LINE options are described in Section 25.3.1.3.

25.3.1.2 Optional arguments for tc_stat

3. The -out file argument indicates the desired name of the TCST format output file.

4. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

5. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

6. The -config file argument indicates the name of the configuration file to be used. The contents of the
configuration file are discussed below.

An example of the tc_stat calling sequence is shown below:

tc_stat -lookin /home/tc_pairs/*al092010.tcst -config TCStatConfig

In this example, the TC-Stat tool uses any TCST file (output from tc_pairs) in the listed directory for the 9th
Atlantic Basin storm in 2010. Filtering options and aggregated statistics are generated following configura-
tion options specified in the TCStatConfig file. Further, using flags (e.g. -basin, -column, -storm_name,
etc. . .) option within the job command lines may further refine these selections. See Section 25.3.1.3 for
options available for the job command line and Section 6 for how to use them.

400 Chapter 25. TC-Stat Tool

MET User’s Guide, version 11.1.0-beta2

25.3.1.3 tc_stat configuration file

The default configuration file for the TC-Stat tool named TCStatConfig_default can be found in the installed
share/met/config directory. Like the other configuration files described in this document, it is recommended
that users make a copy of these files prior to modifying their contents.

The contents of the tc_stat configuration file are described below.

storm_id = [];
basin = [];
cyclone = [];
storm_name = [];
init_beg = "";
init_end = "";
init_inc = [];
init_exc = [];
valid_beg = "";
valid_end = "";
valid_inc = [];
valid_exc = [];
init_hour = [];
lead_req = [];
init_mask = [];
valid_mask = [];
match_points = TRUE;
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 6.

Note that the options specified in the first section of the configuration file, prior to the job list, will be applied
to every job specified in the joblist. However, if an individual job specifies an option listed above, it will be
applied to that job. For example, if model = [“GFSI”, “LGEM”, “DSHP”]; is set at the top, but the job in
the joblist sets the -model option to “LGEM”, that job will only run using the LGEM model data.

amodel = [];
bmodel = [];

The amodel and bmodel fields stratify by the amodel and bmodel columns based on a comma-separated
list of model names used for all analysis performed. The names must be in double quotation marks (e.g.:
“HWFI”). The amodel list specifies the model to be verified against the listed bmodel. The bmodel specifies
the reference dataset, generally the BEST track analysis. Using the -amodel and -bmodel options within the
job command lines may further refine these selections.

valid_hour = [];
lead = [];

25.3. Practical information 401

MET User’s Guide, version 11.1.0-beta2

The valid_hour, and lead fields stratify by the valid time and lead time, respectively. This field specifies a
comma-separated list of valid times and lead times in HH[MMSS] format. Using the -valid_hour and -lead
options within the job command lines may further refine these selections.

line_type = [];

The line_type field stratifies by the line_type column.

track_watch_warn = [];

The track_watch_warn flag stratifies over the watch_warn column in the TCST files. If any of the
watch/warning statuses are present in a forecast track, the entire track is verified. The value “ALL” matches
HUWARN, HUWATCH, TSWARN, TSWATCH. Using the -track_watch_warn option within the job command
lines may further refine these selections.

Other uses of the WATCH_WARN column include filtering when:

1. A forecast is issued when a watch/warning is in effect

2. A forecast is verifying when a watch/warning is in effect

3. A forecast is issued when a watch/warning is NOT in effect

4. A forecast is verified when a watch/warning is NOT in effect

The following filtering options can be achieved by the following:

Option 1. A forecast is issued when a watch/warning is in effect

init_str_name = ["WATCH_WARN"];
init_str_val = ["ALL"];

Option 2. A forecast is verifying when a watch/warning is in effect

column_str_name = ["WATCH_WARN"];
column_str_val = ["ALL"];

Option 3. A forecast is issued when a watch/warning is NOT in effect

init_str_name = ["WATCH_WARN"];
init_str_val = ["NA"];

Option 4. A forecast is verified when a watch/warning is NOT in effect

column_str_name = ["WATCH_WARN"];
column_str_val = ["NA"];

Further information on the column_str and init_str fields are described below. Listing a comma-separated
list of watch/warning types in the column_str_val field will be stratified by a single or multiple types of
warnings.

402 Chapter 25. TC-Stat Tool

MET User’s Guide, version 11.1.0-beta2

column_thresh_name = [];
column_thresh_val = [];

The column_thresh_name and column_thresh_val fields stratify by applying thresholds to numeric data
columns. Specify a comma-separated list of column names and thresholds to be applied. The length of
column_thresh_val should match that of column_thresh_name. Using the -column_thresh name thresh
option within the job command lines may further refine these selections.

column_str_name = [];
column_str_val = [];

The column_str_name and column_str_val fields stratify by performing string matching on non-numeric
data columns. Specify a comma-separated list of columns names and values to be included in the analysis.
The length of the column_str_val should match that of the column_str_name. Using the -column_str
name value option within the job command lines may further refine these selections.

column_str_exc_name = [];
column_str_exc_val = [];

The column_str_exc_name and column_str_exc_val fields stratify by performing string matching on non-
numeric data columns. Specify a comma-separated list of columns names and values to be excluded from
the analysis. The length of the column_str_exc_val should match that of the column_str_exc_name. Using
the -column_str_exc name value option within the job command lines may further refine these selections.

init_thresh_name = [];
init_thresh_val = [];

The init_thresh_name and init_thresh_val fields stratify by applying thresholds to numeric data columns
only when lead = 0. If lead = 0, but the value does not meet the threshold, discard the entire track. The
length of the init_thresh_val should match that of the init_thresh_name. Using the -init_thresh name
thresh option within the job command lines may further refine these selections.

init_str_name = [];
init_str_val = [];

The init_str_name and init_str_val fields stratify by performing string matching on non-numeric data
columns only when lead = 0. If lead = 0, but the string does not match, discard the entire track. The
length of the init_str_val should match that of the init_str_name. Using the -init_str name value option
within the job command lines may further refine these selections.

25.3. Practical information 403

MET User’s Guide, version 11.1.0-beta2

init_str_exc_name = [];
init_str_exc_val = [];

The init_str_exc_name and init_str_exc_val fields stratify by performing string matching on non-numeric
data columns only when lead = 0. If lead = 0, and the string does match, discard the entire track. The
length of the init_str_exc_val should match that of the init_str_exc_name. Using the -init_str_exc name
value option within the job command lines may further refine these selections.

diag_thresh_name = [];
diag_thresh_val = [];

The diag_thresh_name and diag_thresh_val fields stratify individual track points by applying thresholds
to numeric data columns from the TCDIAG lines. Specify a comma-separated list of diagnostics names and
thresholds to be applied. The length of diag_thresh_val should match that of diag_thresh_name. If the
storm diagnostic does not meet the threshold, discard both the TCMPR and TCDIAG lines for that track
point. Using the -diag_thresh name thresh option within the job command lines may further refine these
selections.

init_diag_thresh_name = [];
init_diag_thresh_val = [];

The init_diag_thresh_name and init_diag_thresh_val fields stratify entire tracks by applying thresholds
to numeric data columns from the TCDIAG lines, but only when lead = 0. If lead = 0, but the storm
diagnostic does not meet the threshold, discard the entire track. The length of the init_diag_thresh_val
should match that of the init_diag_thresh_name. Using the -init_diag_thresh name thresh option within
the job command lines may further refine these selections.

water_only = FALSE;

The water_only flag stratifies by only using points where both the amodel and bmodel tracks are over water.
When water_only = TRUE; once land is encountered the remainder of the forecast track is not used for the
verification, even if the track moves back over water.

rirw = {
track = NONE;
time = "24";
exact = TRUE;
thresh = >=30.0;

}

The rirw field specifies those track points for which rapid intensification (RI) or rapid weakening (RW)
occurred, based on user defined RI/RW thresholds. The track entry specifies that RI/RW is not turned on
(NONE), is computed based on the bmodel only (BDECK), is computed based on the amodel only (ADECK),

404 Chapter 25. TC-Stat Tool

MET User’s Guide, version 11.1.0-beta2

or computed when both the amodel and bmodel (the union of the two) indicate RI/RW (BOTH). If track
is set to ADECK, BDECK, or BOTH, only tracks exhibiting rapid intensification will be retained. Rapid
intensification is officially defined as when the change in the maximum wind speed over a 24-hour period is
greater than or equal to 30 kts. This is the default setting, however flexibility in this definition is provided
through the use of the time, exact and thresh options. The time field specifies the time window (HH[MMSS]
format) for which the RI/RW occurred. The exact field specifies whether to only count RI/RW when the
intensity change is over the exact time window (TRUE), which follows the official RI definition, or if the
intensity threshold is met anytime during the time window (FALSE). Finally, the thresh field specifies the
user defined intensity threshold (where “>=” indicates RI, and “<=” indicates RW).

Using the -rirw_track, -rirw_time_adeck, -rirw_time_bdeck, -rirw_exact_adeck, -rirw_exact_bdeck, -
rirw_thresh_adeck, -rirw_thresh_bdeck options within the job command lines may further refine these
selections. See Section 6 for how to use these options.

landfall = FALSE;
landfall_beg = "-24";
landfall_end = "00";

The landfall, landfall_beg, and landfall_end fields specify whether only those track points occurring near
landfall should be retained. The landfall retention window is defined as the hours offset from the time
of landfall. Landfall is defined as the last bmodel track point before the distance to land switches from
water to land. When landfall_end is set to zero, the track is retained from the landfall_beg to the time of
landfall. Using the -landfall_window option with the job command lines may further refine these selections.
The -landfall_window job command option takes one or two arguments in HH[MMSS] format. Use one
argument to define a symmetric time window. For example, -landfall_window 06 defines the time window
+/- six hours around the landfall time. Use two arguments to define an asymmetric time window. For
example, -landfall_window 00 12 defines the time window from the landfall event to twelve hours after.

event_equal = FALSE;

The event_equal flag specifies whether only those track points common to all models in the dataset should
be retained. The event equalization is performed only using cases common to all listed amodel entries. A
case is defined by comparing the following columns in the TCST files: BMODEL, BASIN, CYCLONE, INIT,
LEAD, VALID. This option may be modified using the -event_equal option within the job command lines.

event_equal_lead = [];

The event_equal_lead flag specifies lead times that must be present for a track to be included in the event
equalization logic. The event equalization is performed only using cases common to all lead times listed,
enabling the verification at each lead time to be performed on a consistent dataset. This option may be
modified using the -event_equal_lead option within the job command lines.

25.3. Practical information 405

MET User’s Guide, version 11.1.0-beta2

out_init_mask = "";

The out_init_mask field applies polyline masking logic to the location of the amodel track at the initializa-
tion time. If the track point falls outside the mask, discard the entire track. This option may be modified
using the -out_init_mask option within the job command lines.

out_valid_mask = "";

The out_valid_mask field applies polyline masking logic to the location of the amodel track at the valid
time. If the track point falls outside the mask, discard the entire track. This option may be modified using
the -out_valid_mask option within the job command lines.

jobs = [];

The user may specify one or more analysis jobs to be performed on the TCST lines that remain after applying
the filtering parameters listed above. Each entry in the joblist contains the task and additional filtering
options for a single analysis to be performed. There are three types of jobs available including filter, summary,
and rirw. Please refer to Section 5 for details on how to call each job. The format for an analysis job is as
follows:

-job job_name REQUIRED and OPTIONAL ARGUMENTS

e.g.: -job filter -line_type TCMPR -amodel HWFI -dump_row ./tc_filter_job.tcst
-job summary -line_type TCMPR -column TK_ERR -dump_row ./tc_summary_job.tcst
-job rirw -line_type TCMPR -rirw_time 24 -rirw_exact false -rirw_thresh ge20
-job probrirw -line_type PROBRIRW -column_thresh RI_WINDOW ==24 \

-probrirw_thresh 30 -probrirw_prob_thresh ==0.25

25.3.2 tc_stat output

The output generated from the TC-Stat tool contains statistics produced by the analysis. Additionally, it
includes information about the analysis job that produced the output for each line. The output can be
redirected to an output file using the -out option. The format of output from each tc_stat job command is
listed below.

Job: Filter

This job command finds and filters TCST lines down to those meeting the criteria selected by the filter’s
options. The filtered TCST lines are written to a file specified by the -dump_row option. The TCST output
from this job follows the TCST output description in Section 23 and Section 24.

Job: Summary

This job produces summary statistics for the column name specified by the -column option. The output of
the summary job consists of three rows:

406 Chapter 25. TC-Stat Tool

MET User’s Guide, version 11.1.0-beta2

1. “JOB_LIST”, which shows the job definition parameters used for this job;

2. “COL_NAME”, followed by the summary statistics that are applied;

3. “SUMMARY”, which is followed by the total, mean (with confidence intervals), standard deviation,
minimum value, percentiles (10th, 25th, 50th, 75th, 90th), maximum value, interquartile range, range,
sum, time to independence, and frequency of superior performance.

The output columns are shown below in Table 25.1 The -by option can also be used one or more times to
make this job more powerful. Rather than running the specified job once, it will be run once for each unique
combination of the entries found in the column(s) specified with the -by option.

Table 25.1: Columnar output of “summary” job output from
the TC-Stat tool.

tc_stat Summary Job Output Options
Column number Description
1 SUMMARY: (job type)
2 Column (dependent parameter)
3 Case (storm + valid time)
4 Total
5 Valid
6-8 Mean, including normal upper and lower confidence limits
9 Standard deviation
10 Minimum value
11-15 Percentiles (10th, 25th, 50th, 75th, 90th)
16 Maximum Value
17 Interquartile range (75th - 25th percentile)
18 Range (Maximum - Minimum)
19 Sum
20-21 Independence time
22-25 Frequency of superior performance

Job: RIRW

The RIRW job produces contingency table counts and statistics defined by identifying rapid intensification or
weakening events in the adeck and bdeck track. Users may specify several job command options to configure
the behavior of this job:

• The -rirw_time HH[MMSS] option (or -rirw_time_adeck and -rirw_time_bdeck to specify different
settings) defines the time window of interest. The default is 24 hours.

• The -rirw_exact bool option (or -rirw_exact_adeck and -rirw_exact_bdeck to specify different set-
tings) is a boolean defining whether the exact intensity change or maximum intensity change over that
time window should be used. For rapid intensification, the maximum increase is computed. For rapid
weakening, the maximum decrease is used. The default is true.

• The -rirw_thresh threshold option (or -rirw_thresh_adeck and -rirw_thresh_bdeck to specify dif-
ferent settings) defines the intensity change event threshold. The default is greater than or equal to 30
kts.

25.3. Practical information 407

MET User’s Guide, version 11.1.0-beta2

• The -rirw_window option may be passed one or two arguments in HH[MMSS] format to define how
close adeck and bdeck events must be to be considered hits or correct negatives. One time string
defines a symmetric time window while two time strings define an asymmetric time window. The
default is 0, requiring an exact match in time.

• The -out_line_type option defines the output data that should be written. This job can write contin-
gency table counts (CTC), contingency table statistics (CTS), and RIRW matched pairs (MPR). The
default is CTC and CTS, but the MPR output provides a great amount of detail.

Users may also specify the -out_alpha option to define the alpha value for the confidence intervals in the
CTS output line type. In addition, the -by column_name option is a convenient way of running the same
job across multiple stratifications of data. For example, -by AMODEL runs the same job for each unique
AMODEL name in the data.

Job: PROBRIRW

The PROBRIRW job produces probabilistic contingency table counts and statistics defined by placing forecast
probabilities and BEST track rapid intensification events into an Nx2 contingency table. Users may specify
several job command options to configure the behavior of this job:

• The -prob_thresh n option is required and defines which probability threshold should be evaluated. It
determines which PROB_i column from the PROBRIRW line type is selected for the job. For example,
use -prob_thresh 30 to evaluate forecast probabilities of a 30 kt increase or use -prob_thresh -30 to
evaluate forecast probabilities of a 30 kt decrease in intensity. The default is a 30 kt increase.

• The -prob_exact bool option is a boolean defining whether the exact or maximum BEST track intensity
change over the time window should be used. If true, the values in the BDELTA column are used. If
false, the values in the BDELTA_MAX column are used. The default is true.

• The -probrirw_bdelta_thresh threshold option defines the BEST track intensity change event thresh-
old. This should typically be set consistent with the probability threshold (-prob_thresh) chosen
above. The default is greater than or equal to 30 kts.

• The -probrirw_prob_thresh threshold_list option defines the probability thresholds used to create
the output Nx2 contingency table. The default is probability bins of width 0.1. These probabilities
may be specified as a list (>0.00,>0.25,>0.50,>0.75,>1.00) or using shorthand notation (==0.25)
for bins of equal width.

• The -out_line_type option defines the output data that should be written. This job can write PCT,
PSTD, PJC, and PRC output line types. The default is PCT and PSTD. Please see Table 11.10 through
Table 11.13 for more details.

Users may also specify the -out_alpha option to define the alpha value for the confidence intervals in the
PSTD output line type. Multiple values in the RI_WINDOW column cannot be combined in a single PRO-
BRIRW job since the BEST track intensity threshold should change for each. Using the -by RI_WINDOW
option or -column_thresh RI_WINDOW ==24 option provide convenient ways avoiding this problem.

Users should note that for the PROBRIRW line type, PROBRI_PROB is a derived column name. The -
probrirw_thresh option defines the probabilities of interest (e.g. -probrirw_thresh 30) and the PRO-
BRI_PROB column name refers to those probability values, regardless of their column number. For ex-
ample, the job command options -probrirw_thresh 30 -column_thresh PROBRI_PROB >0 select 30 kt
probabilities and match probability values greater than 0.

408 Chapter 25. TC-Stat Tool

Chapter 26

TC-Gen Tool

26.1 Introduction

The TC-Gen tool provides verification of deterministic and probabilistic tropical cyclone genesis forecasts in
the ATCF file and shapefile formats. Producing reliable tropical cyclone genesis forecasts is an important
metric for global numerical weather prediction models. This tool ingests deterministic model output post-
processed by genesis tracking software (e.g. GFDL vortex tracker), ATCF edeck files containing probability
of genesis forecasts, operational shapefile warning areas, and ATCF reference track dataset(s) (e.g. Best
Track analysis and CARQ operational tracks). It writes categorical counts and statistics. The capability to
modify the spatial and temporal tolerances when matching forecasts to reference genesis events, as well as
scoring those matched pairs, gives users the ability to condition the criteria based on model performance
and/or conduct sensitivity analyses. Statistical aspects are outlined in Section 26.2 and practical aspects of
the TC-Gen tool are described in Section 26.3.

26.2 Statistical aspects

The TC-Gen tool processes both deterministic and probabilistic forecasts.

For deterministic forecasts specified using the -track command line option, it identifies genesis events in both
the forecasts and reference datasets, typically Best tracks. It applies user-specified configuration options to
pair up the forecast and reference genesis events and categorize each pair as a hit, miss, or false alarm.

As with other extreme events (where the event occurs much less frequently than the non-event), the correct
negative category is not computed since the non-events would dominate the contingency table. Therefore,
only statistics that do not include correct negatives should be considered for this tool. The following CTS
statistics are relevant: Base rate (BASER), Mean forecast (FMEAN), Frequency Bias (FBIAS), Probability of
Detection (PODY), False Alarm Ratio (FAR), Critical Success Index (CSI), Gilbert Skill Score (GSS), Extreme
Dependency Score (EDS), Symmetric Extreme Dependency Score (SEDS), Bias-Adjusted Gilbert Skill Score
(BAGSS).

For probabilistic forecasts specified using the -edeck command line option, it identifies genesis events in
the reference dataset. It applies user-specified configuration options to pair the forecast probabilities to the
reference genesis events. These pairs are added to an Nx2 probabilistic contingency table. If the reference

409

MET User’s Guide, version 11.1.0-beta2

genesis event occurs within in the predicted time window, the pair is counted in the observation-yes column.
Otherwise, it is added to the observation-no column.

For warning area shapefiles specified using the -shape command line option, it processes metadata from the
corresponding database files. The database file is assumed to exist at exactly the same path as the shapefile,
but with a “.dbf” suffix instead of “.shp”. Note that only shapefiles exactly following the NOAA National
Hurricane Center’s (NHC) “gtwo_areas_YYYYMMDDHHMM.shp” file naming and corresonding metadata
conventions are supported. For each shapefile record, the database file defines up to three corresponding
probability values. The first percentage is interpreted as the probability of genesis inside the shape within
48 hours. The second and, if provided, third percentages are interpreted as the 120-hour and 168-hour
probabilities, respectively. Care is taken to identify and either ignore or update duplicate shapes found in
the input.

The shapes are then subset based on the filtering criteria in the configuration file. For each probability and
shape, the reference genesis events are searched for a match within the defined time window. These pairs
are added to an Nx2 probabilistic contingency table. The probabilistic contingeny tables and statistics are
computed and reported separately for filter defined and lead hour encountered in the input.

Other considerations for interpreting the output of the TC-Gen tool involve the size of the contingency table
output. The size of the contingency table will change depending on the number of matches. Additionally,
the number of misses is based on the forecast duration and interval (specified in the configuration file).
This change is due to the number of model opportunities to forecast the event, which is determined by the
specified duration/interval.

Care should be taken when interpreting the statistics for filtered data. In some cases, variables (e.g. storm
name) are only available in either the forecast or reference datasets, rather than both. When filtering on
a field that is only present in one dataset, the contingency table counts will be impacted. Similarly, the
initialization field only impacts the model forecast data. If the valid time (which will impact the reference
dataset) isn’t also specified, the forecasts will be filtered and matched such that the number of misses will
erroneously increase. See Section 26.3 for more detail.

26.3 Practical information

This section describes how to configure and run the TC-Gen tool. The following sections describe the usage
statement, required arguments, and optional arguments for tc_gen.

26.3.1 tc_gen usage

The usage statement for tc_gen is shown below:

Usage: tc_gen
-genesis source
-edeck source
-shape source
-track source
-config file
[-out base]

(continues on next page)

410 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

[-log file]
[-v level]

TC-Gen has three required arguments and accepts optional ones.

26.3.1.1 Required arguments for tc_gen

1. The -genesis source argument is the path to one or more ATCF or fort.66 (see documentation listed
below) files generated by the Geophysical Fluid Dynamics Laboratory (GFDL) Vortex Tracker when run
in tcgen mode or an ASCII file list or a top-level directory containing them. The required file format is
described in the “Output formats” section of the GFDL Vortex Tracker users guide.

2. The -edeck source argument is the path to one or more ATCF edeck files, an ASCII file list containing
them, or a top-level directory with files matching the regular expression “.dat”. The probability of
genesis are read from each edeck input file and verified against at the -track data.

3. The -shape source argument is the path to one or more NHC genesis warning area shapefiles, an
ASCII file list containing them, or a top-level directory with files matching the regular expression
“gtwo_areas.*.shp”. The genesis warning areas and corresponding 2, 5, and 7 day probability values
area verified against the -track data.

Note: At least one of the -genesis, -edeck, or -shape command line options are required.

4. The -track source argument is one or more ATCF reference track files or an ASCII file list or top-level
directory containing them, with files ending in “.dat”. This tool processes either Best track data from
bdeck files, or operational track data (e.g. CARQ) from adeck files, or both. Providing both bdeck and
adeck files will result in a richer dataset to match with the -genesis files. Both adeck and bdeck data
should be provided using the -track option. The -track option must be used at least once.

5. The -config file argument indicates the name of the configuration file to be used. The contents of the
configuration file are discussed below.

26.3.1.2 Optional arguments for tc_gen

6. The -out base argument indicates the path of the output file base. This argument overrides the default
output file base (./tc_gen)

7. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

8. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

26.3. Practical information 411

https://dtcenter.org/sites/default/files/community-code/gfdl/standalone_tracker_UG_v3.9a.pdf

MET User’s Guide, version 11.1.0-beta2

26.3.1.3 Scoring Logic

The TC-Gen tool implements the following logic:

• Parse the Best and operational track data, and identify Best track genesis events. Note that Best tracks
with a cyclone number greater than 50 are automatically discarded from the analysis. Large cyclone
numbers are used for pre-season testing or to track invests prior to a storm actually forming. Running
this tool at verbosity level 6 (-v 6) prints details about which tracks are discarded.

• For -track inputs:

• Parse the forecast genesis data and identify forecast genesis events separately for each model
present.

• Loop over the filters defined in the configuration file and apply the following logic for each.

• For each Best track genesis event meeting the filter critera, determine the initial-
ization and lead times for which the model had an opportunity to forecast that
genesis event. Store an unmatched genesis pair for each case.

• For each forecast genesis event, search for a matching Best track. A configurable
boolean option controls whether all Best track points are considered for a match
or only the single Best track genesis point. A match occurs if the Best track point
valid time is within a configurable window around the forecast genesis time and
the Best track point location is within a configurable radius of the forecast genesis
location. If a Best track match is found, store the storm ID.

• If no Best track match is found, apply the same logic to search the operational
track points with lead time of 0 hours. If an operational match is found, store the
storm ID.

• If a matching storm ID is found, match the forecast genesis event to the Best track
genesis event for that storm ID.

• If no matching storm ID is found, store an unmatched pair for the genesis forecast.

• Loop through the genesis pairs and populate contingency tables using two meth-
ods, the development (dev) and operational (ops) methods. For each pair, if the
forecast genesis event is unmatched, score it as a dev and ops FALSE ALARM. If
the Best track genesis event is unmatched, score it as a dev and ops MISS. Score
each matched genesis pair as follows:

• If the forecast initialization time is at or after the Best track genesis event, DIS-
CARD this case and exclude it from the statistics.

• Compute the difference between the forecast and Best track genesis events in time
and space. If they are both within the configurable tolerance, score it as a dev HIT.
If not, score it as a dev FALSE ALARM.

• Compute the difference between the Best track genesis time and model initializa-
tion time. If it is within the configurable tolerance, score it as an ops HIT. If not,
score it as an ops FALSE ALARM.

• Do not count any CORRECT NEGATIVES.

412 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

• Report the contingency table hits, misses, and false alarms separately for each forecast
model and configuration file filter. The development (dev) scoring method is indicated
in the output as GENESIS_DEV while the operational (ops) scoring method is indicated as
GENESIS_OPS.

• For -edeck inputs:

• Parse the ATCF edeck files. Ignore any lines not containing “GN” and “genFcst”, which indi-
cate a genesis probability forecast. Also, ignore any lines which do not contain a predicted
genesis location (latitude and longitude) or genesis time.

• Loop over the filters defined in the configuration file and apply the following logic for each.

• Subset the genesis probability forecasts based on the current filter criteria. Typically, genesis
probability forecast are provided for multiple lead times. Create separate Nx2 probabilistic
contingency tables for each unique combination of predicted lead time and model name.

• For each genesis probability forecast, search for a matching Best track. A configurable
boolean option controls whether all Best track points are considered for a match or only the
single Best track genesis point. A match occurs if the Best track point valid time is within a
configurable window around the forecast genesis time and the Best track point location is
within a configurable radius of the forecast genesis location. If a Best track match is found,
store the storm ID.

• If no Best track match is found, apply the same logic to search the operational track points
with lead time of 0 hours. If an operational match is found, store the storm ID.

• If no matching storm ID is found, add the unmatched forecast to the observation-no column
of the Nx2 probabilistic contingency table.

• If a matching storm ID is found, check whether that storm’s genesis occurred within the
predicted time window: between the forecast initialization time and the predicted lead
time. If so, add the matched forecast to the observation-yes column. If not, add it to
observation-no column.

• Report the Nx2 probabilistic contingency table counts and statistics for each forecast model,
lead time, and configuration file filter. These counts and statistics are identified in the
output files as PROB_GENESIS.

• For -shape inputs:

• For each input shapefile, parse the timestamp from the
“gtwo_areas_YYYYMMDDHHMM.shp” naming convention, and error out otherwise.
Round the timestamp to the nearest synoptic time (e.g. 00, 06, 12, 18) and store that as
the issuance time.

• Open the shapefile and corresponding database file. Process each record.

• For each record, extract the shape and metadata which defines the basin and 2, 5, and 7
day probabilities.

• Check if this shape is a duplicate that has already been processed. If it is an exact duplicate,
with the same basin, file timestamp, issue time, and min/max lat/lon values, ignore it. If
the file timestamp is older than the existing shape, also ignore it. If the file timestamp is
newer than the existing shape, replace the existing shape with the new one.

26.3. Practical information 413

MET User’s Guide, version 11.1.0-beta2

• Loop over the filters defined in the configuration file and apply the following logic for each.

• Subset the list of genesis shapes based on the current filter criteria.

• Search the Best track genesis events to see if any occurred inside the shape within 7 days of
the issuance time. If multiple genesis events occurred, choose the one closest to the issuance
time.

• If not found, score each probability as a miss.

• If found, further check the 2 and 5 day time windows to classify each probability as a hit or
miss.

• Add each probability pair to an Nx2 probabilistic contingency table, tracking results sepa-
rately for each lead time.

• Report the Nx2 probabilistic contingency table counts and statistics for each lead time.
These counts and statistics are identified in the output files as GENESIS_SHAPE.

26.3.2 tc_gen configuration file

The default configuration file for the TC-Gen tool named TCGenConfig_default can be found in the installed
share/met/config directory. Like the other configuration files described in this document, it is recommended
that users make a copy of these files prior to modifying their contents.

The tc_gen configuration file is divided into three main sections: criteria to define genesis events, options to
subset and filter those events, and options to control the output. The contents of this configuration file are
described below.

init_freq = 6;

The init_freq variable is an integer specifying the model initialization frequency in hours, starting at 00Z.
The default value of 6 indicates that the model is initialized every day at 00Z, 06Z, 12Z, and 18Z. The same
frequency is applied to all models processed. Models initialized at different frequencies should be processed
with separate calls to tc_gen. The initialization frequency is used when defining the model opportunities to
forecast the Best track genesis events.

valid_freq = 6;

The valid_freq variable is an integer specifying the valid time of the track points to be analyzed in hours,
starting at 00Z. The default value of 6 indicates that only track points with valid times of 00Z, 06Z, 12Z,
and 18Z will be checked for genesis events. Since Best and operational tracks are typically only available at
those times, a match to a forecast genesis event is only possible for those hours.

fcst_hr_window = {
beg = 24;
end = 120;

}

414 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

The fcst_hr_window option is a dictionary defining the beginning (beg) and ending (end) model forecast
hours to be searched for genesis events. Model genesis events occurring outside of this window are ignored.
This forecast hour window is also used when defining the model opportunities to forecast the Best track
genesis events.

min_duration = 12;

The min_duration variable is an integer specifying the minimum number of hours a track must persist for
its initial point to be counted as a genesis event. Some models spin up many short-lived storms, and this
setting enables them to be excluded from the analysis.

fcst_genesis = {
vmax_thresh = NA;
mslp_thresh = NA;

}

The fcst_genesis dictionary defines the conditions required for a model track’s genesis point to be included
in the analysis. Thresholds for the maximum wind speed (vmax_thresh) and minimum sea level pressure
(mslp_thresh) may be defined. These conditions must be satisfied for at least one track point for the genesis
event to be included in the analysis. The default thresholds (NA) always evaluate to true.

best_genesis = {
technique = "BEST";
category = ["TD", "TS"];
vmax_thresh = NA;
mslp_thresh = NA;

}

The best_genesis dictionary defines genesis criteria for the Best tracks. Like the fcst_genesis dictionary, the
vmax_thresh and mslp_thresh thresholds define required genesis criteria. In addition, the category array
defines the ATCF storm categories that should qualify as genesis events. The technique string defines the
ATCF ID for the Best track.

oper_technique = "CARQ";

The oper_technique entry is a string which defines the ATCF ID for the operational track data that should
be used. For each forecast genesis event, the Best tracks are searched for a track point valid at the time of
forecast genesis and within the search radius. If no match is found, the 0-hour operational track points are
searched for a match.

filter = [];

26.3. Practical information 415

MET User’s Guide, version 11.1.0-beta2

The filter entry is an array of dictionaries defining genesis filtering criteria to be applied. Each of the entries
listed below (from desc to best_unique_flag) may be specified separately within each filter dictionary. If left
empty, the default setting, a single filter is applied using the top-level filtering criteria. If multiple filtering
dictionaries are defined, the desc entry must be specified for each to differentiate the output data. Output
is written for each combination of filter dictionary and model ATCF ID encountered in the data.

desc = "ALL";

The desc configuration option is common to many MET tools and is described in Section 5.

model = [];

The model entry is an array defining the model ATCF ID’s for which output should be computed. If left
empty, the default setting, output will be computed for each model encountered in the data. Otherwise,
output will be computed only for the ATCF ID’s listed. Note that when reading ATCF track data, all instances
of the string AVN are automatically replaced with GFS.

storm_id = [];
storm_name = [];

The storm_id and storm_name entries are arrays indicating the ATCF storm ID’s and storm names to be
processed. If left empty, all tracks will be processed. Otherwise, only those tracks which meet these criteria
will be included. Note that these strings only appear in the Best and operational tracks, not the forecast
genesis data. Therefore, these filters only apply to the Best and operational tracks. Care should be given
when interpreting the contingency table results for filtered data.

init_beg = "";
init_end = "";
init_inc = [];
init_exc = [];

The init_beg, init_end, init_inc, and init_exc entries define strings in YYYYMMDD[_HH[MMSS]] format
which defines which forecast and operational tracks initializations to be processed. If left empty, all tracks
will be used. Otherwise, only those tracks whose initialization time meets all the criteria will be processed.
The initialization time must fall between init_beg, and init_end, must appear in init_inc inclusion list,
and must not appear in the init_exc exclusion list. Note that these settings only apply to the forecast and
operational tracks, not the Best tracks, for which the initialization time is undefined. Care should be given
when interpreting the contingency table results for filtered data.

For genesis shapes, these options are used to filter the warning issuance time.

416 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

valid_beg = "";
valid_end = "";

The valid_beg and valid_end entries are similar to init_beg and init_end, described above. However, they
are applied to all genesis data sources. Only those tracks falling completely inside this window are included
in the analysis.

init_hour = [];
lead = [];

The init_hour and lead entries are arrays of strings in HH[MMSS] format defining which forecast tracks
should be included. If left empty, all tracks will be used. Otherwise, only those forecast tracks whose
initialization hour and lead times appear in the list will be used. Note that these settings only apply to the
forecast tracks, not the Best tracks, for which the initialization time is undefined. Care should be given when
interpreting the contingency table results for filtered data.

For genesis shapes, the init_hour option is used to filter the warning issuance hour.

vx_mask = "";

The vx_mask entry is a string defining the path to a Lat/Lon polyline file or a gridded data file that MET
can read to subset the results spatially. If specified, only those genesis events whose Lat/Lon location falls
within the specified area will be included.

If specified for genesis shapes, the lat/lon of the central location of the shape will be checked. The central
location is computed as the average of the min/max lat/lon values of the shape points.

basin_mask = [];

The basin_mask entry is an array of strings listing tropical cycline basin abbreviations (e.g. AL, EP, CP, WP,
NI, SI, AU, and SP). The configuration entry basin_file defines the path to a NetCDF file which defines these
regions. The default file (basin_global_tenth_degree.nc) is bundled with MET. If basin_mask is left empty,
genesis events for all basins will be included. If non-empty, the union of specified basins will be used. If
vx_mask is also specified, the analysis is done on the intersection of those masking areas.

The vx_mask and basin_mask names are concatenated and written to the VX_MASK output column.

If vx_mask is not specified for genesis shapes and basin_mask is, the basin name is extracted from the
shapefile metadata and compared to the basin_mask list.

dland_thresh = NA;

The dland_thresh entry is a threshold defining whether the genesis event should be included based on its
distance to land. The default threshold (NA) always evaluates to true.

26.3. Practical information 417

MET User’s Guide, version 11.1.0-beta2

genesis_match_point_to_track = TRUE;

The genesis_match_point_to_track entry is a boolean which controls the matching logic. When set to
its default value of TRUE, for each forecast genesis event, all Best track points are searched for a match.
This logic implements the method used by the NOAA National Hurricane Center. When set to FALSE, only
the single Best track genesis point is considered for a match. When selecting FALSE, users are encouraged
to adjust the genesis_match_radius and/or gensesis_match_window options, described below, to enable
matches to be found.

genesis_match_radius = 500;

The genesis_match_radius entry defines a search radius, in km, relative to the forecast genesis location.
When searching for a match, only Best or operational tracks with a track point within this radius will be
considered. Increasing this search radius should lead to an increase in the number of matched genesis pairs.

genesis_match_window = {
beg = 0;
end = 0;

}

The genesis_match_window entry defines a time window, in hours, relative to the forecast genesis time.
When searching for a match, only Best or operational tracks with a track point falling within this time
window will be considered. The default time window of 0 requires a Best or operational track to exist at the
forecast genesis time for a match to be found. Increasing this time window should lead to an increase in the
number matched genesis pairs. For example, setting end = 12; would allow forecast genesis events to match
Best tracks up to 12 hours prior to their existence.

dev_hit_radius = 500;

The dev_hit_radius entry defines the maximum distance, in km, that the forecast and Best track genesis
events may be separated in order for them to be counted as a contingency table HIT for the development
scoring method. Users should set this hit radius less than or equal to the genesis match radius. Reducing
this radius may cause development method HITS to become FALSE ALARMS.

dev_hit_window = {
beg = -24;
end = 24;

}

The dev_hit_window entry defines a time window, in hours, relative to the forecast genesis time. The Best
track genesis event must occur within this time window for the pair to be counted as a contingency table
HIT for the development scoring method. Tightening this window may cause development method HITS to
become FALSE ALARMS.

418 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

ops_hit_window = {
beg = 0;
end = 48;

}

The ops_hit_window entry defines a time window, in hours, relative to the Best track genesis time. The
model initialization time for the forecast genesis event must occur within this time window for the pairs to
be counted as a contingency table HIT for the operationl scoring method. Otherwise, the pair is counted as
a FALSE ALARM.

discard_init_post_genesis_flag = TRUE;

The discard_init_post_genesis_flag entry is a boolean which indicates whether or not forecast genesis
events from model intializations occurring at or after the matching Best track genesis time should be dis-
carded. If true, those cases are not scored in the contingency table. If false, they are included in the counts.

dev_method_flag = TRUE;
ops_method_flag = TRUE;

The dev_method_flag and ops_method_flag entries are booleans which indicate whether the development
and operational scoring methods should be applied and written to the output. At least one of these flags
must be set to true.

nc_pairs_flag = {
latlon = TRUE;
fcst_genesis = TRUE;
fcst_tracks = TRUE;
fcst_fy_oy = TRUE;
fcst_fy_on = TRUE;
best_genesis = TRUE;
best_tracks = TRUE;
best_fy_oy = TRUE;
best_fn_oy = TRUE;

}

The nc_pairs_flag entry is a dictionary of booleans indicating which fields should be written to the NetCDF
genesis pairs output file. Each type of output is enabled by setting it to TRUE and disabled by setting
it to FALSE. The latlon option writes the latitude and longitude values of the output grid. The remain-
ing options write a count of the number of points occuring within each grid cell. The fcst_genesis
and best_genesis options write counts of the forecast and Best track genesis locations. The fcst_track
and best_track options write counts of the full set of track point locations, which can be refined by the
valid_minus_genesis_diff_thresh option, described below. The fcst_fy_oy and fcst_fy_on options write
counts for the locations of forecast genesis event HITS and FALSE ALARMS. The best_fy_oy and best_fn_oy
options write counts for the locations of Best track genesis event HITS and MISSES. Note that since matching
forecast and Best track genesis events may occur in different grid cells, their counts are reported separately.

26.3. Practical information 419

MET User’s Guide, version 11.1.0-beta2

valid_minus_genesis_diff_thresh = NA;

The valid_minus_genesis_diff_thresh is a threshold which affects the counts in the NetCDF pairs output
file. The fcst_tracks and best_tracks options, described above, turn on counts for the forecast and Best track
points. This option defines which of those track points should be counted by thresholding the track point
valid time minus genesis time difference. If set to NA, the default threshold which always evaluates to
true, all track points will be counted. Setting <=0 would count the genesis point and all track points prior.
Setting >0 would count all points after genesis. And setting >=-12||<=12 would could all points within
12 hours of the genesis time.

best_unique_flag = TRUE;

The best_unique_flag entry is a boolean which affects the counts in the NetCDF pairs output file. If true,
the Best track HIT and MISS locations are counted for each genesis pair. If false, each Best track genesis
event is counted only once. If it is a HIT in at least one genesis pair, it is counted as a HIT in the output.
Otherwise, it is counted as a MISS.

basin_file = "MET_BASE/tc_data/basin_global_tenth_degree.nc";

The basin_file entry defines the path to the NetCDF basin data file that is included with MET. When a Best
track storm moves from one basin to another, the Best track dataset can include two tracks for the same
storm, one for each basin. However, both tracks have the same genesis point. When this occurs, this basin
data file is read and used to determine the basin in which genesis actually occurred. The corresponding Best
track is retained and the other is discarded.

nc_pairs_grid = "G001";

The nc_pairs_grid entry is a string which defines the grid to be used for the NetCDF genesis pairs output
file. It can be specified as a named grid, the path to a gridded data file, or a grid specification string.

prob_genesis_thresh = ==0.25;

The prob_genesis_thresh entry defines the probability thresholds used to create the output Nx2 con-
tingency table when verifying edeck probability of genesis forecasts and probabilistic shapefile warning
areas. The default is probability bins of width 0.25. These probabilities may be specified as a list
(>0.00,>0.25,>0.50,>0.75,>1.00) or using shorthand notation (==0.25) for bins of equal width.

420 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

ci_alpha = 0.05;
output_flag = {

fho = BOTH;
ctc = BOTH;
cts = BOTH;
pct = NONE;
pstd = NONE;
pjc = NONE;
prc = NONE;
genmpr = NONE;

}
dland_file = "MET_BASE/tc_data/dland_global_tenth_degree.nc";
version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section 5.
TC-Gen writes output for 2x2 contingency tables to the FHO, CTC, and CTS line types when verifying
deterministic genesis forecasts specified using the -track command line option. TC-Gen writes output for Nx2
probabilistic contingency tables to the PCT, PSTD, PJC, and PRC line types when verifying the probability
of genesis forecasts specified using the -edeck command line option and probabilistic shapefiles using the
-shape command line option. Note that the genmpr line type is specific to TC-Gen and describes individual
genesis matched pairs.

26.3.3 tc_gen output

TC-Gen produces output in STAT and, optionally, ASCII and NetCDF formats. The ASCII output duplicates
the STAT output but has the data organized by line type. The output files are created based on the -
out command line argument. The default output base name, ./tc_gen writes output files in the current
working directory named tc_gen.stat and, optionally, tc_gen_pairs.nc and tc_gen_{TYPE}.txt for each of
the supported output line types. These output files can easily be redirected to another location using the
-out command line option. The format of the STAT and ASCII output of the TC-Gen tool matches the output
of other MET tools with the exception of the genesis matched pair line type. Please refer to the tables in
Section 11.3.3 for a description of the common output line types. The genesis matched pair line type and
NetCDF output file are described below.

26.3. Practical information 421

MET User’s Guide, version 11.1.0-beta2

Table 26.1: Header information for each file tc-gen outputs

HEADER
Column
Number

Header Column
Name

Description

1 VERSION Version number
2 MODEL Current ATCF Technique name
3 DESC User provided text string describing the “filter” options
4 FCST_LEAD Forecast lead time in HHMMSS format
5 FCST_VALID_BEG Minimum forecast valid time in YYYYMMDD_HHMMSS format
6 FCST_VALID_END Maximum forecast valid time in YYYYMMDD_HHMMSS format
7 OBS_LEAD Does not apply and is set to NA
8 OBS_VALID_BEG Minimum Best track valid time in YYYYMMDD_HHMMSS format
9 OBS_VALID_END Maximum Best track valid time in YYYYMMDD_HHMMSS format
10 FCST_VAR Genesis methodology (GENESIS_DEV, GENESIS_OPS,

PROB_GENESIS, or GENESIS_SHAPE)
11 FCST_UNITS Does not apply and is set to NA
12 FCST_LEV Does not apply and is set to NA
13 OBS_VAR Genesis methodology (GENESIS_DEV, GENESIS_OPS,

PROB_GENESIS, or GENESIS_SHAPE)
14 OBS_UNITS Does not apply and is set to NA
15 OBS_LEV Does not apply and is set to NA
16 OBTYPE Verifying Best track technique name
17 VX_MASK Verifying masking region
18 INTERP_MTHD Does not apply and is set to NA
19 INTERP_PNTS Does not apply and is set to NA
20 FCST_THRESH Does not apply and is set to NA
21 OBS_THRESH Does not apply and is set to NA
22 COV_THRESH Does not apply and is set to NA
23 ALPHA Error percent value used in confidence intervals
24 LINE_TYPE Various line type options, refer to Section 11.3.3 and the tables below.

422 Chapter 26. TC-Gen Tool

MET User’s Guide, version 11.1.0-beta2

Table 26.2: Format information for GENMPR (Genesis
Matched Pairs) output line type

GENMPR
OUTPUT
FORMAT
Column Num-
ber

GENMPR Column
Name

Description

5, 6 FCST_VALID_BEG,
FCST_VALID_END

Forecast genesis time in YYYYMMDD_HHMMSS format

8, 9 OBS_VALID_BEG,
OBS_VALID_END

Best track genesis time in YYYYMMDD_HHMMSS format

24 GENMPR Genesis Matched Pairs line type
25 TOTAL Total number of genesis pairs
26 INDEX Index for the current matched pair
27 STORM_ID BBCCYYYY designation of storm (basin, cyclone number, and year)
28 PROB_LEAD Lead time in HHH format for the predicted probability of genesis

(only for -edeck inputs)
29 PROB_VAL Predicted probability of genesis (only for -edeck inputs)
30 AGEN_INIT Forecast initialization time
31 AGEN_FHR Forecast hour of genesis event
32 AGEN_LAT Latitude position of the forecast genesis event
33 AGEN_LON Longitude position of the forecast genesis event
34 AGEN_DLAND Forecast genesis event distance to land (nm)
35 BGEN_LAT Latitude position of the verifying Best track genesis event
36 BGEN_LON Longitude position of the verifying Best track genesis event
37 BGEN_DLAND Best track genesis event distance to land (nm)
38 GEN_DIST Distance between the forecast and Best track genesis events (km)

(only for -track inputs)
39 GEN_TDIFF Forecast minus Best track genesis time in HHMMSS format (only

for -track inputs)
40 INIT_TDIFF Best track genesis minus forecast initialization time in HHMMSS

format (only for -track inputs)
41 DEV_CAT Category for the development methodology (FYOY, FYON, FNOY,

or DISCARD) (only for -track inputs)
42 OPS_CAT Category for the operational methodology (FYOY, FYON, FNOY, or

DISCARD for -track inputs and FYOY or FYON for -edeck inputs)

26.3. Practical information 423

MET User’s Guide, version 11.1.0-beta2

Table 26.3: A selection of variables that can appear in the
NetCDF matched pair output which can be controlled by the
nc_pairs_flag configuration option.

tc_gen NETCDF
VARIABLES
NetCDF Variable Di-

men-
sion

Description

DESC_MODEL_GENESISlat,
lon

For each filter entry (DESC) and forecast ATCF ID (MODEL), count the number
of forecast genesis events within each grid box.

DESC_MODEL_TRACKSlat,
lon

For each filter entry (DESC) and forecast ATCF ID (MODEL), count the number
of track points within each grid box.

DESC_BEST_GENESISlat,
lon

For each filter entry (DESC), count the number of Best track genesis events
within each grid box.

DESC_BEST_GENESISlat,
lon

For each filter entry (DESC), count the number of Best track points within each
grid box.

DESC_MODEL_[DEV|OPS]_FY_OYlat,
lon

For each filter entry (DESC) and forecast ATCF ID (MODEL), count the number
of forecast genesis events classified as hits by the development (DEV) or oper-
ational (OPS) methodology.

DESC_MODEL_[DEV|OPS]_FY_ONlat,
lon

For each filter entry (DESC) and forecast ATCF ID (MODEL), count the number
of forecast genesis events classified as false alarms by the development (DEV)
or operational (OPS) methodology.

DESC_MODEL_BEST_[DEV|OPS]_FY_OYlat,
lon

For each filter entry (DESC) and forecast ATCF ID (MODEL), count the number
of Best track genesis events classified as hits by the development (DEV) or
operational (OPS) methodology.

DESC_MODEL_BEST_[DEV|OPS]_FN_OYlat,
lon

For each filter entry (DESC) and forecast ATCF ID (MODEL), count the number
of Best track genesis events classified as misses by the development (DEV) or
operational (OPS) methodology.

Like all STAT output, the output of TC-Gen may be further processed using the Stat-Analysis tool, described
in Section 16.

424 Chapter 26. TC-Gen Tool

Chapter 27

TC-RMW Tool

27.1 Introduction

The TC-RMW tool regrids tropical cyclone model data onto a moving range-azimuth grid centered on points
along the storm track provided in ATCF format, most likely the adeck generated from the file. The radial
grid spacing may be set as a factor of the radius of maximum winds (RMW). If wind fields are specified in
the configuration file the radial and tangential wind components will be computed. Any regridding method
available in MET can be used to interpolate data on the model output grid to the specified range-azimuth
grid. The regridding will be done separately on each vertical level. The model data files must coincide with
track points in a user provided ATCF formatted track file.

27.2 Practical information

27.2.1 tc_rmw usage

The following sections describe the usage statement, required arguments, and optional arguments for
tc_rmw.

Usage: tc_rmw
-data file_1 ... file_n | data_file_list
-deck file
-config file
-out file
[-log file]
[-v level]

tc_rmw has required arguments and can accept several optional arguments.

425

MET User’s Guide, version 11.1.0-beta2

27.2.1.1 Required arguments for tc_rmw

1. The -data file_1 . . . file_n | data_file_list options specify the gridded data files or an ASCII file
containing a list of files to be used.

2. The -deck source argument is the ATCF format data source.

3. The -config file argument is the configuration file to be used. The contents of the configuration file
are discussed below.

4. The -out argument is the NetCDF output file to be written.

27.2.1.2 Optional arguments for tc_rmw

5. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no logfile.

6. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

27.2.2 tc_rmw configuration file

The default configuration file for the TC-RMW tool named TCRMWConfig_default can be found in the
installed share/met/config/ directory. It is encouraged for users to copy these default files before modifying
their contents. The contents of the configuration file are described in the subsections below.

model = "GFS";
censor_thresh = [];
censor_val = [];
data = {

field = [
{

name = "PRMSL";
level = ["L0"];

},
{

name = "TMP";
level = ["P1000", "P500"];

},
{

name = "UGRD";
level = ["P1000", "P500"];

},
{

(continues on next page)

426 Chapter 27. TC-RMW Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

name = "VGRD";
level = ["P1000", "P500"];

}
];

}
regrid = { ... }

The configuration options listed above are common to many MET tools and are described in Section 5. The
name and level entries in the data dictionary define the data to be processed. The regrid dictionary defines
if and how regridding will be performed.

n_range = 100;

The n_range parameter is the number of equally spaced range intervals in the range-azimuth grid.

n_azimuth = 180;

The n_azimuth parameter is the number of equally spaced azimuth intervals in the range-azimuth grid. The
azimuthal grid spacing is 360 / n_azimuth degrees.

max_range_km = 100.0;

The max_range_km parameter specifies the maximum range of the range-azimuth grid, in kilometers. If
this parameter is specified and not rmw_scale, the radial grid spacing will be max_range_km / n_range.

delta_range_km = 10.0;

The delta_range_km parameter specifies the spacing of the range rings, in kilometers.

rmw_scale = 0.2;

The rmw_scale parameter overrides the max_range_km parameter. When this is set the radial grid spacing
will be rmw_scale in units of the RMW, which varies along the storm track.

compute_tangential_and_radial_winds = TRUE;

The compute_tangential_and_radial_winds parameter is a flag controlling whether a conversion from U/V
to Tangential/Radial winds is done or not. If set to TRUE, additional parameters are used, otherwise they
are not.

27.2. Practical information 427

MET User’s Guide, version 11.1.0-beta2

u_wind_field_name = "UGRD";
v_wind_field_name = "VGRD";

The u_wind_field_name and v_wind_field_name parameters identify which input data to use in converting
to tangential/radial winds. The parameters are used only if compute_tangential_and_radial_winds is set
to TRUE.

tangential_velocity_field_name = "VT";
tangential_velocity_long_field_name = "Tangential Velocity";

The tangential_velocity_field_name and tangential_velocity_long_field_name parameters define the
field names to give the output tangential velocity grid in the netCDF output file. The parameters are used
only if compute_tangential_and_radial_winds is set to TRUE.

radial_velocity_field_name = "VT";
radial_velocity_long_field_name = "Radial Velocity";

The radial_velocity_field_name and radial_velocity_long_field_name parameters define the field names
to give the output radial velocity grid in the netCDF output file. The parameters are used only if com-
pute_radial_and_radial_winds is set to TRUE.

27.2.3 tc_rmw output file

The NetCDF output file contains the following dimensions:

1. range - the radial dimension of the range-azimuth grid

2. azimuth - the azimuthal dimension of the range-azimuth grid

3. pressure - if any pressure levels are specified in the data variable list, they will be sorted and combined
into a 3D NetCDF variable, which pressure as the vertical dimension and range and azimuth as the
horizontal dimensions

4. track_point - the track points corresponding to the model output valid times

For each data variable specified in the data variable list, a corresponding NetCDF variable will be created
with the same name and units.

428 Chapter 27. TC-RMW Tool

Chapter 28

RMW-Analysis Tool

28.1 Introduction

The RMW-Analysis tool analyzes a set of output files generated by the TC-RMW tool. For each grid cell
it aggregates variable statistics across the set and across the track points of the tc_rmw output files. The
statistics are mean, standard deviation, minimum and maximum. Note that tc_rmw should be set to use the
same scale factor of the radius of maximum winds (RMW) as the unit of range for its range-azimuth grid.
The specified data variables on the range-azimuth-vertical grid then share a common range scale of RMW
before aggregation by rmw_analysis.

28.2 Practical information

28.2.1 rmw_analysis usage

The following sections describe the usage statement, required arguments, and optional arguments for
rmw_analysis.

Usage: rmw_analysis
-data file_1 ... file_n | data_file_list
-config file
-out file
[-log file]
[-v level]

rmw_analysis has required arguments and can accept several optional arguments.

429

MET User’s Guide, version 11.1.0-beta2

28.2.1.1 Required arguments for rmw_analysis

1. The -data file_1 . . . file_n | data_file_list argument is the NetCDF output of TC-RMW to be processed
or an ASCII file containing a list of files.

2. The -config file argument is the RMWAnalysisConfig to be used. The contents of the configuration
file are discussed below.

3. The -out file argument is the NetCDF output file to be written.

28.2.1.2 Optional arguments for rmw_analysis

4. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no logfile.

5. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while
increasing the verbosity above 1 will increase the amount of logging.

28.2.2 rmw_analysis configuration file

The default configuration file for the RMW-Analysis tool named RMWAnalysisConfig_default can be found
in the installed share/met/config/ directory. It is encouraged for users to copy these default files before
modifying their contents. The contents of the configuration file are described in the subsections below.

model = "GFS";
data = {

level = [""];
field = [

{ name = "PRMSL"; },
{ name = "TMP"; }

];
}

The configuration options listed above are common to many MET tools and are described in Section 5.

basin = "";
storm_name = "";
storm_id = "";
cyclone = "";
init_beg = "";
init_end = "";
valid_beg = "";
valid_end = "";

(continues on next page)

430 Chapter 28. RMW-Analysis Tool

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

init_mask = "";
valid_mask = "";
version = "VN.N";

The track filter options available in rmw_analysis and listed above are described in Section 5.

28.2.3 rmw_analysis output file

The NetCDF output file will inherit the spatial grid from the first tc_rmw output file in the output file list. All
tc_rmw files in this list must have the same grid dimension sizes. A NetCDF output error will result if that
is not the case. For each data variable specified in the config file, four corresponding NetCDF variables will
be written, e.g. TMP_mean, TMP_stdev, TMP_min, TMP_max. No track point dimension is retained in the
rmw_analysis output.

28.2. Practical information 431

MET User’s Guide, version 11.1.0-beta2

432 Chapter 28. RMW-Analysis Tool

Chapter 29

Plotting and Graphics Support

29.1 Plotting Utilities

This section describes how to check your data files using plotting utilities. Point observations can be plotted
using the Plot-Point-Obs utility. A single model level can be plotted using the plot_data_plane utility. For
object based evaluations, the MODE objects can be plotted using plot_mode_field. Occasionally, a post-
processing or timing error can lead to errors in MET. These tools can assist the user by showing the data to
be verified to ensure that times and locations match up as expected.

29.1.1 plot_point_obs usage

The usage statement for the Plot-Point-Obs utility is shown below:

Usage: plot_point_obs
nc_file
ps_file
[-config config_file]
[-point_obs file]
[-title string]
[-plot_grid name]
[-gc code] or [-obs_var name]
[-msg_typ name]
[-dotsize val]
[-log file]
[-v level]

plot_point_obs has two required arguments and can take optional ones.

433

MET User’s Guide, version 11.1.0-beta2

29.1.1.1 Required arguments for plot_point_obs

1. The nc_file argument indicates the name of the point observation file to be plotted. This file is the
output from one of the point pre-processing tools, such as pb2nc. Python embedding for point obser-
vations is also supported, as described in Section 36.4.2.

2. The ps_file argument indicates the name given to the output file containing the plot.

29.1.1.2 Optional arguments for plot_point_obs

3. The -config config_file option specifies the configuration file to be used. The contents of the optional
configuration file are discussed below.

4. The -point_obs file option is used to pass additional NetCDF point observation files to be plotted.

5. The -plot_grid name option defines the grid for plotting as a named grid, the path to a gridded data
file, or an explicit grid specification string. This overrides the default global plotting grid. If configuring
the tool to plot a base image, the path to the input gridded data file should be specified here.

6. The -title string option specifies the plot title string.

7. The -gc code and -obs_var name options specify observation types to be plotted. These overrides the
corresponding configuration file entries.

8. The -msg_typ name option specifies the message type to be plotted. This overrides the corresponding
configuration file entry.

9. The -dotsize val option sets the dot size. This overrides the corresponding configuration file entry.

10. The -log file option directs output and errors to the specified log file.

11. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

An example of the plot_point_obs calling sequence is shown below:

plot_point_obs sample_pb.nc sample_data.ps

In this example, the Plot-Point-Obs tool will process the input sample_pb.nc file and write a postscript file
containing a plot to a file named sample_pb.ps.

An equivalent command using python embedding for point observations is shown below. Note that the entire
python command is enclosed in single quotes to prevent embedded whitespace for causing parsing errors:

plot_point_obs 'PYTHON_NUMPY=MET_BASE/python/examples/read_met_point_obs.py sample_pb.nc'␣
→˓sample_data.ps

Please see section Section 36.4.2 for more details about Python embedding in MET.

434 Chapter 29. Plotting and Graphics Support

MET User’s Guide, version 11.1.0-beta2

29.1.2 plot_point_obs configuration file

The default configuration file for the Plot-Point-Obs tool named PlotPointObsConfig_default can be found
in the installed share/met/config directory. The contents of the configuration file are described in the sub-
sections below.

Note that environment variables may be used when editing configuration files, as described in the Section
5.1.1.

tmp_dir = "/tmp";
version = "VN.N";

The configuration options listed above are common to multiple MET tools and are described in Section 5.

grid_data = {

field = [];

regrid = {
to_grid = NONE;
method = NEAREST;
width = 1;
vld_thresh = 0.5;
shape = SQUARE;

}

grid_plot_info = {
color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;
colorbar_flag = TRUE;

}
}

The grid_data dictionary defines a gridded field of data to be plotted as a base image prior to plotting point
locations on top of it. The data to be plotted is specified by the field array. If field is empty, no base image
will be plotted. If field has length one, the requested data will be read from the input file specified by the
-plot_grid command line argument.

The to_grid entry in the regrid dictionary specifies if and how the requested gridded data should be regrid-
ded prior to plotting. Please see Section 5 for a description of the regrid dictionary options.

The grid_plot_info dictionary inside grid_data specifies the options for for plotting the gridded data. The
options within grid_plot_info are described in Section 5.

29.1. Plotting Utilities 435

MET User’s Guide, version 11.1.0-beta2

point_data = [
{ fill_color = [255, 0, 0]; }

];

The point_data entry is an array of dictionaries. Each dictionary may include a list of filtering, data process-
ing, and plotting options, described below. For each input point observation, the tool checks the point_data
filtering options in the order specified. The point information is added to the first matching array entry. The
default entry simply specifies that all points be plotted red.

msg_typ = [];
sid_inc = [];
sid_exc = [];
obs_var = [];
obs_quality = [];

The options listed above define filtering criteria for the input point observation strings. If empty, no filtering
logic is applied. If a comma-separated list of strings is provided, only those observations meeting all of
the criteria are included. The msg_typ entry specifies the message type. The sid_inc and sid_exc entries
explicitly specify station id’s to be included or excluded. The obs_var entry specifies the observation variable
names, and obs_quality specifies quality control strings.

obs_gc = [];

When using older point observation files which have GRIB codes, the obs_gc entry specifies a list of integer
GRIB codes to be included.

valid_beg = "";
valid_end = "";

The valid_beg and valid_end options are time strings which specify a range of dates to be included. When
left to their default empty strings no time filtering is applied.

lat_thresh = NA;
lon_thresh = NA;
elv_thresh = NA;
hgt_thresh = NA;
prs_thresh = NA;
obs_thresh = NA;

The options listed above define filtering thresholds for the input point observation values. The default
NA thresholds always evaluate to true and therefore apply no filtering. The lat_thresh and lon_thresh
thresholds filter the latitude and longitude of the point observations, respectively. The elv_thresh threshold

436 Chapter 29. Plotting and Graphics Support

MET User’s Guide, version 11.1.0-beta2

filters by the station elevation. The hgt_thresh and prs_thresh thresholds filter by the observation height
and pressure level. The obs_thresh threshold filters by the observation value.

convert(x) = x;
censor_thresh = [];
censor_val = [];

The convert(x) function, censor_thresh option, and censor_val option may be specified separately for
each point_data array entry to transform the observation values prior to plotting. These options are further
described in Section 5.

dotsize(x) = 1.0;

The dotsize(x) function defines the size of the circle to be plotted as a function of the observation value.
The default setting shown above defines the dot size as a constant value.

line_color = [];
line_width = 1;

The line_color and line_width entries define the color and thickness of the outline for each circle plotted.
When line_color is left as an empty array, no outline is drawn. Otherwise, line_color should be specified
using 3 intergers between 0 and 255 to define the red, green, and blue components of the color.

fill_color = [];
fill_plot_info = { // Overrides fill_color
flag = FALSE;
color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;
colorbar_flag = TRUE;

}

The circles are filled in based on the setting of the fill_color and fill_plot_info entries. As described above
for line_color, if fill_color is empty, the points are not filled in. Otherwise, fill_color must be specified using
3 integers between 0 and 255. If fill_plot_info.flag is set to true, then its settings override fill_color. The
fill_plot_info dictionary defines a colortable which is used to determine the color to be used based on the
observation value.

Users are encouraged to define as many point_data array entries as needed to filter and plot the input
observations in the way they would like. Each point observation is plotted using the options specified in
the first matching array entry. Note that the filtering, processing, and plotting options specified inside each
point_data array entry take precedence over ones specified at the higher level of configuration file context.

For each observation, this tool stores the observation latitude, longitude, and value. However, unless the
dotsize(x) function is not constant or the fill_plot_info.flag entry is set to true, the observation value

29.1. Plotting Utilities 437

MET User’s Guide, version 11.1.0-beta2

is simply set to a flag value. For each point_data array entry, the tool stores and plots only the unique
combination of observation latitude, longitude, and value. Therefore multiple obsevations at the same
location will typically be plotted as a single circle.

29.1.3 plot_data_plane usage

The usage statement for the plot_data_plane utility is shown below:

Usage: plot_data_plane
input_filename
output_filename
field_string
[-color_table color_table_name]
[-plot_range min max]
[-title title_string]
[-log file]
[-v level]

plot_data_plane has two required arguments and can take optional ones.

29.1.3.1 Required arguments for plot_data_plane

1. The input_filename argument indicates the name of the gridded data file to be plotted.

2. The output_filename argument indicates the name given to the output PostScript file containing the
plot.

3. The field_string argument contains information about the field and level to be plotted.

29.1.3.2 Optional arguments for plot_data_plane

4. The -color_table color_table_name overrides the default color table
(MET_BASE/colortables/met_default.ctable)

5. The -plot_range min max sets the minimum and maximum values to plot.

6. The -title title_string sets the title text for the plot.

7. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no logfile.

8. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity will increase the amount of logging.

An example of the plot_data_plane calling sequence is shown below:

438 Chapter 29. Plotting and Graphics Support

MET User’s Guide, version 11.1.0-beta2

plot_data_plane test.grb test.ps 'name="TMP"; level="Z2";'

A second example of the plot_data_plane calling sequence is shown below:

plot_data_plane test.grb2 test.ps 'name="DSWRF"; level="L0";' -v 4

In the first example, the Plot-Data-Plane tool will process the input test.grb file and write a PostScript image
to a file named test.ps showing temperature at 2 meters. The second example plots downward shortwave
radiation flux at the surface. The second example is run at verbosity level 4 so that the user can inspect the
output and make sure its plotting the intended record.

29.1.4 plot_mode_field usage

The usage statement for the plot_mode_field utility is shown below:

Usage: plot_mode_field
mode_nc_file_list
-raw | -simple | -cluster
-obs | -fcst
-config file
[-log file]
[-v level]

plot_mode_field has four required arguments and can take optional ones.

29.1.4.1 Required arguments for plot_mode_field

1. The mode_nc_file_list specifies the MODE output files to be used for plotting.

2. The -raw | -simple | -cluster argument indicates the types of fields to be plotted. Exactly one must
be specified. For details about the types of objects, see the section in this document on MODE.

3. The -obs | -fcst option specifies whether to plot the observed or forecast field from the MODE output
files. Exactly one must be specified.

4. The -config file specifies the configuration file to use for specification of plotting options.

29.1.4.2 Optional arguments for plot_mode_field

5. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no logfile.

6. The -v level option indicates the desired level of verbosity. The value of “level” will override the
default. Setting the verbosity to 0 will make the tool run with no log messages, while increasing the
verbosity will increase the amount of logging.

An example of the plot_mode_field calling sequence is shown below:

29.1. Plotting Utilities 439

MET User’s Guide, version 11.1.0-beta2

plot_mode_field -simple -obs -config \
plotMODEconfig mode_120000L_20050807_120000V_000000A_obj.nc

In this example, the plot_mode_field tool will plot simple objects from an observed precipitation field
using parameters from the configuration file plotMODEconfig and objects from the MODE output file
mode_120000L_20050807_120000V_000000A_obj.nc. An example plot showing twelve simple observed
precipitation objects is shown below.

Figure 29.1: Simple observed precipitation objects

Once MET has been applied to forecast and observed fields (or observing locations), and the output has been
sorted through the Analysis Tool, numerous graphical and summary analyses can be performed depending
on a specific user’s needs. Here we give some examples of graphics and summary scores that one might
wish to compute with the given output of MET and MET-TC. Any computing language could be used for this
stage; some scripts will be provided on the MET users web page as examples to assist users.

440 Chapter 29. Plotting and Graphics Support

https://dtcenter.org/community-code/model-evaluation-tools-met

MET User’s Guide, version 11.1.0-beta2

29.2 Examples of plotting MET output

29.2.1 Grid-Stat tool examples

The plots in Figure 29.2 show time series of frequency bias and Gilbert Skill Score, stratified according to
time of day. This type of figure is particularly useful for diagnosing problems that are tied to the diurnal
cycle. In this case, two of the models (green dash-dotted and black dotted lines) show an especially high
Bias (near 3) during the afternoon (15-21 UTC; left panel), while the skill (GSS; right panel) appears to be
best for the models represented by the solid black line and green dashed lines in the morning (09-15 UTC).
Note that any judgment of skill based on GSS should be restricted to times when the Bias is close to one.

Figure 29.2: Time series of forecast area bias and Gilbert Skill Score for four model configurations (different
lines) stratified by time-of-day.

29.2.2 MODE tool examples

When using the MODE tool, it is possible to think of matched objects as hits and unmatched objects as
false alarms or misses depending on whether the unmatched object is from the forecast or observed field,
respectively. Because the objects can have greatly differing sizes, it is useful to weight the statistics by the
areas, which are given in the output as numbers of grid squares. When doing this, it is possible to have
different matched observed object areas from matched forecast object areas so that the number of hits will
be different depending on which is chosen to be a hit. When comparing multiple forecasts to the same
observed field, it is perhaps wise to always use the observed field for the hits so that there is consistency
for subsequent comparisons. Defining hits, misses and false alarms in this way allows one to compute many
traditional verification scores without the problem of small-scale discrepancies; the matched objects are
defined as being matched because they are “close” by the fuzzy logic criteria. Note that scores involving
the number of correct negatives may be more difficult to interpret as it is not clear how to define a correct
negative in this context. It is also important to evaluate the number and area attributes for these objects in
order to provide a more complete picture of how the forecast is performing.

Figure 29.3 gives an example of two traditional verification scores (Bias and CSI) along with bar plots
showing the total numbers of objects for the forecast and observed fields, as well as bar plots showing their

29.2. Examples of plotting MET output 441

MET User’s Guide, version 11.1.0-beta2

total areas. These data are from the same set of 13-km WRF model runs analyzed in Figure 29.3. The
model runs were initialized at 0 UTC and cover the period 15 July to 15 August 2005. For the forecast
evaluation, we compared 3-hour accumulated precipitation for lead times of 3-24 hours to Stage II radar-
gauge precipitation. Note that for the 3-hr lead time, indicated as the 0300 UTC valid time in Figure 29.2,
the Bias is significantly larger than the other lead times. This is evidenced by the fact that there are both a
larger number of forecast objects, and a larger area of forecast objects for this lead time, and only for this
lead time. Dashed lines show about 2 bootstrap standard deviations from the estimate.

Figure 29.3: Traditional verification scores applied to output of the MODE tool, computed by defining
matched observed objects to be hits, unmatched observed objects to be misses, and unmatched forecast
objects to be false alarms; weighted by object area. Bar plots show numbers (penultimate row) and areas
(bottom row) of observed and forecast objects, respectively.

In addition to the traditional scores, MODE output allows more information to be gleaned about forecast
performance. It is even useful when computing the traditional scores to understand how much the forecasts
are displaced in terms of both distance and direction. Figure 29.4, for example, shows circle histograms
for matched objects. The petals show the percentage of times the forecast object centroids are at a given
angle from the observed object centroids. In Figure 29.4 (top diagram) about 25% of the time the forecast
object centroids are west of the observed object centroids, whereas in Figure 29.4 (bottom diagram) there
is less bias in terms of the forecast objects’ centroid locations compared to those of the observed objects,
as evidenced by the petals’ relatively similar lengths, and their relatively even dispersion around the circle.
The colors on the petals represent the proportion of centroid distances within each colored bin along each
direction. For example, Figure 29.4 (top row) shows that among the forecast object centroids that are
located to the West of the observed object centroids, the greatest proportion of the separation distances
(between the observed and forecast object centroids) is greater than 20 grid squares.

442 Chapter 29. Plotting and Graphics Support

MET User’s Guide, version 11.1.0-beta2

Figure 29.4: Circle histograms showing object centroid angles and distances (see text for explanation).

29.2. Examples of plotting MET output 443

MET User’s Guide, version 11.1.0-beta2

29.2.3 TC-Stat tool example

There is a basic R script located in the MET installation, share/met/Rscripts/plot_tcmpr.R. The usage state-
ment with a short description of the options for plot_tcmpr.R can be obtained by typing: Rscript plot_tcmpr.R
with no additional arguments. The only required argument is the -lookin source, which is the path to the
TC-Pairs TCST output files. The R script reads directly from the TC-Pairs output, and calls TC-Stat directly
for filter jobs specified in the “-filter options” argument.

In order to run this script, the MET_INSTALL_DIR environment variable must be set to the MET installa-
tion directory and the MET_BASE environment variable must be set to the MET_INSTALL_DIR/share/met
directory. In addition, the Tc-Stat tool under MET_INSTALL_DIR/bin must be in your system path.

The supplied R script can generate a number of different plot types including boxplots, mean, median, rank,
and relative performance. Pairwise differences can be plotted for the boxplots, mean, and median. Normal
confidence intervals are applied to all figures unless the no_ci option is set to TRUE. Below are two example
plots generated from the tools.

Figure 29.5: Example boxplot from plot_tcmpr.R. Track error distributions by lead time for three operational
models GFNI, GHMI, HFWI.

444 Chapter 29. Plotting and Graphics Support

MET User’s Guide, version 11.1.0-beta2

Figure 29.6: Example mean intensity error with confidence intervals at 95% from plot_tcmpr.R. Raw inten-
sity error by lead time for a homogeneous comparison of two operational models GHMI, HWFI.

29.2. Examples of plotting MET output 445

MET User’s Guide, version 11.1.0-beta2

446 Chapter 29. Plotting and Graphics Support

Chapter 30

References

Aberson, S.D., 1998: Five-day Tropical cyclone track forecasts in the North
Atlantic Basin. Weather and Forecasting, 13, 1005-1015.

Ahijevych, D., E. Gilleland, B.G. Brown, and E.E. Ebert, 2009: Application of
spatial verification methods to idealized and NWP-gridded precipitation forecasts.
Weather and Forecasting, 24 (6), 1485 - 1497, doi: 10.1175/2009WAF2222298.1.

Barker, T. W., 1991: The relationship between spread and forecast error in
extended-range forecasts. Journal of Climate, 4, 733-742.

Bradley, A.A., S.S. Schwartz, and T. Hashino, 2008: Sampling Uncertainty
and Confidence Intervals for the Brier Score and Brier Skill Score.
Weather and Forecasting, 23, 992-1006.

Brill, K. F., and F. Mesinger, 2009: Applying a general analytic method
for assessing bias sensitivity to bias-adjusted threat and equitable
threat scores. Weather and Forecasting, 24, 1748-1754.

447

MET User’s Guide, version 11.1.0-beta2

Brown, B.G., R. Bullock, J. Halley Gotway, D. Ahijevych, C. Davis,
E. Gilleland, and L. Holland, 2007: Application of the MODE object-based
verification tool for the evaluation of model precipitation fields.
AMS 22nd Conference on Weather Analysis and Forecasting and 18th
Conference on Numerical Weather Prediction, 25-29 June, Park City, Utah,
American Meteorological Society (Boston), Available at
http://ams.confex.com/ams/pdfpapers/124856.pdf.

Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread
and skill distributions of the ECMWF ensemble prediction system. Monthly
Weather Review,125, 99-119.

Bullock, R., T. Fowler, and B. Brown, 2016: Method for Object-Based
Diagnostic Evaluation. NCAR Technical Note NCAR/TN-532+STR, 66 pp.

Candille, G., and O. Talagrand, 2008: Impact of observational error on the
validation of ensemble prediction systems. Quarterly Journal of the Royal
Meteorological Society 134: 959-971.

Casati, B., G. Ross, and D. Stephenson, 2004: A new intensity-scale approach
for the verification of spatial precipitation forecasts. Meteorological
Applications 11, 141-154.

448 Chapter 30. References

http://ams.confex.com/ams/pdfpapers/124856.pdf

MET User’s Guide, version 11.1.0-beta2

Davis, C.A., B.G. Brown, and R.G. Bullock, 2006a: Object-based verification
of precipitation forecasts, Part I: Methodology and application to
mesoscale rain areas. Monthly Weather Review, 134, 1772-1784.

Davis, C.A., B.G. Brown, and R.G. Bullock, 2006b: Object-based verification
of precipitation forecasts, Part II: Application to convective rain systems.
Monthly Weather Review, 134, 1785-1795.

Dawid, A.P., 1984: Statistical theory: The prequential approach. Journal of
the Royal Statistical Society A147, 278-292.

Ebert, E.E., 2008: Fuzzy verification of high-resolution gridded forecasts:
a review and proposed framework. Meteorological Applications, 15, 51-64.

Eckel, F. A., M.S. Allen, M. C. Sittel, 2012: Estimation of Ambiguity in
Ensemble Forecasts. Weather Forecasting, 27, 50-69.
doi: http://dx.doi.org/10.1175/WAF-D-11-00015.1

Efron, B. 2007: Correlation and large-scale significance testing. Journal
of the American Statistical Association,* 102(477), 93-103.

Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories.
J. Appl. Meteor., 8, 985-987, 10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

449

http://dx.doi.org/10.1175/WAF-D-11-00015.1

MET User’s Guide, version 11.1.0-beta2

Gilleland, E., 2010: Confidence intervals for forecast verification.
NCAR Technical Note NCAR/TN-479+STR, 71pp.

Gilleland, E., 2017: A new characterization in the spatial verification
framework for false alarms, misses, and overall patterns.
Weather and Forecasting, 32 (1), 187 - 198, doi: 10.1175/WAF-D-16-0134.1.

Gilleland, E., 2020: Bootstrap methods for statistical inference.
Part I: Comparative forecast verification for continuous variables.
Journal of Atmospheric and Oceanic Technology, 37 (11), 2117 - 2134,
doi: 10.1175/JTECH-D-20-0069.1.

Gilleland, E., 2020: Bootstrap methods for statistical inference.
Part II: Extreme-value analysis. Journal of Atmospheric and Oceanic
Technology, 37 (11), 2135 - 2144, doi: 10.1175/JTECH-D-20-0070.1.

Gilleland, E., 2021: Novel measures for summarizing high-resolution forecast
performance. Advances in Statistical Climatology, Meteorology and Oceanography,
7 (1), 13 - 34, doi: 10.5194/ascmo-7-13-2021.

Gneiting, T., A. Westveld, A. Raferty, and T. Goldman, 2004: Calibrated
Probabilistic Forecasting Using Ensemble Model Output Statistics and
Minimum CRPS Estimation. Technical Report no. 449, Department of
Statistics, University of Washington. Available at
http://www.stat.washington.edu/www/research/reports/

450 Chapter 30. References

http://www.stat.washington.edu/www/research/reports/

MET User’s Guide, version 11.1.0-beta2

Haiden, T., M.J. Rodwell, D.S. Richardson, A. Okagaki, T. Robinson, T. Hewson, 2012:
Intercomparison of Global Model Precipitation Forecast Skill in 2010/11
Using the SEEPS Score. Monthly Weather Review, 140, 2720-2733.
https://doi.org/10.1175/MWR-D-11-00301.1

Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble
forecasts. Monthly Weather Review, 129, 550-560.

Hersbach, H., 2000: Decomposition of the Continuous Ranked Probability Score
for Ensemble Prediction Systems. Weather and Forecasting, 15, 559-570.

Jolliffe, I.T., and D.B. Stephenson, 2012: Forecast verification. A
practitioner’s guide in atmospheric science. Wiley and Sons Ltd, 240 pp.

Knaff, J.A., M. DeMaria, C.R. Sampson, and J.M. Gross, 2003: Statistical,
Five-Day Tropical Cyclone Intensity Forecasts Derived from Climatology
and Persistence. Weather and Forecasting, Vol. 18 Issue 2, p. 80-92.

Mason, S. J., 2004: On Using “Climatology” as a Reference Strategy
in the Brier and Ranked Probability Skill Scores. Monthly Weather Review,
132, 1891-1895.

Mason, S. J., 2008: Understanding forecast verification statistics.
Meteor. Appl., 15, 31-40, doi: 10.1002/met.51.

451

https://doi.org/10.1175/MWR-D-11-00301.1

MET User’s Guide, version 11.1.0-beta2

Mittermaier, M., 2014: A strategy for verifying near-convection-resolving
model forecasts at observing sites. Weather Forecasting, 29, 185-204.

Mood, A. M., F. A. Graybill and D. C. Boes, 1974: Introduction to the
Theory of Statistics, McGraw-Hill, 299-338.

Murphy, A.H., 1969: On the ranked probability score. Journal of Applied
Meteorology and Climatology, 8 (6), 988 - 989,
doi: 10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2.

Murphy, A.H., and R.L. Winkler, 1987: A general framework for forecast
verification. Monthly Weather Review, 115, 1330-1338.

North, R.C., M.P. Mittermaier, S.F. Milton, 2022. Using SEEPS with a
TRMM-derived Climatology to Assess Global NWP Precipitation Forecast Skill.
Monthly Weather Review, 150, 135-155.
https://doi.org/10.1175/MWR-D-20-0347.1

Ou, M. H., Charles, M., & Collins, D. C. 2016: Sensitivity of calibrated week-2
probabilistic forecast skill to reforecast sampling of the NCEP global
ensemble forecast system. Weather and Forecasting, 31(4), 1093-1107.

452 Chapter 30. References

https://doi.org/10.1175/MWR-D-20-0347.1

MET User’s Guide, version 11.1.0-beta2

Roberts, N.M., and H.W. Lean, 2008: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events.
Monthly Weather Review, 136, 78-97.

Rodwell, M.J., D.S. Richardson, T.D. Hewson and T. Haiden, 2010: A new equitable
score suitable for verifying precipitation in numerical weather prediction.
Quarterly Journal of the Royal Meteorological Society, 136: 1344-1463.
https://doi.org/10.1002/qj.656

Rodwell, M.J., T. Haiden, D.S. Richardson, 2011: Developments in Precipitation
Verification. ECMWF Newsletter Number 128.
https://www.ecmwf.int/node/14595

Saetra O., H. Hersbach, J-R Bidlot, D. Richardson, 2004: Effects of
observation errors on the statistics for ensemble spread and
reliability. Monthly Weather Review 132: 1487-1501.

Santos C. and A. Ghelli, 2012: Observational probability method to assess
ensemble precipitation forecasts. Quarterly Journal of the Royal
Meteorological Society 138: 209-221.

Schwartz C. and Sobash R., 2017: Generating Probabilistic Forecasts from
Convection-Allowing Ensembles Using Neighborhood Approaches: A Review
and Recommendations. Monthly Weather Review, 145, 3397-3418.

453

https://doi.org/10.1002/qj.656
https://www.ecmwf.int/node/14595

MET User’s Guide, version 11.1.0-beta2

Stephenson, D.B., 2000: Use of the “Odds Ratio” for diagnosing
forecast skill. Weather and Forecasting, 15, 221-232.

Stephenson, D.B., B. Casati, C.A.T. Ferro, and C.A. Wilson, 2008: The extreme
dependency score: A non-vanishing measure for forecasts of rare events.
Meteorological Applications 15, 41-50.

Tödter, J. and B. Ahrens, 2012: Generalization of the Ignorance Score:
Continuous ranked version and its decomposition. Monthly Weather Review,
140 (6), 2005 - 2017, doi: 10.1175/MWR-D-11-00266.1.

Weniger, M., F. Kapp, and P. Friederichs, 2016: Spatial Verification Using
Wavelet Transforms: A Review. Quarterly Journal of the Royal
Meteorological Society, 143, 120-136.

Wilks, D.S. 2010: Sampling distributions of the Brier score and Brier skill
score under serial dependence. Quarterly Journal of the Royal
Meteorological Society, 136, 2109-2118. doi:10.1002/qj.709

Wilks, D., 2011: Statistical methods in the atmospheric sciences.
Elsevier, San Diego.

454 Chapter 30. References

Chapter 31

Appendix A FAQs & How do I . . . ?

31.1 Frequently Asked Questions

31.1.1 File-IO

31.1.1.1 Q. How do I improve the speed of MET tools using Gen-Vx-Mask?

Answer

The main reason to run gen_vx_mask is to make the MET statistics tools (e.g. point_stat,
grid_stat, or ensemble_stat) run faster. The verification masking regions in those tools can be
specified as Lat/Lon polyline files or the NetCDF output of gen_vx_mask. However, determining
which grid points are inside/outside a polyline region can be slow if the polyline contains many
points or the grid is dense. Running gen_vx_mask once to create a binary mask is much more
efficient than recomputing the mask when each MET statistics tool is run. If the polyline only
contains a small number of points or the grid is sparse running gen_vx_mask first would only
save a second or two.

31.1.1.2 Q. How do I use map_data?

Answer

The MET repository includes several map data files. Users can modify which map datasets are
included in the plots created by modifying the configuration files for those tools. The default
map datasets are defined by the map_data dictionary in the ConfigMapData file.

map_data = {

line_color = [25, 25, 25]; // rgb triple values, 0-255
line_width = 0.5;
line_dash = "";

(continues on next page)

455

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

source = [
{ file_name = "MET_BASE/map/country_data"; },
{ file_name = "MET_BASE/map/usa_state_data"; },
{ file_name = "MET_BASE/map/major_lakes_data"; }

];
}

Users can modify the ConfigMapData contents prior to running ‘make install’. This will
change the default map data for all of the MET tools which plots. Alternatively, users can
copy/paste/modify the map_data dictionary into the configuration file for a MET tool. For ex-
ample, you could add map_data to the end of the MODE configuration file to customize plots
created by MODE.

Here is an example of running plot_data_plane and specifying the map_data in the configuration
string on the command line:

plot_data_plane
sample.grib china_tmp_2m_admin.ps \
'name="TMP"; level="Z2"; \
map_data = { source = [{ file_name = \
"${MET_BUILD_BASE}/data/map/admin_by_country/admin_China_data"; } \
]; }'

31.1.1.3 Q. How can I understand the number of matched pairs?

Answer

Statistics are computed on matched forecast/observation pairs data. For example, if the dimen-
sion of the grid is 37x37 up to 1369 matched pairs are possible. However, if the forecast or
observation contains bad data at a point, that matched pair would not be included in the calcula-
tions. There are a number of reasons that observations could be rejected - mismatches in station
id, variable names, valid times, bad values, data off the grid, etc. For example, if the forecast
field contains missing data around the edge of the domain, then that is a reason there may be
992 matched pairs instead of 1369. Users can use the ncview tool to look at an example netCDF
file or run their files through plot_data_plane to help identify any potential issues.

One common support question is “Why am I getting 0 matched pairs from Point-Stat?”. As
mentioned above, there are many reasons why point observations can be excluded from your
analysis. If running point_stat with at least verbosity level 2 (-v 2, the default value), zero
matched pairs will result in the following type of log messages to be printed:

DEBUG 2: Processing TMP/Z2 versus TMP/Z2, for observation type ADPSFC, over region␣
→˓FULL, for interpolation method UW_MEAN(1), using 0 pairs.
DEBUG 2: Number of matched pairs = 0
DEBUG 2: Observations processed = 1166
DEBUG 2: Rejected: station id = 0

(continues on next page)

456 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

DEBUG 2: Rejected: obs var name = 1166
DEBUG 2: Rejected: valid time = 0
DEBUG 2: Rejected: bad obs value = 0
DEBUG 2: Rejected: off the grid = 0
DEBUG 2: Rejected: topography = 0
DEBUG 2: Rejected: level mismatch = 0
DEBUG 2: Rejected: quality marker = 0
DEBUG 2: Rejected: message type = 0
DEBUG 2: Rejected: masking region = 0
DEBUG 2: Rejected: bad fcst value = 0
DEBUG 2: Rejected: bad climo mean = 0
DEBUG 2: Rejected: bad climo stdev = 0
DEBUG 2: Rejected: mpr filter = 0
DEBUG 2: Rejected: duplicates = 0

This list of the rejection reason counts above matches the order in which the filtering logic is
applied in the code. In this example, none of the point observations match the variable name
requested in the configuration file. So all of the 1166 observations are rejected for the same
reason.

31.1.1.4 Q. What types of NetCDF files can MET read?

Answer

There are three flavors of NetCDF that MET can read directly.

1. Gridded NetCDF output from one of the MET tools

2. Output from the WRF model that has been post-processed using the wrf_interp utility

3. NetCDF data following the climate-forecast (CF) convention

Lastly, users can write python scripts to pass data that’s gridded to the MET tools in memory. If
the data doesn’t fall into one of those categories, then it’s not a gridded dataset that MET can
handle directly. Satellite data, in general, will not be gridded. Typically it contains a dense mesh
of data at lat/lon points, but typically those lat/lon points are not evenly spaced onto a regular
grid.

While MET’s point2grid tool does support some satellite data inputs, it is limited. Using python
embedding is another option for handling new datasets not supported natively by MET.

31.1. Frequently Asked Questions 457

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf -conventions.html

MET User’s Guide, version 11.1.0-beta2

31.1.1.5 Q. How do I choose a time slice in a NetCDF file?

Answer

When processing NetCDF files, the level information needs to be specified to tell MET which 2D
slice of data to use. The index is selected from a value when it starts with “@” for vertical level
(pressure or height) and time. The actual time, @YYYYMMDD_HHMM, is allowed instead of
selecting the time index.

Let’s use plot_data_plane as an example:

plot_data_plane \
MERGE_20161201_20170228.nc \
obs.ps \
'name="APCP"; level="(5,*,*)";'

plot_data_plane \
gtg_obs_forecast.20130730.i00.f00.nc \
altitude_20000.ps \
'name = "edr"; level = "(@20130730_0000,@20000,*,*)";'

Assuming that the first array is the time, this will select the 6-th time slice of the APCP data and
plot it since these indices are 0-based.

31.1.1.6 Q. How do I use the UNIX time conversion?

Answer

Regarding the timing information in the NetCDF variable attributes:

APCP_24:init_time_ut = 1306886400 ;

“ut” stands for UNIX time, which is the number of seconds since Jan 1, 1970. It is a convenient
way of storing timing information since it is easy to add/subtract. The UNIX date command can
be used to convert back/forth between unix time and time strings:

To convert unix time to ymd_hms date:

date -ud '1970-01-01 UTC '1306886400' seconds' +%Y%m%d_%H%M%S 20110601_000000

To convert ymd_hms to unix date:

date -ud ''2011-06-01' UTC '00:00:00'' +%s 1306886400

Regarding TRMM data, it may be easier to work with the binary data and use the trmm2nc.R
script described on this page under observation datasets.

Follow the TRMM binary links to either the 3 or 24-hour accumulations, save the files, and
run them through that script. That is faster and easier than trying to get an ASCII dump. That

458 Chapter 31. Appendix A FAQs & How do I . . . ?

http://dtcenter.org/community-code/model-evaluation-tools-met/input-data

MET User’s Guide, version 11.1.0-beta2

Rscript can also subset the TRMM data if needed. Look for the section of it titled “Output domain
specification” and define the lat/lon’s that needs to be included in the output.

31.1.1.7 Q. Does MET use a fixed-width output format for its ASCII output files?

Answer

MET does not use the Fortran-like fixed width format in its ASCII output file. Instead, the column
widths are adjusted for each run to insert at least one space between adjacent columns. The
header columns of the MET output contain user-defined strings which may be of arbitrary length.
For example, columns such as MODEL, OBTYPE, and DESC may be set by the user to any string
value. Additionally, the amount of precision written is also configurable. The “output_precision”
config file entry can be changed from its default value of 5 decimal places to up to 12 decimal
places, which would also impact the column widths of the output.

Due to these issues, it is not possible to select a reasonable fixed width for each column ahead of
time. The AsciiTable class in MET does a lot of work to line up the output columns, to make sure
there is at least one space between them.

If a fixed-width format is needed, the easiest option would be writing a script to post-process the
MET output into the fixed-width format that is needed or that the code expects.

31.1.1.8 Q. Do the ASCII output files created by MET use scientific notation?

Answer

By default, the ASCII output files created by MET make use of scientific notation when appro-
priate. The formatting of the numbers that the AsciiTable class writes is handled by a call to
printf. The “%g” formatting option can result in scientific notation: http://www.cplusplus.com/
reference/cstdio/printf/

It has been recommended that a configuration option be added to MET to disable the use of
scientific notation. That enhancement is planned for a future release.

31.1.2 Gen-Vx-Mask

31.1.2.1 Q. I have a list of stations to use for verification. I also have a poly region defined. If I specify
both of these should the result be a union of them?

Answer

These settings are defined in the “mask” section of the Point-Stat configuration file. You can
define masking regions in one of 3 ways, as a “grid”, a “poly” line file, or a “sid” list of station
ID’s.

If you specify one entry for “poly” and one entry for “sid”, you should see output for those
two different masks. Note that each of these settings is an array of values, as indicated by the

31.1. Frequently Asked Questions 459

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/

MET User’s Guide, version 11.1.0-beta2

square brackets “[]” in the default config file. If you specify 5 grids, 3 poly’s, and 2 SID lists,
you’d get output for those 10 separate masking regions. Point-Stat does not compute unions or
intersections of masking regions. Instead, they are each processed separately.

Is it true that you really want to use a polyline to define an area and then use a SID list to capture
additional points outside of that polyline?

If so, your options are:

1. Define one single SID list which include all the points currently inside the polyline as well
as the extra ones outside.

2. Continue verifying using one polyline and one SID list and write partial sums and contin-
gency table counts.

Then aggregate the results together by running a Stat-Analysis job.

31.1.2.2 Q. How do I define a masking region with a GFS file?

Answer

Grab a sample GFS file:

wget
http://www.ftp.ncep.noaa.gov/data/nccf/com/gfs/prod/gfs/2016102512/gfs.t12z.pgrb2.
→˓0p50.f000

Use the MET regrid_data_plane tool to put some data on a lat/lon grid over Europe:

regrid_data_plane gfs.t12z.pgrb2.0p50.f000 \
'latlon 100 100 25 0 0.5 0.5' gfs_euro.nc -field 'name="TMP"; level="Z2";'

Run the MET gen_vx_mask tool to apply your polyline to the European domain:

gen_vx_mask gfs_euro.nc POLAND.poly POLAND_mask.nc

Run the MET plot_data_plane tool to display the resulting mask field:

plot_data_plane POLAND_mask.nc POLAND_mask.ps 'name="POLAND"; level="(*,*)";'

In this example, the mask is in roughly the right spot, but there are obvious problems with the
latitude and longitude values used to define that mask for Poland.

460 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

31.1.3 Grid-Stat

31.1.3.1 Q. How do I define a complex masking region?

Answer

A user can define intersections and unions of multiple fields to define masks. Prior to running
Grid-Stat, the user can run the Gen-VX-Mask tool one or more times to define a more complex
masking area by thresholding multiple fields.

For example, using a forecast GRIB file (fcst.grb) which contains 2 records, one for 2-m temper-
ature and a second for 6-hr accumulated precip. The only grid points that are desired are grid
points below freezing with non-zero precip. The user should run Gen-Vx-Mask twice - once to
define the temperature mask and a second time to intersect that with the precip mask:

gen_vx_mask fcst.grb fcst.grb tmp_mask.nc \
-type data \
-mask_field 'name="TMP"; level="Z2"' -thresh le273
gen_vx_mask tmp_mask.nc fcst.grb tmp_and_precip_mask.nc \
-type data \
-input_field 'name="TMP_Z2"; level="(*,*)";' \
-mask_field 'name="APCP"; level="A6";' -thresh gt0 \
-intersection -name "FREEZING_PRECIP"

The first one is pretty straight-forward.

1. The input field (fcst.grb) defines the domain for the mask.

2. Since we’re doing data masking and the data we want lives in fcst.grb, we pass it in again
as the mask_file.

3. Lastly “-mask_field” specifies the data we want from the mask file and “-thresh” specifies
the event threshold.

The second call is a bit tricky.

1. Do data masking (-type data)

2. Read the NetCDF variable named “TMP_Z2” from the input file (tmp_mask.nc)

3. Define the mask by reading 6-hour precip from the mask file (fcst.grb) and looking for
values > 0 (-mask_field)

4. Apply intersection logic when combining the “input” value with the “mask” value (-
intersection).

5. Name the output NetCDF variable as “FREEZING_PRECIP” (-name). This is totally optional,
but convenient.

A user can write a script with multiple calls to Gen-Vx-Mask to apply complex masking logic and
then pass the output mask file to Grid-Stat in its configuration file.

31.1. Frequently Asked Questions 461

MET User’s Guide, version 11.1.0-beta2

31.1.3.2 Q. How do I use neighborhood methods to compute fraction skill score?

Answer

A common application of fraction skill score (FSS) is comparing forecast and observed thunder-
storms. When computing FSS, first threshold the fields to define events and non-events. Then
look at successively larger and larger areas around each grid point to see how the forecast event
frequency compares to the observed event frequency.

Applying this method to rainfall (and monsoons) is also reasonable. Keep in mind that Grid-Stat
is the tool that computes FSS. Grid-Stat will need to be run once for each evaluation time. As an
example, evaluating once per day, run Grid-Stat 122 times for the 122 days of a monsoon season.
This will result in 122 FSS values. These can be viewed as a time series, or the Stat-Analysis tool
could be used to aggregate them together into a single FSS value, like this:

stat_analysis -job aggregate -line_type NBRCNT \
-lookin out/grid_stat

Be sure to pick thresholds (e.g. for the thunderstorms and monsoons) that capture the “events”
that are of interest in studying.

Also be aware that MET uses the “vld_thresh” setting in the configuration file to decide how to
handle data along the edge of the domain. Let us say it is computing a fractional coverage field
using a 5x5 neighborhood and it is at the edge of the domain. 15 points contain valid data and
10 points are outside the domain. Grid-Stat computes the valid data ratio as 15/25 = 0.6. Then
it applies the valid data threshold. Suppose vld_thresh = 0.5. Since 0.6 > 0.5 MET will compute
a fractional coverage value for that point using the 15 valid data points. Next suppose vld_thresh
= 1.0. Since 0.6 is less than 1.0, MET will just skip that point by setting it to bad data.

Setting vld_thresh = 1.0 will ensure that FSS will only be computed at points where all NxN
values contain valid data. Setting it to 0.5 only requires half of them.

31.1.3.3 Q. Is an example of verifying forecast probabilities?

Answer

There is an example of verifying probabilities in the test scripts included with the MET release.
Take a look in:

${MET_BUILD_BASE}/scripts/config/GridStatConfig_POP_12

The config file should look something like this:

fcst = {
wind_thresh = [NA];
field = [
{
name = "LCDC";

(continues on next page)

462 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

level = ["L0"];
prob = TRUE;
cat_thresh = [>=0.0, >=0.1, >=0.2, >=0.3, >=0.4, >=0.5, >=0.6, >=0.7, >

→˓=0.8, >=0.9];
}

];
};

obs = {
wind_thresh = [NA];
field = [
{
name = "WIND";
level = ["Z2"];
cat_thresh = [>=34];
}

];
};

The PROB flag is set to TRUE to tell grid_stat to process this as probability data. The cat_thresh is
set to partition the probability values between 0 and 1. Note that if the probability data contains
values from 0 to 100, MET automatically divides by 100 to rescale to the 0 to 1 range.

31.1.3.4 Q. What is an example of using Grid-Stat with regridding and masking turned on?

Answer

Run Grid-Stat using the following commands and the attached config file

mkdir out
grid_stat \
gfs_4_20160220_0000_012.grb2 \
ST4.2016022012.06h \
GridStatConfig \
-outdir out

Note the following two sections of the Grid-Stat config file:

regrid = {
to_grid = OBS;
vld_thresh = 0.5;
method = BUDGET;
width = 2;

}

This tells Grid-Stat to do verification on the “observation” grid. Grid-Stat reads the GFS and

31.1. Frequently Asked Questions 463

MET User’s Guide, version 11.1.0-beta2

Stage4 data and then automatically regrids the GFS data to the Stage4 domain using budget
interpolation. Use “FCST” to verify the forecast domain. And use either a named grid or a grid
specification string to regrid both the forecast and observation to a common grid. For example,
to_grid = “G212”; will regrid both to NCEP Grid 212 before comparing them.

mask = { grid = ["FULL"];
poly = ["MET_BASE/poly/CONUS.poly"]; }

This will compute statistics over the FULL model domain as well as the CONUS masking area.

To demonstrate that Grid-Stat worked as expected, run the following commands to plot its
NetCDF matched pairs output file:

plot_data_plane \
out/grid_stat_120000L_20160220_120000V_pairs.nc \
out/DIFF_APCP_06_A06_APCP_06_A06_CONUS.ps \
'name="DIFF_APCP_06_A06_APCP_06_A06_CONUS"; level="(*,*)";'

Examine the resulting plot of that difference field.

Lastly, there is another option for defining that masking region. Rather than passing the ascii
CONUS.poly file to grid_stat, run the gen_vx_mask tool and pass the NetCDF output of that tool
to grid_stat. The advantage to gen_vx_mask is that it will make grid_stat run a bit faster. It can
be used to construct much more complex masking areas.

31.1.3.5 Q. How do I use one mask for the forecast field and a different mask for the observation
field?

Answer

You can’t define different masks for the forecast and observation fields in MET tools. MET only
lets you define a single mask (a masking grid or polyline) and then you choose whether you want
to apply it to the FCST, OBS, or BOTH of them.

Nonetheless, there is a way you can accomplish this logic using the gen_vx_mask tool. You run
it once to pre-process the forecast field and a second time to pre-process the observation field.
And then pass those output files to your desired MET tool.

Below is an example using sample data that is included with the MET release tarball. To illustrate,
this command will read 3-hour precip and 2-meter temperature, and resets the precip at any grid
point where the temperature is less than 290 K to a value of 0:

gen_vx_mask \
data/sample_fcst/2005080700/wrfprs_ruc13_12.tm00_G212 \
data/sample_fcst/2005080700/wrfprs_ruc13_12.tm00_G212 \
APCP_03_where_2m_TMPge290.nc \
-type data \
-input_field 'name="APCP"; level="A3";' \

(continues on next page)

464 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

-mask_field 'name="TMP"; level="Z2";' \
-thresh 'lt290&&ne-9999' -v 4 -value 0

So this is a bit confusing. Here’s what is happening:

• The first argument is the input file which defines the grid.

• The second argument is used to define the masking region and since I’m reading data from
the same input file, I’ve listed that file twice.

• The third argument is the output file name.

• The type of masking is “data” masking where we read a 2D field of data and apply a thresh-
old.

• By default, gen_vx_mask initializes each grid point to a value of 0. Specifying “-input_field”
tells it to initialize each grid point to the value of that field (in my example 3-hour precip).

• The “-mask_field” option defines the data field that should be thresholded.

• The “-thresh” option defines the threshold to be applied.

• The “-value” option tells it what “mask” value to write to the output, and I’ve chosen 0.

The example threshold is less than 290 and not -9999 (which is MET’s internal missing data
value). So any grid point where the 2 meter temperature is less than 290 K and is not bad data
will be replaced by a value of 0.

To more easily demonstrate this, I changed to using “-value 10” and ran the output through
plot_data_plane:

plot_data_plane \
APCP_03_where_2m_TMPge290.nc \

APCP_03_where_2m_TMPge290.ps \
'name="data_mask"; level="(*,*)";'

In the resulting plot, anywhere you see the pink value of 10, that’s where gen_vx_mask has
masked out the grid point.

31.1.4 Pcp-Combine

31.1.4.1 Q. How do I add and subtract with Pcp-Combine?

Answer

An example of running the MET pcp_combine tool to put NAM 3-hourly precipitation accumula-
tions data into user-desired 3 hour intervals is provided below.

If the user wanted a 0-3 hour accumulation, this is already available in the 03 UTC file. Run this
file through pcp_combine as a pass-through to put it into NetCDF format:

31.1. Frequently Asked Questions 465

MET User’s Guide, version 11.1.0-beta2

pcp_combine -add 03_file.grb 03 APCP_00_03.nc

If the user wanted the 3-6 hour accumulation, they would subtract 0-6 and 0-3 accumulations:

pcp_combine -subtract 06_file.grb 06 03_file.grb 03 APCP_03_06.nc

Similarly, if they wanted the 6-9 hour accumulation, they would subtract 0-9 and 0-6 accumula-
tions:

pcp_combine -subtract 09_file.grb 09 06_file.grb 06 APCP_06_09.nc

And so on.

Run the 0-3 and 12-15 through pcp_combine even though they already have the 3-hour accu-
mulation. That way, all of the NAM files will be in the same file format, and can use the same
configuration file settings for the other MET tools (grid_stat, mode, etc.). If the NAM files are a
mix of GRIB and NetCDF, the logic would need to be a bit more complicated.

31.1.4.2 Q. How do I combine 12-hour accumulated precipitation from two different initialization
times?

Answer

The “-sum” command assumes the same initialization time. Use the “-add” option instead.

pcp_combine -add \
WRFPRS_1997-06-03_APCP_A12.nc 'name="APCP_12"; level="(*,*)";' \
WRFPRS_d01_1997-06-04_00_APCP_A12.grb 12 \
Sum.nc

For the first file, list the file name followed by a config string describing the field to use from
the NetCDF file. For the second file, list the file name followed by the accumulation interval to
use (12 for 12 hours). The output file, Sum.nc, will contain the combine 12-hour accumulated
precipitation.

Here is a small excerpt from the pcp_combine usage statement:

Note: For “-add” and “-subtract”, the accumulation intervals may be substituted with config file
strings. For that first file, we replaced the accumulation interval with a config file string.

Here are 3 commands you could use to plot these data files:

plot_data_plane WRFPRS_1997-06-03_APCP_A12.nc \
WRFPRS_1997-06-03_APCP_A12.ps 'name="APCP_12"; level="(*,*)";'

plot_data_plane WRFPRS_d01_1997-06-04_00_APCP_A12.grb \
WRFPRS_d01_1997-06-04_00_APCP_A12.ps 'name="APCP" level="A12";'

466 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

plot_data_plane sum.nc sum.ps 'name="APCP_24"; level="(*,*)";'

31.1.4.3 Q. How do I correct a precipitation time range?

Answer

Typically, accumulated precipitation is stored in GRIB files using an accumulation interval with
a “time range” indicator value of 4. Here is a description of the different time range indicator
values and meanings: http://www.nco.ncep.noaa.gov/pmb/docs/on388/table5.html

For example, take a look at the APCP in the GRIB files included in the MET tar ball:

wgrib ${MET_BUILD_BASE}/data/sample_fcst/2005080700/wrfprs_ruc13_12.tm00_G212 |␣
→˓grep APCP
1:0:d=05080700:APCP:kpds5=61:kpds6=1:kpds7=0:TR=4:P1=0: \
P2=12:TimeU=1:sfc:0- 12hr acc:NAve=0
2:31408:d=05080700:APCP:kpds5=61:kpds6=1:kpds7=0:TR=4: \
P1=9:P2=12:TimeU=1:sfc:9- 12hr acc:NAve=0

The “TR=4” indicates that these records contain an accumulation between times P1 and P2. In
the first record, the precip is accumulated between 0 and 12 hours. In the second record, the
precip is accumulated between 9 and 12 hours.

However, the GRIB data uses a time range indicator of 5, not 4.

wgrib rmf_gra_2016040600.24 | grep APCP
291:28360360:d=16040600:APCP:kpds5=61:kpds6=1:kpds7=0: \
TR=5:P1=0:P2=24:TimeU=1:sfc:0-24hr diff:NAve=0

pcp_combine is looking in “rmf_gra_2016040600.24” for a 24 hour accumulation, but since the
time range indicator is no 4, it doesn’t find a match.

If possible switch the time range indicator to 4 on the GRIB files. If this is not possible, there
is another workaround. Instead of telling pcp_combine to look for a particular accumulation
interval, give it a more complete description of the chosen field to use from each file. Here is an
example:

pcp_combine -add rmf_gra_2016040600.24 'name="APCP"; level="L0-24";' \
rmf_gra_2016040600_APCP_00_24.nc

The resulting file should have the accumulation listed at 24h rather than 0-24.

31.1. Frequently Asked Questions 467

http://www.nco.ncep.noaa.gov/pmb/docs/on388/table5.html

MET User’s Guide, version 11.1.0-beta2

31.1.4.4 Q. How do I use Pcp-Combine as a pass-through to simply reformat from GRIB to NetCDF or
to change output variable name?

Answer

The pcp_combine tool is typically used to modify the accumulation interval of precipitation
amounts in model and/or analysis datasets. For example, when verifying model output in GRIB
format containing runtime accumulations of precipitation, run the pcp_combine -subtract option
every 6 hours to create 6-hourly precipitation amounts. In this example, it is not really necessary
to run pcp_combine on the 6-hour GRIB forecast file since the model output already contains the
0 to 6 hour accumulation. However, the output of pcp_combine is typically passed to point_stat,
grid_stat, or mode for verification. Having the 6-hour forecast in GRIB format and all other
forecast hours in NetCDF format (output of pcp_combine) makes the logic for configuring the
other MET tools messy. To make the configuration consistent for all forecast hours, one option
is to choose to run pcp_combine as a pass-through to simply reformat from GRIB to NetCDF.
Listed below is an example of passing a single record to the pcp_combine -add option to do the
reformatting:

$MET_BUILD/bin/pcp_combine -add forecast_F06.grb \
'name="APCP"; level="A6";' \
forecast_APCP_06_F06.nc -name APCP_06

Reformatting from GRIB to NetCDF may be done for any other reason the user may have. For
example, the -name option can be used to define the NetCDF output variable name. Presuming
this file is then passed to another MET tool, the new variable name (CompositeReflectivity) will
appear in the output of downstream tools:

$MET_BUILD/bin/pcp_combine -add forecast.grb \
'name="REFC"; level="L0"; GRIB1_ptv=129; lead_time="120000";' \
forecast.nc -name CompositeReflectivity

31.1.4.5 Q. How do I use “-pcprx” to run a project faster?

Answer

To run a project faster, the “-pcprx” option may be used to narrow the search down to whatever
regular expression you provide. Here are a two examples:

Only using Stage IV data (ST4)
pcp_combine -sum 00000000_000000 06 \
20161015_18 12 ST4.2016101518.APCP_12_SUM.nc -pcprx "ST4.*.06h"

Specify that files starting with pgbq[number][number]be used:
pcp_combine \
-sum 20160221_18 06 20160222_18 24 \
gfs_APCP_24_20160221_18_F00_F24.nc \

(continues on next page)

468 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

-pcpdir /scratch4/BMC/shout/ptmp/Andrew.Kren/pre2016c3_corr/temp \
-pcprx 'pgbq[0-9][0-9].gfs.2016022118' -v 3

31.1.4.6 Q. How do I enter the time format correctly?

Answer

Here is an incorrect example of running pcp_combine with sub-hourly accumulation intervals:

incorrect example:
pcp_combine -subtract forecast.grb 0055 \
forecast2.grb 0005 forecast.nc -field APCP

The time signature is entered incorrectly. Let’s assume that “0055” meant 0 hours and 55 minutes
and “0005” meant 0 hours and 5 minutes.

Looking at the usage statement for pcp_combine (just type pcp_combine with no arguments):
“accum1” indicates the accumulation interval to be used from in_file1 in HH[MMSS] format
(required).

The time format listed “HH[MMSS]” means specifying hours or hours/minutes/seconds. The
incorrect example is using hours/minutes.

Below is the correct example. Add the seconds to the end of the time strings, like this:

correct example:
pcp_combine -subtract forecast.grb 005500 \
forecast2.grb 000500 forecast.nc -field APCP

31.1.4.7 Q. How do I use Pcp-Combine when my GRIB data doesn’t have the appropriate accumulation
interval time range indicator?

Answer

Run wgrib on the data files and the output is listed below:

279:503477484:d=15062313:APCP:kpds5=61:kpds6=1:kpds7=0:TR=␣
→˓10:P1=3:P2=247:TimeU=0:sfc:1015min \
fcst:NAve=0 \
279:507900854:d=15062313:APCP:kpds5=61:kpds6=1:kpds7=0:TR=␣
→˓10:P1=3:P2=197:TimeU=0:sfc:965min \
fcst:NAve=0

Notice the output which says “TR=10”. TR means time range indicator and a value of 10 means
that the level information contains an instantaneous forecast time, not an accumulation interval.

31.1. Frequently Asked Questions 469

MET User’s Guide, version 11.1.0-beta2

Here’s a table describing the TR values: http://www.nco.ncep.noaa.gov/pmb/docs/on388/
table5.html

The default logic for pcp_combine is to look for GRIB code 61 (i.e. APCP) defined with an
accumulation interval (TR = 4). Since the data doesn’t meet that criteria, the default logic of
pcp_combine won’t work. The arguments need to be more specific to tell pcp_combine exactly
what to do.

Try the command:

pcp_combine -subtract \
forecast.grb 'name="APCP"; level="L0"; lead_time="165500";' \
forecast2.grb 'name="APCP"; level="L0"; lead_time="160500";' \
forecast.nc -name APCP_A005000

Some things to point out here:

1. Notice in the wgrib output that the forecast times are 1015 min and 965 min. In HHMMSS
format, that’s “165500” and “160500”.

2. An accumulation interval can’t be specified since the data isn’t stored that way. Instead, use
a config file string to describe the data to use.

3. The config file string specifies a “name” (APCP) and “level” string. APCP is defined at the
surface, so a level value of 0 (L0) was specified.

4. Technically, the “lead_time” doesn’t need to be specified at all, pcp_combine would find the
single APCP record in each input GRIB file and use them. But just in case, the lead_time
option was included to be extra certain to get exactly the data that is needed.

5. The default output variable name pcp_combine would write would be “APCP_L0”. However,
to indicate that its a 50-minute “accumulation interval” use a different output variable name
(APCP_A005000). Any string name is possible. Maybe “Precip50Minutes” or “RAIN50”. But
whatever string is chosen will be used in the Grid-Stat, Point-Stat, or MODE config file to
tell that tool what variable to process.

31.1.4.8 Q. How do I use “-sum”, “-add”, and “-subtract“ to achieve the same accumulation interval?

Answer

Here is an example of using pcp_combine to put GFS into 24- hour intervals for comparison
against 24-hourly StageIV precipitation with GFS data through the pcp_combine tool. Be aware
that the 24-hour StageIV data is defined as an accumulation from 12Z on one day to 12Z on the
next day: http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/

Therefore, only the 24-hour StageIV data can be used to evaluate 12Z to 12Z accumulations
from the model. Alternatively, the 6- hour StageIV accumulations could be used to evaluate
any 24 hour accumulation from the model. For the latter, run the 6-hour StageIV files through
pcp_combine to generate the desired 24-hour accumulation.

Here is an example. Run pcp_combine to compute 24-hour accumulations for GFS. In this exam-
ple, process the 20150220 00Z initialization of GFS.

470 Chapter 31. Appendix A FAQs & How do I . . . ?

http://www.nco.ncep.noaa.gov/pmb/docs/on388/table5.html
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table5.html
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/

MET User’s Guide, version 11.1.0-beta2

pcp_combine \
-sum 20150220_00 06 20150221_00 24 \
gfs_APCP_24_20150220_00_F00_F24.nc \
-pcprx "gfs_4_20150220_00.*grb2" \
-pcpdir /d1/model_data/20150220

pcp_combine is looking in the /d1/SBU/GFS/model_data/20150220 directory at files which
match this regular expression “gfs_4_20150220_00.*grb2”. That directory contains data for 00,
06, 12, and 18 hour initializations, but the “-pcprx” option narrows the search down to the 00
hour initialization which makes it run faster. It inspects all the matching files, looking for 6-hour
APCP data to sum up to a 24-hour accumulation valid at 20150221_00. This results in a 24-hour
accumulation between forecast hours 0 and 24.

The following command will compute the 24-hour accumulation between forecast hours 12 and
36:

pcp_combine \
-sum 20150220_00 06 20150221_12 24 \
gfs_APCP_24_20150220_00_F12_F36.nc \
-pcprx "gfs_4_20150220_00.*grb2" \
-pcpdir /d1/model_data/20150220

The “-sum” command is meant to make things easier by searching the directory. But instead of
using “-sum”, another option would be the “- add” command. Explicitly list the 4 files that need
to be extracted from the 6-hour APCP and add them up to 24. In the directory structure, the
previous “-sum” job could be rewritten with “-add” like this:

pcp_combine -add \
/d1/model_data/20150220/gfs_4_20150220_0000_018.grb2 06 \
/d1/model_data/20150220/gfs_4_20150220_0000_024.grb2 06 \
/d1/model_data/20150220/gfs_4_20150220_0000_030.grb2 06 \
/d1/model_data/20150220/gfs_4_20150220_0000_036.grb2 06 \
gfs_APCP_24_20150220_00_F12_F36_add_option.nc

This example explicitly tells pcp_combine which files to read and what accumulation interval (6
hours) to extract from them. The resulting output should be identical to the output of the “-sum”
command.

31.1.4.9 Q. What is the difference between “-sum” vs. “-add”?

Answer

The -sum and -add options both do the same thing. It’s just that ‘-sum’ could find files more
quickly with the use of the -pcprx flag. This could also be accomplished by using a calling script.

31.1. Frequently Asked Questions 471

MET User’s Guide, version 11.1.0-beta2

31.1.4.10 Q. How do I select a specific GRIB record?

Answer

In this example, record 735 needs to be selected.

pcp_combine -add 20160101_i12_f015_HRRR_wrfnat.grb2 \
'name="APCP"; level="R735";' \
-name "APCP_01" HRRR_wrfnat.20160101_i12_f015.nc

Instead of having the level as “L0”, tell it to use “R735” to select grib record 735.

31.1.5 Plot-Data-Plane

31.1.5.1 Q. How do I inspect Gen-Vx-Mask output?

Answer

Check to see if the call to Gen-Vx-Mask actually did create good output with Plot-Data-Plane.
The following commands assume that the MET executables are found in your path.

plot_data_plane \
out/gen_vx_mask/CONUS_poly.nc \
out/gen_vx_mask/CONUS_poly.ps \
'name="CONUS"; level="(*,*)";'

View that postscript output file, using something like “gv” for ghostview:

gv out/gen_vx_mask/CONUS_poly.ps

Please review a map of 0’s and 1’s over the USA to determine if the output file is what the user
expects. It always a good idea to start with plot_data_plane when working with data to make
sure MET is plotting the data correctly and in the expected location.

31.1.5.2 Q. How do I specify the GRIB version?

Answer

When MET reads Gridded data files, it must determine the type of file it’s reading. The first thing
it checks is the suffix of the file. The following are all interpreted as GRIB1: .grib, .grb, and .gb.
While these mean GRIB2: .grib2, .grb2, and .gb2.

There are 2 choices to control how MET interprets a grib file. Renaming the files to use a
particular suffix, or keep them named and explicitly tell MET to interpret them as GRIB1 or
GRIB2 using the “file_type” configuration option.

The examples below use the plot_data_plane tool to plot the data. Set

472 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

"file_type = GRIB2;"

To keep the files named this as they are, add “file_type = GRIB2;” to all the MET configuration
files (i.e. Grid-Stat, MODE, and so on) that you use:

plot_data_plane \
test_2.5_prog.grib \
test_2.5_prog.ps \
'name="TSTM"; level="A0"; file_type=GRIB2;' \
-plot_range 0 100

31.1.5.3 Q. How do I test the variable naming convention? (Record number example.)

Answer

Make sure MET can read GRIB2 data. Plot the data from that GRIB2 file by running:

plot_data_plane LTIA98_KWBR_201305180600.grb2 tmp_z2.ps 'name="TMP"; level="R2";

“R2” tells MET to plot record number 2. Record numbers 1 and 2 both contain temperature data
and 2-meters. Here’s some wgrib2 output:

1:0:d=2013051806:TMP:2 m above ground:anl:analysis/forecast error␣
→˓2:3323062:d=2013051806:TMP:2 m above ground:anl:

The GRIB id info has been the same between records 1 and 2.

31.1.5.4 Q. How do I compute and verify wind speed?

Answer

Here’s how to compute and verify wind speed using MET. Good news, MET already includes logic
for deriving wind speed on the fly. The GRIB abbreviation for wind speed is WIND. To request
WIND from a GRIB1 or GRIB2 file, MET first checks to see if it already exists in the current file.
If so, it’ll use it as is. If not, it’ll search for the corresponding U and V records and derive wind
speed to use on the fly.

In this example the RTMA file is named rtma.grb2 and the UPP file is named wrf.grb, please try
running the following commands to plot wind speed:

plot_data_plane wrf.grb wrf_wind.ps \
'name"WIND"; level="Z10";' -v 3
plot_data_plane rtma.grb2 rtma_wind.ps \
'name"WIND"; level="Z10";' -v 3

In the first call, the log message should be similar to this:

31.1. Frequently Asked Questions 473

MET User’s Guide, version 11.1.0-beta2

DEBUG 3: MetGrib1DataFile::data_plane_array() ->
Attempt to derive winds from U and V components.

In the second one, this won’t appear since wind speed already exists in the RTMA file.

31.1.6 Stat-Analysis

31.1.6.1 Q. How does ‘-aggregate_stat’ work?

Answer

In Stat-Analysis, there is a “-vx_mask” job filtering option. That option reads the VX_MASK
column from the input STAT lines and applies string matching with the values in that column.
Presumably, all of the MPR lines will have the value of “FULL” in the VX_MASK column.

Stat-Analysis has the ability to read MPR lines and recompute statistics from them using the
same library code that the other MET tools use. The job command options which begin with
“-out” are used to specify settings to be applied to the output of that process. For example,
the “-fcst_thresh” option filters strings from the input “FCST_THRESH” header column. The “-
out_fcst_thresh” option defines the threshold to be applied to the output of Stat-Analysis. So
reading MPR lines and applying a threshold to define contingency table statistics (CTS) would
be done using the “-out_fcst_thresh” option.

Stat-Analysis does have the ability to filter MPR lat/lon locations using the “-mask_poly” option
for a lat/lon polyline and the “-mask_grid” option to define a retention grid.

However, there is currently no “-mask_sid” option.

With MET-5.2 and later versions, one option is to apply column string matching using the “-
column_str” option to define the list of station ID’s you would like to aggregate. That job would
look something like this:

stat_analysis -lookin path/to/mpr/directory \
-job aggregate_stat -line_type MPR -out_line_type CNT \
-column_str OBS_SID SID1,SID2,SID3,...,SIDN \
-set_hdr VX_MASK SID_GROUP_NAME \
-out_stat mpr_to_cnt.stat

Where SID1. . . SIDN is a comma-separated list of the station id’s in the group. Notice that a value
for the output VX_MASK column using the “-set_hdr” option has been specified. Otherwise, this
would show a list of the unique values found in that column. Presumably, all the input VX_MASK
columns say “FULL” so that’s what the output would say. Use “-set_hdr” to explicitly set the
output value.

474 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

31.1.6.2 Q. What is the best way to average the FSS scores within several days or even several months
using ‘Aggregate to Average Scores’?

Answer

Below is the best way to aggregate together the Neighborhood Continuous (NBRCNT) lines
across multiple days, specifically the fractions skill score (FSS). The Stat-Analysis tool is designed
to do this. This example is for aggregating scores for the accumulated precipitation (APCP) field.

Run the “aggregate” job type in stat_analysis to do this:

stat_analysis -lookin directory/file*_nbrcnt.txt \
-job aggregate -line_type NBRCNT -by FCST_VAR,FCST_LEAD,FCST_THRESH,INTERP_MTHD,
→˓INTERP_PNTS -out_stat agg_nbrcnt.txt

This job reads all the files that are passed to it on the command line with the “-lookin” option.
List explicit filenames to read them directly. Listing a top-level directory name will search that
directory for files ending in “.stat”.

In this case, the job running is to “aggregate” the “NBRCNT” line type.

In this case, the “-by” option is being used and lists several header columns. Stat-Analysis will
run this job separately for each unique combination of those header column entries.

The output is printed to the screen, or use the “-out_stat” option to also write the aggregated
output to a file named “agg_nbrcnt.txt”.

31.1.6.3 Q. How do I use ‘-by’ to capture unique entries?

Answer

Here is a stat-analysis job that could be used to run, read the MPR lines, define the proba-
bilistic forecast thresholds, define the single observation threshold, and compute a PSTD output
line. Using “-by FCST_VAR” tells it to run the job separately for each unique entry found in the
FCST_VAR column.

stat_analysis \
-lookin point_stat_model2_120000L_20160501_120000V.stat \
-job aggregate_stat -line_type MPR -out_line_type PSTD \
-out_fcst_thresh ge0,ge0.1,ge0.2,ge0.3,ge0.4,ge0.5,ge0.6,ge0.7,ge0.8,ge0.9,ge1.0 \
-out_obs_thresh eq1.0 \
-by FCST_VAR \
-out_stat out_pstd.txt

The output statistics are written to “out_pstd.txt”.

31.1. Frequently Asked Questions 475

MET User’s Guide, version 11.1.0-beta2

31.1.6.4 Q. How do I use ‘-filter’ to refine my output?

Answer

Here is an example of running a Stat-Analysis filter job to discard any CNT lines (continuous
statistics) where the forecast rate and observation rate are less than 0.05. This is an alternative
way of tossing out those cases without having to modify the source code.

stat_analysis \
-lookin out/grid_stat/grid_stat_120000L_20050807_120000V.stat \
-job filter -dump_row filter_cts.txt -line_type CTS \
-column_min BASER 0.05 -column_min FMEAN 0.05
DEBUG 2: STAT Lines read = 436
DEBUG 2: STAT Lines retained = 36
DEBUG 2:
DEBUG 2: Processing Job 1: -job filter -line_type CTS -column_min BASER
0.05 -column_min
FMEAN 0.05 -dump_row filter_cts.txt
DEBUG 1: Creating
STAT output file "filter_cts.txt"
FILTER: -job filter -line_type
CTS -column_min
BASER 0.05 -column_min
FMEAN 0.05 -dump_row filter_cts.txt
DEBUG 2: Job 1 used 36 out of 36 STAT lines.

This job reads find 56 CTS lines, but only keeps 36 of them where both the BASER and FMEAN
columns are at least 0.05.

31.1.6.5 Q. How do I use the “-by” flag to stratify results?

Answer

Adding “-by FCST_VAR” is a great way to associate a single value, of say RMSE, with each of the
forecast variables (UGRD,VGRD and WIND).

Run the following job on the output from Grid-Stat generated when the “make test” command is
run:

stat_analysis -lookin out/grid_stat \
-job aggregate_stat -line_type SL1L2 -out_line_type CNT \
-by FCST_VAR,FCST_LEV \
-out_stat cnt.txt

The resulting cnt.txt file includes separate output for 6 different FCST_VAR values at different
levels.

476 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

31.1.6.6 Q. How do I speed up run times?

Answer

By default, Stat-Analysis has two options enabled which slow it down. Disabling these two
options will create quicker run times:

1. The computation of rank correlation statistics, Spearman’s Rank Correlation and Kendall’s
Tau. Disable them using “-rank_corr_flag FALSE”.

2. The computation of bootstrap confidence intervals. Disable them using “-n_boot_rep 0”.

Two more suggestions for faster run times.

1. Instead of using “-fcst_var u”, use “-by fcst_var”. This will compute statistics separately for
each unique entry found in the FCST_VAR column.

2. Instead of using “-out” to write the output to a text file, use “-out_stat” which will write a
full STAT output file, including all the header columns. This will create a long list of values
in the OBTYPE column. To avoid the long, OBTYPE column value, manually set the output
using “-set_hdr OBTYPE ALL_TYPES”. Or set its value to whatever is needed.

stat_analysis \
-lookin diag_conv_anl.2015060100.stat \
-job aggregate_stat -line_type MPR -out_line_type CNT -by FCST_VAR \
-out_stat diag_conv_anl.2015060100_cnt.txt -set_hdr OBTYPE ALL_TYPES \
-n_boot_rep 0 -rank_corr_flag FALSE -v 4

Adding the “-by FCST_VAR” option to compute stats for all variables and runs quickly.

31.1.7 TC-Stat

31.1.7.1 Q. How do I use the “-by” flag to stratify results?

Answer

To perform tropical cyclone evaluations for multiple models use the “-by AMODEL” option with
the tc_stat tool. Here is an example.

In this case the tc_stat job looked at the 48 hour lead time for the HWRF and H3HW models.
Without the “-by AMODEL” option, the output would be all grouped together.

tc_stat \
-lookin d2014_vx_20141117_reset/al/tc_pairs/tc_pairs_H3WI_* \
-lookin d2014_vx_20141117_reset/al/tc_pairs/tc_pairs_HWFI_* \
-job summary -lead 480000 -column TRACK -amodel HWFI,H3WI \
-by AMODEL -out sample.out

This will result in all 48 hour HWFI and H3WI track forecasts to be aggregated (statistics and
scores computed) for each model separately.

31.1. Frequently Asked Questions 477

MET User’s Guide, version 11.1.0-beta2

31.1.7.2 Q. How do I use rapid intensification verification?

Answer

To get the most output, run something like this:

tc_stat \
-lookin path/to/tc_pairs/output \
-job rirw -dump_row test \
-out_line_type CTC,CTS,MPR

By default, rapid intensification (RI) is defined as a 24-hour exact change exceeding 30kts. To
define RI differently, modify that definition using the ADECK, BDECK, or both using -rirw_time,
-rirw_exact, and -rirw_thresh options. Set -rirw_window to something larger than 0 to enable
false alarms to be considered hits when they were “close enough” in time.

tc_stat \
-lookin path/to/tc_pairs/output \
-job rirw -dump_row test \
-rirw_time 36 -rirw_window 12 \
-out_line_type CTC,CTS,MPR

To evaluate Rapid Weakening (RW) by setting “-rirw_thresh <=-30”. To stratify your results by
lead time, you could add the “-by LEAD” option.

tc_stat \
-lookin path/to/tc_pairs/output \
-job rirw -dump_row test \
-rirw_time 36 -rirw_window 12 \
-rirw_thresh <=-30 -by LEAD \
-out_line_type CTC,CTS,MPR

31.1.8 Utilities

31.1.8.1 Q. What would be an example of scripting to call MET?

Answer

The following is an example of how to call MET from a bash script including passing in vari-
ables. This shell script is listed below to run Grid-Stat, call Plot-Data-Plane to plot the resulting
difference field, and call convert to reformat from PostScript to PNG.

#!/bin/sh
for case in `echo "FCST OBS"`; do
export TO_GRID=${case}
grid_stat gfs.t00z.pgrb2.0p25.f000 \

(continues on next page)

478 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

(continued from previous page)

nam.t00z.conusnest.hiresf00.tm00.grib2 GridStatConfig
plot_data_plane \
*TO_GRID_${case}*_pairs.nc TO_GRID_${case}.ps 'name="DIFF_TMP_P500_TMP_P500_FULL";␣
→˓\
level="(*,*)";'
convert -rotate 90 -background white -flatten TO_GRID_${case}.ps
TO_GRID_${case}.png
done

31.1.8.2 Q. How do I convert TRMM data files?

Answer

Here is an example of NetCDF that the MET software is not expecting. Here is an option for
accessing that same TRMM data, following links from the MET website: http://dtcenter.org/
community-code/model-evaluation-tools-met/input-data

Pull binary 3-hourly TRMM data file
wget
ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/3B42_V7/201009/3B42.100921.00z.7.
precipitation.bin
Pull Rscript from MET website
wget http://dtcenter.org/sites/default/files/community-code/met/r-scripts/
→˓trmmbin2nc.R
Edit that Rscript by setting
out_lat_ll = -50
out_lon_ll = 0
out_lat_ur = 50
out_lon_ur = 359.75
Run the Rscript
Rscript trmmbin2nc.R 3B42.100921.00z.7.precipitation.bin \
3B42.100921.00z.7.precipitation.nc
Plot the result
plot_data_plane 3B42.100921.00z.7.precipitation.nc \
3B42.100921.00z.7.precipitation.ps 'name="APCP_03"; level="(*,*)";'

It may be possible that the domain of the data is smaller. Here are some options:

1. In that Rscript, choose different boundaries (i.e. out_lat/lon_ll/ur) to specify the tile of data
to be selected.

2. As of version 5.1, MET includes support for regridding the data it reads. Keep TRMM on it’s
native domain and use the MET tools to do the regridding. For example, the Regrid-Data-
Plane” tool reads a NetCDF file, regrids the data, and writes a NetCDF file. Alternatively, the
“regrid” section of the configuration files for the MET tools may be used to do the regridding
on the fly. For example, run Grid-Stat to compare to the model output to TRMM and say

31.1. Frequently Asked Questions 479

http://dtcenter.org/community-code/model-evaluation-tools-met/input-data
http://dtcenter.org/community-code/model-evaluation-tools-met/input-data

MET User’s Guide, version 11.1.0-beta2

"regrid = { field = FCST;
...}"

That tells Grid-Stat to automatically regrid the TRMM observations to the model domain.

31.1.8.3 Q. How do I convert a PostScript to png?

Answer

Use the linux “convert” tool to convert a Plot-Data-Plane PostScript file to a png:

convert -rotate 90 -background white plot_dbz.ps plot_dbz.png

To convert a MODE PostScript to png

convert mode_out.ps mode_out.png

Will result in all 6-7 pages in the PostScript file be written out to a seperate .png with the
following naming convention:

mode_out-0.png, mode_out-1.png, mode_out-2.png, etc.

31.1.8.4 Q. How does pairwise differences using plot_tcmpr.R work?

Answer

One necessary step in computing pairwise differences is “event equalizing” the data. This means
extracting a subset of cases that are common to both models.

While the tc_stat tool does not compute pairwise differences, it can apply the
“event_equalization” logic to extract the cases common to two models. This is done using the
config file “event_equal = TRUE;” option or setting “-event_equal true” on the command line.

Most of the hurricane track analysis and plotting is done using the plot_tcmpr.R Rscript. It makes
a call to the tc_stat tool to track data down to the desired subset, compute pairwise differences
if needed, and then plot the result.

Rscript ${MET_BUILD_BASE}/scripts/Rscripts/plot_tcmpr.R \
-lookin tc_pairs_output.tcst \
-filter '-amodel AHWI,GFSI' \
-series AMODEL AHWI,GFSI,AHWI-GFSI \
-plot MEAN,BOXPLOT

The resulting plots include three series - one for AHWI, one for GFSI, and one for their pairwise
difference.

It’s a bit cumbersome to understand all the options available, but this may be really useful. If
nothing else, it could be adapted to dump out the pairwise differences that are needed.

480 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

31.1.9 Miscellaneous

31.1.9.1 Q. Regrid-Data-Plane - How do I define a LatLon grid?

Answer

Here is an example of the NetCDF variable attributes that MET uses to define a LatLon grid:

:Projection = "LatLon" ;
:lat_ll = "25.063000 degrees_north" ;
:lon_ll = "-124.938000 degrees_east" ;
:delta_lat = "0.125000 degrees" ;
:delta_lon = "0.125000 degrees" ;
:Nlat = "224 grid_points" ;
:Nlon = "464 grid_points" ;

This can be created by running the Regrid-Data-Plane” tool to regrid some GFS data to a LatLon
grid:

regrid_data_plane \
gfs_2012040900_F012.grib G110 \
gfs_g110.nc -field 'name="TMP"; level="Z2";'

Use ncdump to look at the attributes. As an exercise, try defining these global attributes (and
removing the other projection-related ones) and then try again.

31.1.9.2 Q. Pre-processing - How do I use wgrib2, pcp_combine regrid and reformat to format NetCDF
files?

Answer

If you are extracting only one or two fields from a file, using MET’s Regrid-Data-Plane can be
used to generate a Lat-Lon projection. If regridding all fields, the wgrib2 utility may be more
useful. Here’s an example of using wgrib2 and pcp_combine to generate NetCDF files MET can
read:

wgrib2 gfsrain06.grb -new_grid latlon 112:131:0.1 \
25:121:0.1 gfsrain06_regrid.grb2

And then run that GRIB2 file through pcp_combine using the “-add” option with only one file
provided:

pcp_combine -add gfsrain06_regrid.grb2 'name="APCP"; \
level="A6";' gfsrain06_regrid.nc

Then the output NetCDF file does not have this problem:

31.1. Frequently Asked Questions 481

MET User’s Guide, version 11.1.0-beta2

ncdump -h 2a_wgrib2_regrid.nc | grep "_ll"
:lat_ll = "25.000000 degrees_north" ;
:lon_ll = "112.000000 degrees_east" ;

31.1.9.3 Q. TC-Pairs - How do I get rid of WARNING: TrackInfo Using Specify Model Suffix?

Answer

Below is a command example to run:

tc_pairs \
-adeck aep142014.h4hw.dat \
-bdeck bep142014.dat \
-config TCPairsConfig_v5.0 \
-out tc_pairs_v5.0_patch \
-log tc_pairs_v5.0_patch.log \
-v 3

Below is a warning message:

WARNING: TrackInfo::add(const ATCFLine &) ->
skipping ATCFLine since the valid time is not
increasing (20140801_000000 < 20140806_060000):
WARNING: AL, 03, 2014080100, 03, H4HW, 000,
120N, 547W, 38, 1009, XX, 34, NEQ, 0084, 0000,
0000, 0083, -99, -99, 59, 0, 0, , 0, , 0, 0,

As a sanity check, the MET-TC code makes sure that the valid time of the track data doesn’t go
backwards in time. This warning states that this is occurring. The very likely reason for this is
that the data being used are probably passing tc_pairs duplicate track data.

Using grep, notice that the same track data shows up in “aal032014.h4hw.dat” and
“aal032014_hfip_d2014_BERTHA.dat”. Try this:

grep H4HW aal*.dat | grep 2014080100 | grep ", 000,"
aal032014.h4hw.dat:AL, 03, 2014080100, 03, H4HW, 000,
120N, 547W, 38, 1009, XX, 34, NEQ, 0084,
0000, 0000, 0083, -99, -99, 59, 0, 0, ,
0, , 0, 0, , , , , 0, 0, 0, 0, THERMO PARAMS,
-9999, -9999, -9999, Y, 10, DT, -999
aal032014_hfip_d2014_BERTHA.dat:AL, 03, 2014080100,
03, H4HW, 000, 120N, 547W, 38, 1009, XX, 34, NEQ,
0084, 0000, 0000, 0083, -99, -99, 59, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMOPARAMS, -9999 ,-9999 ,
-9999 ,Y ,10 ,DT ,-999

482 Chapter 31. Appendix A FAQs & How do I . . . ?

MET User’s Guide, version 11.1.0-beta2

Those 2 lines are nearly identical, except for the spelling of “THERMO PARAMS” with a space vs
“THERMOPARAMS” with no space.

Passing tc_pairs duplicate track data results in this sort of warning. The DTC had the same sort
of problem when setting up a real-time verification system. The same track data was making its
way into multiple ATCF files.

If this really is duplicate track data, work on the logic for where/how to store the track data.
However, if the H4HW data in the first file actually differs from that in the second file, there
is another option. You can specify a model suffix to be used for each ADECK source, as in this
example (suffix=_EXP):

tc_pairs \
-adeck aal032014.h4hw.dat suffix=_EXP \
-adeck aal032014_hfip_d2014_BERTHA.dat \
-bdeck bal032014.dat \
-config TCPairsConfig_match \
-out tc_pairs_v5.0_patch \
-log tc_pairs_v5.0_patch.log -v 3

Any model names found in “aal032014.h4hw.dat” will now have _EXP tacked onto the end. Note
that if a list of model names in the TCPairsConfig file needs specifying, include the _EXP variants
to get them to show up in the output or it won’t show up.

That’ll get rid of the warnings because they will be storing the track data from the first source
using a slightly different model name. This feature was added for users who are testing multiple
versions of a model on the same set of storms. They might be using the same ATCF ID in all their
output. But this enables them to distinguish the output in tc_pairs.

31.1.9.4 Q. Why is the grid upside down?

Answer

The user provides a gridded data file to MET and it runs without error, but the data is packed
upside down.

Try using the “file_type” entry. The “file_type” entry specifies the input file type (e.g. GRIB1,
GRIB2, NETCDF_MET, NETCDF_PINT, NETCDF_NCCF) rather than letting the code determine
it itself. For valid file_type values, see “File types” in the data/config/ConfigConstants file. This
entry should be defined within the “fcst” or “obs” dictionaries. Sometimes, directly specifying the
type of file will help MET figure out what to properly do with the data.

Another option is to use the Regrid-Data-Plane tool. The Regrid-Data-Plane tool may be run to
read data from any gridded data file MET supports (i.e. GRIB1, GRIB2, and a variety of NetCDF
formats), interpolate to a user-specified grid, and write the field(s) out in NetCDF format. See
the Regrid-Data-Plane tool Section 8.2 in the MET User’s Guide for more detailed information.
While the Regrid-Data-Plane tool is useful as a stand-alone tool, the capability is also included to
automatically regrid data in most of the MET tools that handle gridded data. This “regrid” entry
is a dictionary containing information about how to handle input gridded data files. The “regird”
entry specifies regridding logic and has a “to_grid” entry that can be set to NONE, FCST, OBS,

31.1. Frequently Asked Questions 483

MET User’s Guide, version 11.1.0-beta2

a named grid, the path to a gridded data file defining the grid, or an explicit grid specification
string. See the regrid (page 52) entry in the Configuration File Overview in the MET User’s
Guide for a more detailed description of the configuration file entries that control automated
regridding.

A single model level can be plotted using the plot_data_plane utility. This tool can assist the user
by showing the data to be verified to ensure that times and locations matchup as expected.

31.1.9.5 Q. Why was the MET written largely in C++ instead of FORTRAN?

Answer

MET relies upon the object-oriented aspects of C++, particularly in using the MODE tool. Due
to time and budget constraints, it also makes use of a pre-existing forecast verification library
that was developed at NCAR.

31.1.9.6 Q. How does MET differ from the previously mentioned existing verification packages?

Answer

MET is an actively maintained, evolving software package that is being made freely available to
the public through controlled version releases.

31.1.9.7 Q. Will the MET work on data in native model coordinates?

Answer

No - it will not. In the future, we may add options to allow additional model grid coordinate
systems.

31.1.9.8 Q. How do I get help if my questions are not answered in the User’s Guide?

Answer

First, look on our MET User’s Guide website. If that doesn’t answer your question, create a post
in the METplus GitHub Discussions Forum.

484 Chapter 31. Appendix A FAQs & How do I . . . ?

https://dtcenter.org/community-code/model-evaluation-tools-met
https://github.com/dtcenter/METplus/discussions

MET User’s Guide, version 11.1.0-beta2

31.1.9.9 Q. What graphical features does MET provide?

Answer

MET provides some plotting and graphics support (page 433). The plotting tools, including
plot_point_obs, plot_data_plane, and plot_mode_field, can help users visualize the data.

MET is intended to be a set of command line tools for evaluating forecast quality. So, the develop-
ment effort is focused on providing the latest, state of the art verification approaches, rather than
on providing nice plotting features. However, the ASCII output statistics of MET may be plotted
with a wide variety of plotting packages, including R, NCL, IDL, and GNUPlot. METViewer is also
currently being developed and used by the DTC and NOAA It creates basic plots of MET output
verification statistics. The types of plots include series plots with confidence intervals, box plots,
x-y scatter plots and histograms.

R is a language and environment for statistical computing and graphics. It’s a free package that
runs on most operating systems and provides nice plotting features and a wide array of powerful
statistical analysis tools. There are sample scripts on the MET website that you can use and
modify to perform the type of analysis you need. If you create your own scripts, we encourage
you to submit them to us through the METplus GitHub Discussions Forum so that we can post
them for other users.

31.1.9.10 Q. How do I find the version of the tool I am using?

Answer

Type the name of the tool followed by –version. For example, type “pb2nc –version”.

31.1.9.11 Q. What are MET’s conventions for latitude, longitude, azimuth and bearing angles?

Answer

MET considers north latitude and east longitude positive. Latitudes have range from −90∘ to
+90∘. Longitudes have range from −180∘ to +180∘. Plane angles such as azimuths and bearing
(example: horizontal wind direction) have range 0∘ to 360∘ and are measured clockwise from
the north.

31.2 Troubleshooting

The first place to look for help with individual commands is this User’s Guide or the usage statements that
are provided with the tools. Usage statements for the individual MET tools are available by simply typing
the name of the executable in MET’s bin/ directory. Example scripts available in the MET’s scripts/ directory
show examples of how one might use these commands on example datasets. Here are suggestions on other
things to check if you are having problems installing or running MET.

31.2. Troubleshooting 485

http://dtcenter.org/community-code/model-evaluation-tools-met/sample-analysis-scripts
https://github.com/dtcenter/METplus/discussions

MET User’s Guide, version 11.1.0-beta2

31.2.1 MET won’t compile

Troubleshooting Help

• Have you specified the locations of NetCDF, GNU Scientific Library, and BUFRLIB, and op-
tional additional libraries using corresponding MET_ environment variables prior to running
configure?

• Have these libraries been compiled and installed using the same set of compilers used to
build MET?

31.2.2 BUFRLIB Errors during MET installation

Troubleshooting Help

error message: /usr/bin/ld: cannot find -lbufr
The linker can not find the BUFRLIB library archive file it needs.

export MET_BUFRLIB=/home/username/BUFRLIB_v11.3.0:$MET_BUFRLIB

It isn’t making it’s way into the configuration because BUFRLIB_v11.3.0 isn’t showing up in the
output of make. This may indicate the wrong shell type. The .bashrc file sets the environment
for the Bourne shell, but the above error could indicate that the c- shell is being used instead.

Try the following 2 things:

1. Check to make sure this file exists:

ls /home/username/BUFRLIB_v11.3.0/libbufr.a

2. Rerun the MET configure command using the following option on the command line:

MET_BUFRLIB=/home/username/BUFRLIB_v11.3.0

After doing that, please try recompiling MET. If it fails, please submit the following log files:
“make_install.log” as well as “config.log” with a new post in the METplus GitHub Discussions
Forum.

31.2.3 Command line double quotes

Troubleshooting Help

Single quotes, double quotes, and escape characters can be difficult for MET to parse. If there
are problems, especially in Python code, try breaking the command up like the below example.

486 Chapter 31. Appendix A FAQs & How do I . . . ?

https://github.com/dtcenter/METplus/discussions
https://github.com/dtcenter/METplus/discussions

MET User’s Guide, version 11.1.0-beta2

['regrid_data_plane',
'/h/data/global/WXQC/data/umm/1701150006',
'G003', '/h/data/global/WXQC/data/met/nc_mdl/umm/1701150006', '- field',
'\'name="HGT"; level="P500";\'', '-v', '6']

31.2.4 Environment variable settings

Troubleshooting Help

In the below incorrect example for many environment variables have both the main variable set
and the INC and LIB variables set:

export MET_GSL=$MET_LIB_DIR/gsl
export MET_GSLINC=$MET_LIB_DIR/gsl/include/gsl
export MET_GSLLIB=$MET_LIB_DIR/gsl/lib

only MET_GSL *OR *MET_GSLINC *AND *MET_GSLLIB need to be set. So, for example,
either set:

export MET_GSL=$MET_LIB_DIR/gsl

or set:

export MET_GSLINC=$MET_LIB_DIR/gsl/include/gsl export MET_GSLLIB=$MET_LIB_DIR/gsl/
→˓lib

Additionally, MET does not use MET_HDF5INC and MET_HDF5LIB. It only uses MET_HDF5.

Our online tutorial can help figure out what should be set and what the value should be: https:
//met.readthedocs.io/en/latest/Users_Guide/installation.html

31.2.5 NetCDF install issues

Troubleshooting Help

This example shows a problem with NetCDF in the make_install.log file:

/usr/bin/ld: warning: libnetcdf.so.11,
needed by /home/zzheng25/metinstall/lib/libnetcdf_c++4.so,
may conflict with libnetcdf.so.7

Below are examples of too many MET_NETCDF options:

MET_NETCDF='/home/username/metinstall/'
MET_NETCDFINC='/home/username/local/include'
MET_NETCDFLIB='/home/username/local/lib'

31.2. Troubleshooting 487

https://met.readthedocs.io/en/latest/Users_Guide/installation.html
https://met.readthedocs.io/en/latest/Users_Guide/installation.html

MET User’s Guide, version 11.1.0-beta2

Either MET_NETCDF OR MET_NETCDFINC AND MET_NETCDFLIB need to be set. If the
NetCDF include files are in /home/username/local/include and the NetCDF library files are
in /home/username/local/lib, unset the MET_NETCDF environment variable, then run “make
clean”, reconfigure, and then run “make install” and “make test” again.

31.2.6 Error while loading shared libraries

Troubleshooting Help

• Add the lib dir to your LD_LIBRARY_PATH. For example, if you receive the following error:
“./mode_analysis: error while loading shared libraries: libgsl.so.19: cannot open shared
object file: No such file or directory”, you should add the path to the gsl lib (for example,
/home/user/MET/gsl-2.1/lib) to your LD_LIBRARY_PATH.

31.2.7 General troubleshooting

Troubleshooting Help

• For configuration files used, make certain to use empty square brackets (e.g. []) to indi-
cate no stratification is desired. Do NOT use empty double quotation marks inside square
brackets (e.g. [“”]).

• Have you designated all the required command line arguments?

• Try rerunning with a higher verbosity level. Increasing the verbosity level to 4 or 5 prints
much more diagnostic information to the screen.

31.3 Where to get help

If none of the above suggestions have helped solve your problem, help is available through the METplus
GitHub Discussions Forum.

31.4 How to contribute code

If you have code you would like to contribute, we will gladly consider your contribution. Please create a
post in the METplus GitHub Discussions Forum.

488 Chapter 31. Appendix A FAQs & How do I . . . ?

https://github.com/dtcenter/METplus/discussions
https://github.com/dtcenter/METplus/discussions
https://github.com/dtcenter/METplus/discussions

Chapter 32

Appendix B Map Projections, Grids, and
Polylines

32.1 Map Projections

The following map projections are currently supported in MET:

• Lambert Conformal Projection

• Polar Stereographic Projection (Northern)

• Polar Stereographic Projection (Southern)

• Mercator Projection

• Lat/Lon Projection

• Rotated Lat/Lon Projection

• Gaussian Projection

• Semi Lat/Lon

32.2 Grid Specification Strings

Several configuration file and command line options support the definition of grids as a grid specification
string. A description of the that string for each of the supported grid types is provided below.

To specify a Lambert Grid, the syntax is

lambert Nx Ny lat_ll lon_ll lon_orient D_km R_km standard_lat_1 [standard_lat_2] N|S

Here, Nx and Ny are the number of points in, respectively, the x and y grid directions. These two numbers
give the overall size of the grid. lat_ll and lon_ll are the latitude and longitude, in degrees, of the lower left
point of the grid. North latitude and east longitude are considered positive. lon_orient is the orientation
longitude of the grid. It’s the meridian of longitude that’s parallel to one of the vertical grid directions.

489

MET User’s Guide, version 11.1.0-beta2

D_km and R_km are the grid resolution and the radius of the Earth, both in kilometers. standard_lat_1
and standard_lat_2 are the standard parallels of the Lambert projection. If the two latitudes are the same,
then only one needs to be given. N|S means to write either N or S depending on whether the Lambert
projection is from the north pole or the south pole.

As an example of specifying a Lambert grid, suppose you have a northern hemisphere Lambert grid with
614 points in the x direction and 428 points in the y direction. The lower left corner of the grid is at
latitude 12.190∘ north and longitude 133.459∘ west. The orientation longitude is 95∘ west. The grid spacing
is 12.19058∘ km. The radius of the Earth is the default value used in many grib files: 6367.47 km. Both
standard parallels are at 25∘ north. To specify this grid in the config file, you would write

To grid = "lambert 614 428 12.190 -133.459 -95.0 12.19058 6367.47 25.0 N";

For a Polar Stereographic grid, the syntax is

stereo Nx Ny lat_ll lon_ll lon_orient D_km R_km lat_scale N|S

Here, Nx, Ny, lat_ll, lon_ll, lon_orient, D_km and R_km have the same meaning as in the Lambert case.
lat_scale is the latitude where the grid scale D_km is true, while N|S means to write either N or S depending
on whether the stereographic projection is from the north pole or the south pole.

For Plate Carrée (i.e. Lat/Lon) grids, the syntax is

latlon Nx Ny lat_ll lon_ll delta_lat delta_lon

The parameters Nx, Ny, lat_ll and lon_ll are as before. delta_lat and delta_lon are the latitude and longi-
tude increments of the grid-i.e., the change in latitude or longitude between one grid point and an adjacent
grid point.

For a Rotated Plate Carrée (i.e. Rotated Lat/Lon) grids, the syntax is

rotlatlon Nx Ny lat_ll lon_ll delta_lat delta_lon true_lat_sp true_lon_sp aux_rotation

The parameters Nx, Ny, lat_ll, lon_ll, delta_lat, and delta_lon are as before. true_lat_sp and true_lon_sp
are the latitude and longitude for the south pole. aux_rotation is the auxilary rotation in degrees.

For a Mercator grid, the syntax is

mercator Nx Ny lat_ll lon_ll lat_ur lon_ur

The parameters Nx, Ny, lat_ll and lon_ll are again as before, while lat_ur and lon_ur are the latitude and
longitude of the upper right corner of the grid.

For a Gaussian grid, the syntax is

gaussian lon_zero Nx Ny

The parameters Nx and Ny are as before, while lon_zero defines the first longitude.

For a Semi Lat/Lon grid, no grid specification string is supported. This grid type is only supported via
Python embedding or when reading NetCDF files generated by another MET tool. A Semi Lat/Lon grid
defines the information about 2D field of data whose dimension are defined by arrays of latitude (lats),

490 Chapter 32. Appendix B Map Projections, Grids, and Polylines

MET User’s Guide, version 11.1.0-beta2

longitude (lons), level (levels), and time (times). Times are defined as unixtime, the number of seconds
since January 1, 1970. Typically, the lats or lons array and the levels or times array has non-zero length. For
example, a zonal mean field is defined using the lats and levels array. A meridional mean field is defined
using the lons and levels array. A Hovmoeller field is defined using lats or lons versus times. An arbitrary
cross-section is defined by specifying both the lats and lons array with exactly the same length versus levels
or times.

Statistics can be computed from data on Semi Lat/Lon grids but only when all data resides on the same Semi
Lat/Lon grid. Two Semi Lat/Lon grids are equal when their lats, lons, levels, and times arrays match. No
functionality is provided to regrid Semi Lat/Lon data. The MET tools can plot Semi Lat/Lon data, however
no map data is overlaid since these grids lack two spatial dimensions.

32.3 Grids

The majority of NCEP’s pre-defined grids that reside on one of the projections listed above are implemented
in MET. The user may specify one of these NCEP grids in the configuration files as “GNNN” where NNN is the
3-digit NCEP grid number. Defining a new masking grid in MET would involve modifying the vx_data_grids
library and recompiling.

Please see NCEP’s website for a description and plot of these predefined grids.

32.4 Polylines for NCEP Regions

Many of NCEP’s pre-defined verification regions are implemented in MET as lat/lon polyline files. The
user may specify one of these NCEP verification regions in the configuration files by pointing to the lat/lon
polyline file in the installed share/met/poly directory. Users may also easily define their own lat/lon polyline
files.

See NCEP’s website for a description and plot of these predefined verification regions.

The NCEP verification regions that are implemented in MET as lat/lon polylines are listed below:

• APL.poly for the Appalachians

• ATC.poly for the Arctic Region

• CAM.poly for Central America

• CAR.poly for the Caribbean Sea

• ECA.poly for Eastern Canada

• GLF.poly for the Gulf of Mexico

• GMC.poly for the Gulf of Mexico Coast

• GRB.poly for the Great Basin

• HWI.poly for Hawaii

• LMV.poly for the Lower Mississippi Valley

32.3. Grids 491

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
http://www.emc.ncep.noaa.gov/mmb/research/nearsfc/nearsfc.verf.html

MET User’s Guide, version 11.1.0-beta2

• MDW.poly for the Midwest

• MEX.poly for Mexico

• NAK.poly for Northern Alaska

• NAO.poly for Northern Atlantic Ocean

• NEC.poly for the Northern East Coast

• NMT.poly for the Northern Mountain Region

• NPL.poly for the Northern Plains

• NPO.poly for the Northern Pacific Ocean

• NSA.poly for Northern South America

• NWC.poly for Northern West Coast

• PRI.poly for Puerto Rico and Islands

• SAK.poly for Southern Alaska

• SAO.poly for the Southern Atlantic Ocean

• SEC.poly for the Southern East Coast

• SMT.poly for the Southern Mountain Region

• SPL.poly for the Southern Plains

• SPO.poly for the Southern Pacific Ocean

• SWC.poly for the Southern West Coast

• SWD.poly for the Southwest Desert

• WCA.poly for Western Canada

• EAST.poly for the Eastern United States (consisting of APL, GMC, LMV, MDW, NEC, and SEC)

• WEST.poly for the Western United States (consisting of GRB, NMT, NPL, NWC, SMT, SPL, SWC, and
SWD)

• CONUS.poly for the Continental United States (consisting of EAST and WEST)

492 Chapter 32. Appendix B Map Projections, Grids, and Polylines

Chapter 33

Appendix C Verification Measures

This appendix provides specific information about the many verification statistics and measures that are
computed by MET. These measures are categorized into measures for categorical (dichotomous) variables;
measures for continuous variables; measures for probabilistic forecasts and measures for neighborhood
methods. While the continuous, categorical, and probabilistic statistics are computed by both the Point-Stat
and Grid-Stat tools, the neighborhood verification measures are only provided by the Grid-Stat tool.

33.1 Which statistics are the same, but with different names?

Table 33.1: Statistics in MET and other names they have been
published under.

Statistics in MET Other names for the same statistic
Probability of Detection Hit Rate
Probability of False Detection False Alarm Rate (not Ratio)
Critical Success Index Threat Score
Gilbert Skill Score Equitable Threat Score
Hanssen and Kuipers Discriminant True Skill Statistic, Pierce’s Skill Score
Heidke Skill Score Cohen’s K
Odds Ratio Skill Score Yule’s Q
Mean Error Magnitude Bias
Mean Error Squared (ME2) MSE by Mean Difference
Bias Corrected MSE MSE by Pattern Variation
MSESS Murphy’s MSESS
Pearson Correlation Anomalous Pattern Correlation
Anomaly Correlation Anomalous Correction
Rank Histogram Talagrand Diagram
Reliability Diagram Attributes Diagram
Ignorance Score Logarithmic Scoring Rule

493

MET User’s Guide, version 11.1.0-beta2

33.2 MET verification measures for categorical (dichotomous) variables

The verification statistics for dichotomous variables are formulated using a contingency table such as the
one shown in Table 33.2. In this table f represents the forecasts and o represents the observations; the two
possible forecast and observation values are represented by the values 0 and 1. The values in Table 33.2 are
counts of the number of occurrences of the four possible combinations of forecasts and observations.

Table 33.2: 2x2 contingency table in terms of counts. The
nij values in the table represent the counts in each forecast-
observation category, where i represents the forecast and j
represents the observations. The “.” symbols in the total cells
represent sums across categories.

Forecast Observation Total
o = 1 (e.g., “Yes”) o = 0 (e.g., “No”)

f = 1 (e.g., “Yes”) n11 n10 n1. = n11 + n10

f = 0 (e.g., “No”) n01 n00 n0. = n01 + n00

Total n.1 = n11 + n01 n.0 = n10 + n00 𝑇 = n11 + n10 + n01 + n00

The counts, 𝑛11, 𝑛10, 𝑛01, and 𝑛00, are sometimes called the “Hits”, “False alarms”, “Misses”, and “Correct
rejections”, respectively.

By dividing the counts in the cells by the overall total, T, the joint proportions, p11,p10,p01, and p00 can be
computed. Note that p11+p10+p01+p00 = 1. Similarly, if the counts are divided by the row (column) totals,
conditional proportions, based on the forecasts (observations) can be computed. All of these combinations
and the basic counts can be produced by the Point-Stat tool.

The values in Table 33.2 can also be used to compute the F, O, and H relative frequencies that are produced
by the NCEP Verification System, and the Point-Stat tool provides an option to produce the statistics in this
form. In terms of the other statistics computed by the Point-Stat tool, F is equivalent to the Mean Forecast;
H is equivalent to POD; and O is equivalent to the Base Rate. All of these statistics are defined in the
subsections below. The Point-Stat tool also provides the total number of observations, T.

The categorical verification measures produced by the Point-Stat and Grid-Stat tools are described in the
following subsections. They are presented in the order shown in Table 11.2 through Table 11.5.

494 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.2.1 TOTAL

The total number of forecast-observation pairs, T.

33.2.2 Base rate

Called “O_RATE” in FHO output Table 11.2

Called “BASER” in CTS output Table 11.4

The base rate is defined as 𝑜 = 𝑛11+𝑛01
𝑇 = 𝑛.1

𝑇 . This value is also known as the sample climatology, and is
the relative frequency of occurrence of the event (i.e., o = 1). The base rate is equivalent to the “O” value
produced by the NCEP Verification System.

33.2.3 Mean forecast

Called “F_RATE” in FHO output Table 11.2

Called “FMEAN” in CTS output Table 11.4

The mean forecast value is defined as 𝑓 = 𝑛11+𝑛10
𝑇 = 𝑛1.

𝑇 .

This statistic is comparable to the base rate and is the relative frequency of occurrence of a forecast of the
event (i.e., f = 1). The mean forecast is equivalent to the “F” value computed by the NCEP Verification
System.

33.2.4 Accuracy

Called “ACC” in CTS output Table 11.4

Accuracy for a 2x2 contingency table is defined as

ACC =
𝑛11 + 𝑛00

𝑇
.

That is, it is the proportion of forecasts that were either hits or correct rejections - the fraction that were
correct. Accuracy ranges from 0 to 1; a perfect forecast would have an accuracy value of 1. Accuracy should
be used with caution, especially for rare events, because it can be strongly influenced by large values of n00.

33.2.5 Frequency Bias

Called “FBIAS” in CTS output Table 11.4

Frequency Bias is the ratio of the total number of forecasts of an event to the total number of observations
of the event. It is defined as

Bias =
𝑛11 + 𝑛10

𝑛11 + 𝑛01
=

𝑛1.

𝑛1
.

A “good” value of Frequency Bias is close to 1; a value greater than 1 indicates the event was forecasted too
frequently and a value less than 1 indicates the event was not forecasted frequently enough.

33.2. MET verification measures for categorical (dichotomous) variables 495

MET User’s Guide, version 11.1.0-beta2

33.2.6 H_RATE

Called “H_RATE” in FHO output Table 11.2

H_RATE is defined as

H_RATE =
𝑛11

𝑇
.

H_RATE is equivalent to the H value computed by the NCEP verification system. H_RATE ranges from 0 to
1; a perfect forecast would have H_RATE = 1.

33.2.7 Probability of Detection (POD)

Called “PODY” in CTS output Table 11.4

POD is defined as

POD =
𝑛11

𝑛11 + 𝑛01
=

𝑛11

𝑛1
.

It is the fraction of events that were correctly forecasted to occur. POD is also known as the hit rate. POD
ranges from 0 to 1; a perfect forecast would have POD = 1.

33.2.8 Probability of False Detection (POFD)

Called “POFD” in CTS output Table 11.4

POFD is defined as

POFD =
𝑛10

𝑛10 + 𝑛00
=

𝑛10

𝑛.0
.

It is the proportion of non-events that were forecast to be events. POFD is also often called the False Alarm
Rate. POFD ranges from 0 to 1; a perfect forecast would have POFD = 0.

33.2.9 Probability of Detection of the non-event (PODn)

Called “PODN” in CTS output Table 11.4

PODn is defined as

PODN =
𝑛00

𝑛10 + 𝑛00
=

𝑛00

𝑛.0
.

It is the proportion of non-events that were correctly forecasted to be non-events. Note that PODn = 1 -
POFD. PODn ranges from 0 to 1. Like POD, a perfect forecast would have PODn = 1.

496 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.2.10 False Alarm Ratio (FAR)

Called “FAR” in CTS output Table 11.4

FAR is defined as

FAR =
𝑛10

𝑛10 + 𝑛11
=

𝑛10

𝑛1.
.

It is the proportion of forecasts of the event occurring for which the event did not occur. FAR ranges from 0
to 1; a perfect forecast would have FAR = 0.

33.2.11 Critical Success Index (CSI)

Called “CSI” in CTS output Table 11.4

CSI is defined as

CSI =
𝑛11

𝑛11 + 𝑛10 + 𝑛01
.

It is the ratio of the number of times the event was correctly forecasted to occur to the number of times
it was either forecasted or occurred. CSI ignores the “correct rejections” category (i.e., n00). CSI is also
known as the Threat Score (TS). CSI can also be written as a nonlinear combination of POD and FAR, and is
strongly related to Frequency Bias and the Base Rate.

33.2.12 Gilbert Skill Score (GSS)

Called “GSS” in CTS output Table 11.4

GSS is based on the CSI, corrected for the number of hits that would be expected by chance. In particular,

GSS =
𝑛11 − 𝐶1

𝑛11 + 𝑛10 + 𝑛01 − 𝐶1
,

where

𝐶 =
(𝑛11 + 𝑛10)(𝑛11 + 𝑛01)

𝑇
.

GSS is also known as the Equitable Threat Score (ETS). GSS values range from -1/3 to 1. A no-skill forecast
would have GSS = 0; a perfect forecast would have GSS = 1.

33.2.13 Hanssen-Kuipers Discriminant (HK)

Called “HK” in CTS output Table 11.4

HK is defined as

HK =
𝑛11𝑛00 − 𝑛10𝑛01

(𝑛11 + 𝑛01)(𝑛10 + 𝑛00)
.

More simply, HK = POD − POFD.

33.2. MET verification measures for categorical (dichotomous) variables 497

MET User’s Guide, version 11.1.0-beta2

HK is also known as the True Skill Statistic (TSS) and less commonly (although perhaps more properly) as
the Peirce Skill Score. HK measures the ability of the forecast to discriminate between (or correctly classify)
events and non-events. HK values range between -1 and 1. A value of 0 indicates no skill; a perfect forecast
would have HK = 1.

33.2.14 Heidke Skill Score (HSS)

Called “HSS” in CTS output Table 11.4 and “HSS” in MCTS output Table 11.9

HSS is a skill score based on Accuracy, where the Accuracy is corrected by the number of correct forecasts
that would be expected by chance. In particular,

HSS =
𝑛11 + 𝑛00 − 𝐶2

𝑇 − 𝐶2
,

where

𝐶2 =
(𝑛11 + 𝑛10)(𝑛11 + 𝑛01) + (𝑛01 + 𝑛00)(𝑛10 + 𝑛00)

𝑇
.

A more general format that uses percentages is provided by Ou (Ou, 2016 (page 452)),

HSS(%) = 100 * (𝐻 − 𝐸)

(𝑇 − 𝐸)

where H is the number of forecasts in the correct category and E is the expected number of forecasts by
chance.

HSS can range from minus infinity to 1. A perfect forecast would have HSS = 1.

33.2.15 Heidke Skill Score - Expected Correct (HSS_EC)

Called “HSS_EC” in CTS output Table 11.4 and MCTS output Table 11.9

HSS_EC is a skill score based on Accuracy, where the Accuracy is corrected by the number of correct forecasts
that would be expected by chance. In particular,

HSS =
𝑛11 + 𝑛00 − 𝐶2

𝑇 − 𝐶2
,

The C_2 value is user-configurable with a default value of T divided by the number of contingency table
categories.

HSS_EC can range from minus infinity to 1. A perfect forecast would have HSS_EC = 1.

33.2.16 Odds Ratio (OR)

Called “ODDS” in CTS output Table 11.4

OR measures the ratio of the odds of a forecast of the event being correct to the odds of a forecast of the
event being wrong. OR is defined as

OR =
𝑛11 × 𝑛00

𝑛10 × 𝑛01
=

(POD
1−POD)

(POFD
1−POFD)

.

498 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

OR can range from 0 to ∞. A perfect forecast would have a value of OR = infinity. OR is often expressed as
the log Odds Ratio or as the Odds Ratio Skill Score (Stephenson, 2000 (page 453)).

33.2.17 Logarithm of the Odds Ratio (LODDS)

Called “LODDS” in CTS output Table 11.4

LODDS transforms the odds ratio via the logarithm, which tends to normalize the statistic for rare events
(Stephenson, 2000 (page 453)). However, it can take values of ±∞ when any of the contingency table
counts is 0. LODDS is defined as LODDS = 𝑙𝑛(𝑂𝑅).

33.2.18 Odds Ratio Skill Score (ORSS)

Called “ORSS” in CTS output Table 11.4

ORSS is a skill score based on the odds ratio. ORSS is defined as

ORSS =
𝑂𝑅− 1

𝑂𝑅+ 1
.

ORSS is sometimes also referred to as Yule’s Q. (Stephenson, 2000 (page 453)).

33.2.19 Extreme Dependency Score (EDS)

Called “EDS” in CTS output Table 11.4

The extreme dependency score measures the association between forecast and observed rare events. EDS is
defined as

EDS =
2𝑙𝑛(𝑛11+𝑛01

𝑇)

𝑙𝑛(𝑛11
𝑇)

− 1.

EDS can range from -1 to 1, with 0 representing no skill. A perfect forecast would have a value of EDS = 1.
EDS is independent of bias, so should be presented along with the frequency bias statistic (Stephenson et al.,
2008 (page 454)).

33.2.20 Extreme Dependency Index (EDI)

Called “EDI” in CTS output Table 11.4

The extreme dependency index measures the association between forecast and observed rare events. EDI is
defined as

EDI =
log𝐹 − log𝐻

log𝐹 + log𝐻
,

where H and F are the Hit Rate and False Alarm Rate, respectively.

EDI can range from −∞ to 1, with 0 representing no skill. A perfect forecast would have a value of EDI = 1
(Ferro and Stephenson, 2011 (page 454)).

33.2. MET verification measures for categorical (dichotomous) variables 499

MET User’s Guide, version 11.1.0-beta2

33.2.21 Symmetric Extreme Dependency Score (SEDS)

Called “SEDS” in CTS output Table 11.4

The symmetric extreme dependency score measures the association between forecast and observed rare
events. SEDS is defined as

SEDS =
2 ln[(𝑛11+𝑛01)(𝑛11+𝑛10)

𝑇 2]

ln(𝑛11
𝑇)

− 1.

SEDS can range from −∞ to 1, with 0 representing no skill. A perfect forecast would have a value of SEDS
= 1 (Ferro and Stephenson, 2011 (page 454)).

33.2.22 Symmetric Extremal Dependency Index (SEDI)

Called “SEDI” in CTS output Table 11.4

The symmetric extremal dependency index measures the association between forecast and observed rare
events. SEDI is defined as

SEDI =
ln𝐹 − ln𝐻 + ln(1−𝐻)− ln(1− 𝐹)

ln𝐹 + ln𝐻 + ln(1−𝐻) + ln(1− 𝐹)
,

where 𝐻 = 𝑛11
𝑛11+𝑛01

and 𝐹 = 𝑛10
𝑛00+𝑛10

are the Hit Rate and False Alarm Rate, respectively.

SEDI can range from −∞ to 1, with 0 representing no skill. A perfect forecast would have a value of SEDI =
1. SEDI approaches 1 only as the forecast approaches perfection (Ferro and Stephenson, 2011 (page 454)).

33.2.23 Bias-Adjusted Gilbert Skill Score (BAGSS)

Called “BAGSS” in CTS output Table 11.4

BAGSS is based on the GSS, but is corrected as much as possible for forecast bias (Brill and Mesinger, 2009
(page 447)).

33.2.24 Economic Cost Loss Relative Value (ECLV)

Included in ECLV output Table 11.14

The Economic Cost Loss Relative Value (ECLV) applies a weighting to the contingency table counts to de-
termine the relative value of a forecast based on user-specific information. The cost is incurred to protect
against an undesirable outcome, whether that outcome occurs or not. No cost is incurred if no protection is
undertaken. Then, if the event occurs, the user sustains a loss. If the event does not occur, there is neither a
cost nor a loss. The maximum forecast value is achieved when the cost/loss ratio equals the climatological
probability. When this occurs, the ECLV is equal to the Hanssen and Kuipers discriminant. The Economic
Cost Loss Relative Value is defined differently depending on whether the cost / loss ratio is lower than the
base rate or higher. The ECLV is a function of the cost / loss ratio (cl), the hit rate (h), the false alarm rate
(f), the miss rate (m), and the base rate (b).

500 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

For cost / loss ratio below the base rate, the ECLV is defined as:

ECLV =
(𝑐𝑙 * (ℎ+ 𝑓 − 1)) +𝑚

𝑐𝑙 * (𝑏− 1)
.

For cost / loss ratio above the base rate, the ECLV is defined as:

ECLV =
(𝑐𝑙 * (ℎ+ 𝑓)) +𝑚− 𝑏

𝑏 * (𝑐𝑙 − 1)
.

33.2.25 Stable Equitable Error in Probability Space (SEEPS)

Included in SEEPS output Table 11.22 and SEEPS_MPR output Table 11.21

The SEEPS scoring matrix (equation 15 from Rodwell et al, 2010 (page 453)) is:

{𝑆𝑆
𝑣𝑓} =

1

2

⎧⎪⎨⎪⎩
0 1

1−𝑝1
1
𝑝3

+ 1
1−𝑝1

1
𝑝1

0 1
𝑝3

1
𝑝1

+ 1
1−𝑝3

1
1−𝑝3

0

⎫⎪⎬⎪⎭
In addition, Rodwell et al (2011) note that SEEPS can be written as the mean of two 2-category scores that
individually assess the dry/light and light/heavy thresholds (Rodwell et al., 2011 (page 453)). Each of these
scores is like 1 – HK, but written as:

𝑛01

Expected n.1

+
𝑛10

Expected n.0

where the word expected refers to the mean value deduced from the climatology, rather than the sample
mean.

SEEPS scores are expected to lie between 0 and 1, with a perfect forecast having a value of 0. Individual
values can be much larger than 1. Results can be presented as a skill score by using the value of 1 – SEEPS.

33.3 MET verification measures for continuous variables

For continuous variables, many verification measures are based on the forecast error (i.e., f - o). However,
it also is of interest to investigate characteristics of the forecasts, and the observations, as well as their
relationship. These concepts are consistent with the general framework for verification outlined by Murphy
and Winkler, (1987) (page 452). The statistics produced by MET for continuous forecasts represent this
philosophy of verification, which focuses on a variety of aspects of performance rather than a single measure.

The verification measures currently evaluated by the Point-Stat tool are defined and described in the sub-
sections below. In these definitions, f represents the forecasts, o represents the observation, and n is the
number of forecast-observation pairs.

33.3. MET verification measures for continuous variables 501

MET User’s Guide, version 11.1.0-beta2

33.3.1 Mean forecast

Called “FBAR” in CNT output Table 11.6

Called “FBAR” in SL1L2 output Table 11.15

The sample mean forecast, FBAR, is defined as 𝑓 = 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖.

33.3.2 Mean observation

Called “OBAR” in CNT output Table 11.6

Called “OBAR” in SL1L2 output Table 11.15

The sample mean observation is defined as 𝑜 = 1
𝑛

∑︀𝑛
𝑖=1 𝑜𝑖.

33.3.3 Forecast standard deviation

Called “FSTDEV” in CNT output Table 11.6

The sample variance of the forecasts is defined as

𝑠2𝑓 =
1

𝑇 − 1

𝑇∑︁
𝑖=1

(𝑓𝑖 − 𝑓)2.

The forecast standard deviation is defined as 𝑠𝑓 =
√︁
𝑠2𝑓 .

33.3.4 Observation standard deviation

Called “OSTDEV” in CNT output Table 11.6

The sample variance of the observations is defined as

𝑠2𝑜 =
1

𝑇 − 1

𝑇∑︁
𝑖=1

(𝑜𝑖 − 𝑜)2.

The observed standard deviation is defined as 𝑠𝑜 =
√︀
𝑠2𝑜.

33.3.5 Pearson Correlation Coefficient

Called “PR_CORR” in CNT output Table 11.6

The Pearson correlation coefficient, r, measures the strength of linear association between the forecasts and
observations. The Pearson correlation coefficient is defined as:

𝑟 =

∑︀𝑇
𝑖=1(𝑓𝑖 − 𝑓)(𝑜𝑖 − 𝑜)√︀∑︀
(𝑓𝑖 − 𝑓)2

√︀∑︀
(𝑜𝑖 − 𝑜)2

r can range between -1 and 1; a value of 1 indicates perfect correlation and a value of -1 indicates perfect
negative correlation. A value of 0 indicates that the forecasts and observations are not correlated.

502 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.3.6 Spearman rank correlation coefficient (𝜌𝑠)

Called “SP_CORR” in CNT Table 11.6

The Spearman rank correlation coefficient (𝜌𝑠) is a robust measure of association that is based on the ranks
of the forecast and observed values rather than the actual values. That is, the forecast and observed samples
are ordered from smallest to largest and rank values (from 1 to n, where n is the total number of pairs) are
assigned. The pairs of forecast-observed ranks are then used to compute a correlation coefficient, analogous
to the Pearson correlation coefficient, r.

A simpler formulation of the Spearman-rank correlation is based on differences between the each of the
pairs of ranks (denoted as 𝑑𝑖):

𝜌𝑠 =
6

𝑛(𝑛2 − 1)

𝑛∑︁
𝑖=1

𝑑2𝑖

Like r, the Spearman rank correlation coefficient ranges between -1 and 1; a value of 1 indicates perfect
correlation and a value of -1 indicates perfect negative correlation. A value of 0 indicates that the forecasts
and observations are not correlated.

33.3.7 Kendall’s Tau statistic (𝜏)

Called “KT_CORR” in CNT output Table 11.6

Kendall’s Tau statistic (𝜏) is a robust measure of the level of association between the forecast and observation
pairs. It is defined as

𝜏 =
𝑁𝐶 −𝑁𝐷

𝑛(𝑛− 1)/2

where 𝑁𝐶 is the number of “concordant” pairs and 𝑁𝐷 is the number of “discordant” pairs. Concordant
pairs are identified by comparing each pair with all other pairs in the sample; this can be done most easily
by ordering all of the (𝑓𝑖, 𝑜𝑖) pairs according to 𝑓𝑖, in which case the 𝑜𝑖 values won’t necessarily be in order.
The number of concordant matches of a particular pair with other pairs is computed by counting the number
of pairs (with larger values) for which the value of 𝑜𝑖 for the current pair is exceeded (that is, pairs for which
the values of f and o are both larger than the value for the current pair). Once this is done, 𝑁𝐶 is computed
by summing the counts for all pairs. The total number of possible pairs is 𝑁𝐶 ; thus, the number of discordant
pairs is 𝑁𝐷.

Like r and 𝜌𝑠, Kendall’s Tau (𝜏) ranges between -1 and 1; a value of 1 indicates perfect association (concor-
dance) and a value of -1 indicates perfect negative association. A value of 0 indicates that the forecasts and
observations are not associated.

33.3. MET verification measures for continuous variables 503

MET User’s Guide, version 11.1.0-beta2

33.3.8 Mean Error (ME)

Called “ME” in CNT output Table 11.6 Called “ME_OERR”, “ME_GE_OBS”, and “ME_LT_OBS” in ECNT
output Table 13.2

The Mean Error, ME, is a measure of overall bias for continuous variables; in particular ME = Bias. It is
defined as

ME =
1

𝑛

𝑛∑︁
𝑖=1

(𝑓𝑖 − 𝑜𝑖) = 𝑓 − 𝑜.

A perfect forecast has ME = 0.

33.3.9 Mean Error Squared (ME2)

Called “ME2” in CNT output Table 11.6

The Mean Error Squared, ME2, is provided to give a complete breakdown of MSE in terms of squared Bias
plus estimated variance of the error, as detailed below in the section on BCMSE. It is defined as ME2 = ME2.

A perfect forecast has ME2 = 0.

33.3.10 Multiplicative Bias

Called “MBIAS” in CNT output Table 11.6

Multiplicative bias is simply the ratio of the means of the forecasts and the observations: MBIAS = 𝑓/𝑜

33.3.11 Mean-squared error (MSE)

Called “MSE” in CNT output Table 11.6

MSE measures the average squared error of the forecasts. Specifically, MSE = 1
𝑛

∑︀
(𝑓𝑖 − 𝑜𝑖)

2.

33.3.12 Root-mean-squared error (RMSE)

Called “RMSE” in CNT output Table 11.6 Called “RMSE” and “RMSE_OERR” in ECNT output Table 13.2

RMSE is simply the square root of the MSE, RMSE =
√

MSE.

504 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.3.13 Scatter Index (SI)

Called “SI” in CNT output Table 11.6

SI is the ratio of the root mean squared error to the average observation value, SI = RMSE/OBAR.

Smaller values of SI indicate better agreement between the model and observations (less scatter on scatter
plot).

33.3.14 Standard deviation of the error

Called “ESTDEV” in CNT output Table 11.6

33.3.15 Bias-Corrected MSE

Called “BCMSE” in CNT output Table 11.6

MSE and RMSE are strongly impacted by large errors. They also are strongly impacted by large bias (ME)
values. MSE and RMSE can range from 0 to infinity. A perfect forecast would have MSE = RMSE = 0.

MSE can be re-written as MSE = (𝑓 − 𝑜)2 + 𝑠2𝑓 + 𝑠2𝑜 − 2𝑠𝑓𝑠𝑜𝑟𝑓𝑜, where 𝑓 − 𝑜 = ME and 𝑠2𝑓 + 𝑠2𝑜 − 2𝑠𝑓𝑠𝑜𝑟𝑓𝑜 is
the estimated variance of the error, 𝑠2𝑓𝑜. Thus, MSE = ME2 + 𝑠2𝑓−𝑜. To understand the behavior of MSE, it is
important to examine both of the terms of MSE, rather than examining MSE alone. Moreover, MSE can be
strongly influenced by ME, as shown by this decomposition.

The standard deviation of the error, 𝑠𝑓−𝑜, is 𝑠𝑓−𝑜 =
√︁
𝑠2𝑓−𝑜 =

√︁
𝑠2𝑓 + 𝑠2𝑜 − 2𝑠𝑓𝑠𝑜𝑟𝑓𝑜.

Note that the square of the standard deviation of the error (ESTDEV2) is sometimes called the “Bias-
corrected MSE” (BCMSE) because it removes the effect of overall bias from the forecast-observation squared
differences.

33.3.16 Mean Absolute Error (MAE)

Called “MAE” in CNT output Table 11.6 Called “MAE” and “MAE_OERR” in ECNT output Table 13.2

The Mean Absolute Error (MAE) is defined as MAE = 1
𝑛

∑︀
|𝑓𝑖 − 𝑜𝑖|.

MAE is less influenced by large errors and also does not depend on the mean error. A perfect forecast would
have MAE = 0.

33.3.17 InterQuartile Range of the Errors (IQR)

Called “IQR” in CNT output Table 11.6

The InterQuartile Range of the Errors (IQR) is the difference between the 75th and 25th percentiles of the
errors. It is defined as IQR = 𝑝75(𝑓𝑖 − 𝑜𝑖)− 𝑝25(𝑓𝑖 − 𝑜𝑖).

IQR is another estimate of spread, similar to standard error, but is less influenced by large errors and also
does not depend on the mean error. A perfect forecast would have IQR = 0.

33.3. MET verification measures for continuous variables 505

MET User’s Guide, version 11.1.0-beta2

33.3.18 Median Absolute Deviation (MAD)

Called “MAD” in CNT output Table 11.6

The Median Absolute Deviation (MAD) is defined as MAD = median|𝑓𝑖 − 𝑜𝑖|.

MAD is an estimate of spread, similar to standard error, but is less influenced by large errors and also does
not depend on the mean error. A perfect forecast would have MAD = 0.

33.3.19 Mean Squared Error Skill Score

Called “MSESS” in CNT output Table 11.6

The Mean Squared Error Skill Score is one minus the ratio of the forecast MSE to some reference MSE,
usually climatology. It is sometimes referred to as Murphy’s Mean Squared Error Skill Score.

MSESS = 1−
MSE𝑓

MSE𝑟

33.3.20 Root-mean-squared Forecast Anomaly

Called “RMSFA” in CNT output Table 11.6

RMSFA is the square root of the average squared forecast anomaly. Specifically, RMSFA =
√︁

1
𝑛

∑︀
(𝑓𝑖 − 𝑐𝑖)2.

33.3.21 Root-mean-squared Observation Anomaly

Called “RMSOA” in CNT output Table 11.6

RMSOA is the square root of the average squared observation anomaly. Specifically, RMSOA =√︁
1
𝑛

∑︀
(𝑜𝑖 − 𝑐𝑖)2.

33.3.22 Percentiles of the errors

Called “E10”, “E25”, “E50”, “E75”, “E90” in CNT output Table 11.6

Percentiles of the errors provide more information about the distribution of errors than can be obtained
from the mean and standard deviations of the errors. Percentiles are computed by ordering the errors from
smallest to largest and computing the rank location of each percentile in the ordering, and matching the
rank to the actual value. Percentiles can also be used to create box plots of the errors. In MET, the 0.10th,
0.25th, 0.50th, 0.75th, and 0.90th quantile values of the errors are computed.

506 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.3.23 Anomaly Correlation Coefficient

Called “ANOM_CORR” and “ANOM_CORR_UNCNTR” for centered and uncentered versions in CNT output
Table 11.6

The anomaly correlation coefficient is equivalent to the Pearson correlation coefficient, except that both the
forecasts and observations are first adjusted according to a climatology value. The anomaly is the difference
between the individual forecast or observation and the typical situation, as measured by a climatology (c)
of some variety. It measures the strength of linear association between the forecast anomalies and observed
anomalies. The anomaly correlation coefficient is defined as:

Anomaly Correlation =

∑︀
(𝑓𝑖 − 𝑐)(𝑜𝑖 − 𝑐)√︀∑︀

(𝑓𝑖 − 𝑐)2
√︀∑︀

(𝑜𝑖 − 𝑐)2
.

The centered anomaly correlation coefficient (ANOM_CORR) which includes the mean error is defined as:

ANOM_CORR =
[(𝑓 − 𝑐)− (𝑓 − 𝑐)][(𝑎− 𝑐)− (𝑎− 𝑐)]√︁
((𝑓 − 𝑐)− (𝑓 − 𝑐))2((𝑎− 𝑐)− (𝑎− 𝑐))2

The uncentered anomaly correlation coefficient (ANOM_CORR_UNCNTR) which does not include the mean
errors is defined as:

Anomaly Correlation Raw =
(𝑓 − 𝑐)(𝑎− 𝑐)√︁
(𝑓 − 𝑐)2(𝑎− 𝑐)2

Anomaly correlation can range between -1 and 1; a value of 1 indicates perfect correlation and a value of -1
indicates perfect negative correlation. A value of 0 indicates that the forecast and observed anomalies are
not correlated.

33.3.24 Partial Sums lines (SL1L2, SAL1L2, VL1L2, VAL1L2)

Table 11.15, Table 11.16, Table 11.17, and Table 11.18

The SL1L2, SAL1L2, VL1L2, and VAL1L2 line types are used to store data summaries (e.g. partial sums)
that can later be accumulated into verification statistics. These are divided according to scalar or vector
summaries (S or V). The climate anomaly values (A) can be stored in place of the actuals, which is just a
re-centering of the values around the climatological average. L1 and L2 refer to the L1 and L2 norms, the
distance metrics commonly referred to as the “city block” and “Euclidean” distances. The city block is the
absolute value of a distance while the Euclidean distance is the square root of the squared distance.

The partial sums can be accumulated over individual cases to produce statistics for a longer period without
any loss of information because these sums are sufficient for resulting statistics such as RMSE, bias, correla-
tion coefficient, and MAE (Mood et al., 1974 (page 452)). Thus, the individual errors need not be stored,
all of the information relevant to calculation of statistics are contained in the sums. As an example, the
sum of all data points and the sum of all squared data points (or equivalently, the sample mean and sample
variance) are jointly sufficient for estimates of the Gaussian distribution mean and variance.

Minimally sufficient statistics are those that condense the data most, with no loss of information. Statistics
based on L1 and L2 norms allow for good compression of information. Statistics based on other norms, such

33.3. MET verification measures for continuous variables 507

MET User’s Guide, version 11.1.0-beta2

as order statistics, do not result in good compression of information. For this reason, statistics such as RMSE
are often preferred to statistics such as the median absolute deviation. The partial sums are not sufficient
for order statistics, such as the median or quartiles.

33.3.25 Scalar L1 and L2 values

Called “FBAR”, “OBAR”, “FOBAR”, “FFBAR”, and “OOBAR” in SL1L2 output Table 11.15

These statistics are simply the 1st and 2nd moments of the forecasts, observations and errors:

FBAR = Mean(𝑓) = 𝑓 =
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖

OBAR = Mean(𝑜) = 𝑜 =
1

𝑛

𝑛∑︁
𝑖=1

𝑜𝑖

FOBAR = Mean(𝑓𝑜) = 𝑓𝑜 =
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖𝑜𝑖

FFBAR = Mean(𝑓2) = 𝑓2 =
1

𝑛

𝑛∑︁
𝑖=1

𝑓2
𝑖

OOBAR = Mean(𝑜2) = 𝑜2 =
1

𝑛

𝑛∑︁
𝑖=1

𝑜2𝑖

Some of the other statistics for continuous forecasts (e.g., RMSE) can be derived from these moments.

33.3.26 Scalar anomaly L1 and L2 values

Called “FABAR”, “OABAR”, “FOABAR”, “FFABAR”, “OOABAR” in SAL1L2 output Table 11.16

Computation of these statistics requires a climatological value, c. These statistics are the 1st and 2nd mo-
ments of the scalar anomalies. The moments are defined as:

FABAR = Mean(𝑓 − 𝑐) = ¯𝑓 − 𝑐 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑓𝑖 − 𝑐)

OABAR = Mean(𝑜− 𝑐) = ¯𝑜− 𝑐 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑜𝑖 − 𝑐)

FOABAR = Mean[(𝑓 − 𝑐)(𝑜− 𝑐)] = ¯(𝑓 − 𝑐)(𝑜− 𝑐) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑓𝑖 − 𝑐)(𝑜𝑖 − 𝑐)

FFABAR = Mean[(𝑓 − 𝑐)2] = ¯(𝑓 − 𝑐)
2
=

1

𝑛

𝑛∑︁
𝑖=1

(𝑓𝑖 − 𝑐)2

OOABAR = Mean[(𝑜− 𝑐)2] = ¯(𝑜− 𝑐)
2
=

1

𝑛

𝑛∑︁
𝑖=1

(𝑜𝑖 − 𝑐)2

508 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.3.27 Vector L1 and L2 values

Called “UFBAR”, “VFBAR”, “UOBAR”, “VOBAR”, “UVFOBAR”, “UVFFBAR”, “UVOOBAR” in VL1L2 output
Table 11.17

These statistics are the moments for wind vector values, where u is the E-W wind component and v is the
N-S wind component (𝑢𝑓 is the forecast E-W wind component; 𝑢𝑜 is the observed E-W wind component; 𝑣𝑓
is the forecast N-S wind component; and 𝑣𝑜 is the observed N-S wind component). The following measures
are computed:

UFBAR = Mean(𝑢𝑓) = 𝑢̄𝑓 =
1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑓𝑖

VFBAR = Mean(𝑣𝑓) = 𝑣𝑓 =
1

𝑛

𝑛∑︁
𝑖=1

𝑣𝑓𝑖

UOBAR = Mean(𝑢𝑜) = 𝑢̄𝑜 =
1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑜𝑖

VOBAR = Mean(𝑣𝑜) = 𝑣𝑜 =
1

𝑛

𝑛∑︁
𝑖=1

𝑣𝑜𝑖

UVFOBAR = Mean(𝑢𝑓𝑢𝑜 + 𝑣𝑓𝑣𝑜) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑢𝑓𝑖𝑢𝑜𝑖 + 𝑣𝑓𝑖𝑣𝑜𝑖)

UVFFBAR = Mean(𝑢2𝑓 + 𝑣2𝑓) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑢2𝑓𝑖 + 𝑣2𝑓𝑖)

UVOOBAR = Mean(𝑢2𝑜 + 𝑣2𝑜) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑢2𝑜𝑖 + 𝑣2𝑜𝑖)

33.3.28 Vector anomaly L1 and L2 values

Called “UFABAR”, “VFABAR”, “UOABAR”, “VOABAR”, “UVFOABAR”, “UVFFABAR”, “UVOOABAR” in VAL1L2
output Table 11.18

These statistics require climatological values for the wind vector components, 𝑢𝑐 and 𝑣𝑐. The measures are

33.3. MET verification measures for continuous variables 509

MET User’s Guide, version 11.1.0-beta2

defined below:

UFABAR = Mean(𝑢𝑓 − 𝑢𝑐) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑢𝑓𝑖 − 𝑢𝑐)

VFBAR = Mean(𝑣𝑓 − 𝑣𝑐) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑣𝑓𝑖 − 𝑣𝑐)

UOABAR = Mean(𝑢𝑜 − 𝑢𝑐) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑢𝑜𝑖 − 𝑢𝑐)

VOABAR = Mean(𝑣𝑜 − 𝑣𝑐) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑣𝑜𝑖 − 𝑣𝑐)

UVFOABAR = Mean[(𝑢𝑓 − 𝑢𝑐)(𝑢𝑜 − 𝑢𝑐) + (𝑣𝑓 − 𝑣𝑐)(𝑣𝑜 − 𝑣𝑐)]

=
1

𝑛

𝑛∑︁
𝑖=1

(𝑢𝑓𝑖 − 𝑢𝑐) + (𝑢𝑜𝑖 − 𝑢𝑐) + (𝑣𝑓𝑖 − 𝑣𝑐)(𝑣𝑜𝑖 − 𝑣𝑐)

UVFFABAR = Mean[(𝑢𝑓 − 𝑢𝑐)
2 + (𝑣𝑓 − 𝑣𝑐)

2] =
1

𝑛

𝑛∑︁
𝑖=1

((𝑢𝑓𝑖 − 𝑢𝑐)
2 + (𝑣𝑓𝑖 − 𝑣𝑐)

2)

UVOOABAR = Mean[(𝑢𝑜 − 𝑢𝑐)
2 + (𝑣𝑜 − 𝑣𝑐)

2] =
1

𝑛

𝑛∑︁
𝑖=1

((𝑢𝑜𝑖 − 𝑢𝑐)
2 + (𝑣𝑜𝑖 − 𝑣𝑐)

2)

33.3.29 Gradient values

Called “TOTAL”, “FGBAR”, “OGBAR”, “MGBAR”, “EGBAR”, “S1”, “S1_OG”, and “FGOG_RATIO” in GRAD
output Table 12.6

These statistics are only computed by the Grid-Stat tool and require vectors. Here ∇ is the gradient operator,
which in this applications signifies the difference between adjacent grid points in both the grid-x and grid-
y directions. TOTAL is the count of grid locations used in the calculations. The remaining measures are
defined below:

FGBAR = Mean|∇𝑓 | = 1

𝑛

𝑛∑︁
𝑖=1

|∇𝑓𝑖|

OGBAR = Mean|∇𝑜| = 1

𝑛

𝑛∑︁
𝑖=1

|∇𝑜𝑖|

MGBAR = Max(FGBAR, OGBAR)

EGBAR = Mean|∇𝑓 −∇𝑜| = 1

𝑛

𝑛∑︁
𝑖=1

|∇𝑓𝑖 −∇𝑜𝑖|

S1 = 100

∑︀𝑛
𝑖=1(𝑤𝑖(𝑒𝑔))∑︀𝑛
𝑖=1(𝑤𝑖(𝐺𝐿)) 𝑖

,

where the weights are applied at each grid location, with values assigned according to the weight option

510 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

specified in the configuration file. The components of the 𝑆1 equation are as follows:

𝑒𝑔 = (| 𝛿
𝛿𝑥

(𝑓 − 𝑜)|+ | 𝛿
𝛿𝑦

(𝑓 − 𝑜)|)

𝐺𝐿 = max (|𝛿𝑓
𝛿𝑥

|, | 𝛿𝑜
𝛿𝑥

|) + max (|𝛿𝑓
𝛿𝑦

|, |𝛿𝑜
𝛿𝑦

|)

S1_OG =
EGBAR
OGBAR

FGOG_RATIO =
FGBAR
OGBAR

33.4 MET verification measures for probabilistic forecasts

The results of the probabilistic verification methods that are included in the Point-Stat, Grid-Stat, and Stat-
Analysis tools are summarized using a variety of measures. MET treats probabilistic forecasts as categorical,
divided into bins by user-defined thresholds between zero and one. For the categorical measures, if a
forecast probability is specified in a formula, the midpoint value of the bin is used. These measures include
the Brier Score (BS) with confidence bounds (Bradley, 2008 (page 447)); the joint distribution, calibration-
refinement, likelihood-base rate (Wilks, 2011 (page 454)); and receiver operating characteristic information.
Using these statistics, reliability and discrimination diagrams can be produced.

The verification statistics for probabilistic forecasts of dichotomous variables are formulated using a contin-
gency table such as the one shown in Table 33.3. In this table f represents the forecasts and o represents the
observations; the two possible forecast and observation values are represented by the values 0 and 1. The
values in Table 33.3 are counts of the number of occurrences of all possible combinations of forecasts and
observations.

Table 33.3: 2x2 contingency table in terms of counts. The
nij values in the table represent the counts in each forecast-
observation category, where i represents the forecast and j
represents the observations. The “.” symbols in the total cells
represent sums across categories.

Forecast Observation Total
o = 1 (e.g., “Yes”) o = 0 (e.g., “No”)

𝑝1 = midpoint of (0 and threshold1) 𝑛11 𝑛10 𝑛1. = 𝑛11 + 𝑛10

𝑝2 = midpoint of (threshold1 and threshold2) 𝑛21 𝑛20 𝑛2. = 𝑛21 + 𝑛20

.
𝑝𝑗 = midpoint of (threshold i and 1) n 𝑛𝑖0 𝑛𝑗 = 𝑛𝑗1 + 𝑛𝑗0

Total 𝑛.1 =
∑︀

𝑛𝑖1 𝑛.0 =
∑︀

𝑛𝑖0 T =
∑︀

𝑛𝑖

33.4. MET verification measures for probabilistic forecasts 511

MET User’s Guide, version 11.1.0-beta2

33.4.1 Reliability

Called “RELIABILITY” in PSTD output Table 11.11

A component of the Brier score. Reliability measures the average difference between forecast probability
and average observed frequency. Ideally, this measure should be zero as larger numbers indicate larger
differences. For example, on occasions when rain is forecast with 50% probability, it should actually rain
half the time.

Reliability =
1

𝑇

∑︁
𝑛𝑖(𝑝𝑖 − 𝑜𝑖)

2

33.4.2 Resolution

Called “RESOLUTION” in PSTD output Table 11.11

A component of the Brier score that measures how well forecasts divide events into subsets with different
outcomes. Larger values of resolution are best since it is desirable for event frequencies in the subsets to be
different than the overall event frequency.

Resolution =
1

𝑇
𝑛𝑖.(𝑜𝑖 − 𝑜)2

33.4.3 Uncertainty

Called “UNCERTAINTY” in PSTD output Table 11.11

A component of the Brier score. For probabilistic forecasts, uncertainty is a function only of the frequency of
the event. It does not depend on the forecasts, thus there is no ideal or better value. Note that uncertainty
is equivalent to the variance of the event occurrence.

Uncertainty =
𝑛.1

𝑇
(1− 𝑛.1

𝑇
)

33.4.4 Brier score

Called “BRIER” in PSTD output Table 11.11

The Brier score is the mean squared probability error. In MET, the Brier Score (BS) is calculated from the
nx2 contingency table via the following equation:

BS =
1

𝑇

𝐾∑︁
𝑖=1

[𝑛𝑖1(1− 𝑝𝑖)
2 + 𝑛𝑖0𝑝

2
𝑖]

The equation you will most often see in references uses the individual probability forecasts (𝜌𝑖) and the
corresponding observations (𝑜𝑖), and is given as BS = 1

𝑇

∑︀
(𝑝𝑖 − 𝑜𝑖)

2. This equation is equivalent when the
midpoints of the binned probability values are used as the 𝑝𝑖 .

512 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

BS can be partitioned into three terms: (1) reliability, (2) resolution, and (3) uncertainty (Murphy, 1987
(page 452)).

BS =
1

𝑇

∑︁
𝑖

(𝑝𝑖 − 𝑜𝑖)
2 =

1

𝑇

∑︁
𝑛𝑖.(𝑝𝑖 − 𝑜𝑖)

2 − 1

𝑇

∑︁
𝑛𝑖.(𝑜𝑖 − 𝑜)2 + 𝑜(1− 𝑜)

This score is sensitive to the base rate or climatological frequency of the event. Forecasts of rare events can
have a good BS without having any actual skill. Since Brier score is a measure of error, smaller values are
better.

33.4.5 Brier Skill Score (BSS)

Called “BSS” and “BSS_SMPL” in PSTD output Table 11.11

BSS is a skill score based on the Brier Scores of the forecast and a reference forecast, such as climatology.
BSS is defined as

BSS = 1−
BS𝑓𝑐𝑠𝑡

BS𝑟𝑒𝑓
.

BSS is computed using the climatology specified in the configuration file while BSS_SMPL is computed using
the sample climatology of the current set of observations.

33.4.6 OY_TP - Observed Yes Total Proportion

Called “OY_TP” in PJC output Table 11.12

This is the cell probability for row i, column j=1 (observed event), a part of the joint distribution (Wilks,
2011 (page 454)). Along with ON_TP, this set of measures provides information about the joint distribution
of forecasts and events. There are no ideal or better values.

OYTP(𝑖) =
𝑛𝑖1

𝑇
= probability(𝑜𝑖1)

33.4.7 ON_TP - Observed No Total Proportion

Called “ON_TP” in PJC output Table 11.12

This is the cell probability for row i, column j=0 (observed non-event), a part of the joint distribution (Wilks,
2011 (page 454)). Along with OY_TP, this set of measures provides information about the joint distribution
of forecasts and events. There are no ideal or better values.

ONTP(𝑖) =
𝑛𝑖0

𝑇
= probability(𝑜𝑖0)

33.4. MET verification measures for probabilistic forecasts 513

MET User’s Guide, version 11.1.0-beta2

33.4.8 Calibration

Called “CALIBRATION” in PJC output Table 11.12

Calibration is the conditional probability of an event given each probability forecast category (i.e. each row
in the nx2 contingency table). This set of measures is paired with refinement in the calibration-refinement
factorization discussed in Wilks, (2011) (page 454). A well-calibrated forecast will have calibration values
that are near the forecast probability. For example, a 50% probability of precipitation should ideally have a
calibration value of 0.5. If the calibration value is higher, then the probability has been underestimated, and
vice versa.

Calibration(𝑖) =
𝑛𝑖1

𝑛1.
= probability(𝑜1|𝑝𝑖)

33.4.9 Refinement

Called “REFINEMENT” in PJC output Table 11.12

The relative frequency associated with each forecast probability, sometimes called the marginal distribution
or row probability. This measure ignores the event outcome, and simply provides information about the
frequency of forecasts for each probability category. This set of measures is paired with the calibration
measures in the calibration-refinement factorization discussed by Wilks (2011) (page 454).

Refinement(𝑖) =
𝑛𝑖.

𝑇
= probability(𝑝𝑖)

33.4.10 Likelihood

Called “LIKELIHOOD” in PJC output Table 11.12

Likelihood is the conditional probability for each forecast category (row) given an event and a component of
the likelihood-base rate factorization; see Wilks (2011) (page 454) for details. This set of measures considers
the distribution of forecasts for only the cases when events occur. Thus, as the forecast probability increases,
so should the likelihood. For example, 10% probability of precipitation forecasts should have a much smaller
likelihood value than 90% probability of precipitation forecasts.

Likelihood(𝑖) =
𝑛𝑖1

𝑛.1
= probability(𝑝𝑖|𝑜1)

Likelihood values are also used to create “discrimination” plots that compare the distribution of forecast
values for events to the distribution of forecast values for non-events. These plots show how well the
forecasts categorize events and non-events. The distribution of forecast values for non-events can be derived
from the POFD values computed by MET for the user-specified thresholds.

514 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.4.11 Base Rate

Called “BASER” in PJC output Table 11.12

This is the probability of an event for each forecast category 𝑝𝑖 (row), i.e. the conditional base rate. This set
of measures is paired with likelihood in the likelihood-base rate factorization, see Wilks (2011) (page 454)
for further information. This measure is calculated for each row of the contingency table. Ideally, the event
should become more frequent as the probability forecast increases.

Base Rate(𝑖) =
𝑛𝑖1

𝑛𝑖.
= probability(𝑜𝑖1)

33.4.12 Reliability diagram

The reliability diagram is a plot of the observed frequency of events versus the forecast probability of those
events, with the range of forecast probabilities divided into categories.

The ideal forecast (i.e., one with perfect reliability) has conditional observed probabilities that are equivalent
to the forecast probability, on average. On a reliability plot, this equivalence is represented by the one-to-one
line (the solid line in the figure below). So, better forecasts are closer to the diagonal line and worse ones are
farther away. The distance of each point from the diagonal gives the conditional bias. Points that lie below
the diagonal line indicate over-forecasting; in other words, the forecast probabilities are too large. The
forecast probabilities are too low when the points lie above the line. The reliability diagram is conditioned
on the forecasts so it is often used in combination with the ROC, which is conditioned on the observations,
to provide a “complete” representation of the performance of probabilistic forecasts.

33.4. MET verification measures for probabilistic forecasts 515

MET User’s Guide, version 11.1.0-beta2

Figure 33.1: Example of Reliability Diagram

33.4.13 Receiver operating characteristic

MET produces hit rate (POD) and false alarm rate (POFD) values for each user-specified threshold. This
information can be used to create a scatter plot of POFD vs. POD. When the points are connected, the plot is
generally referred to as the receiver operating characteristic (ROC) curve (also called the “relative operating
characteristic” curve). See the area under the ROC curve (AUC) entry for related information.

A ROC plot is shown for an example set of forecasts, with a solid line connecting the points for six user-
specified thresholds (0.25, 0.35, 0.55, 0.65, 0.75, 0.85). The diagonal dashed line indicates no skill while
the dash-dot line shows the ROC for a perfect forecast.

516 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

A ROC curve shows how well the forecast discriminates between two outcomes, so it is a measure of res-
olution. The ROC is invariant to linear transformations of the forecast, and is thus unaffected by bias. An
unbiased (i.e., well-calibrated) forecast can have the same ROC as a biased forecast, though most would
agree that an unbiased forecast is “better”. Since the ROC is conditioned on the observations, it is often
paired with the reliability diagram, which is conditioned on the forecasts.

Figure 33.2: Example of ROC Curve

33.4. MET verification measures for probabilistic forecasts 517

MET User’s Guide, version 11.1.0-beta2

33.4.14 Area Under the ROC curve (AUC)

Called “ROC_AUC” in PSTD output Table 11.11

The area under the receiver operating characteristic (ROC) curve is often used as a single summary measure.
A larger AUC is better. A perfect forecast has AUC=1. Though the minimum value is 0, an AUC of 0.5
indicates no skill.

The area under the curve can be estimated in a variety of ways. In MET, the simplest trapezoid method is
used to calculate the area. AUC is calculated from the series of hit rate (POD) and false alarm rate (POFD)
values (see the ROC entry below) for each user-specified threshold.

AUC =
1

2

𝑁𝑡ℎ𝑟𝑒𝑠ℎ∑︁
𝑖=1

(POD𝑖+1 + POD𝑖)(POFD𝑖+1 − POFD𝑖)

33.5 MET verification measures for ensemble forecasts

33.5.1 RPS

Called “RPS” in RPS output Table 13.2

While the above probabilistic verification measures utilize dichotomous observations, the Ranked Probabil-
ity Score (RPS, Epstein, 1969 (page 449), Murphy, 1969 (page 452)) is the only probabilistic verification
measure for discrete multiple-category events available in MET. It is assumed that the categories are ordinal
as nominal categorical variables can be collapsed into sequences of binary predictands, which can in turn
be evaluated with the above measures for dichotomous variables (Wilks, 2011 (page 454)). The RPS is the
multi-category extension of the Brier score (Tödter and Ahrens, 2012 (page 454)), and is a proper score
(Mason, 2008 (page 451)).

Let J be the number of categories, then both the forecast, f = (𝑓1, . . . , 𝑓𝐽), and observation, o = (𝑜1, . . . , 𝑜𝐽),
are length-J vectors, where the components of f include the probabilities forecast for each category 1,. . . ,J
and o contains 1 in the category that is realized and zero everywhere else. The cumulative forecasts, 𝐹𝑚,
and observations, 𝑂𝑚, are defined to be:

𝐹𝑚 =
∑︀𝑚

𝑗=1(𝑓𝑗) and 𝑂𝑚 =
∑︀𝑚

𝑗=1(𝑜𝑗),𝑚 = 1, . . . , 𝐽 .

To clarify, 𝐹1 = 𝑓1 is the first component of 𝐹𝑚, 𝐹2 = 𝑓1 + 𝑓2, etc., and 𝐹𝐽 = 1. Similarly, if 𝑜𝑗 = 1 and 𝑖 < 𝑗,
then 𝑂𝑖 = 0 and when 𝑖 >= 𝑗, 𝑂𝑖 = 1, and of course, 𝑂𝐽 = 1. Finally, the RPS is defined to be:

RPS =
𝐽∑︁

𝑚=1

(𝐹𝑚 −𝑂𝑚)2 =
𝐽∑︁

𝑚=1

𝐵𝑆𝑚,

where 𝐵𝑆𝑚 is the Brier score for the m-th category (Tödter and Ahrens, 2012 (page 454)). Subsequently, the
RPS lends itself to a decomposition into reliability, resolution and uncertainty components, noting that each
component is aggregated over the different categories; these are written to the columns named “RPS_REL”,
“RPS_RES” and “RPS_UNC” in RPS output Table 13.2.

518 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.5.2 CRPS

Called “CRPS”, “CRPSCL”, “CRPS_EMP”, “CRPS_EMP_FAIR” and “CRPSCL_EMP” in ECNT output Table 13.2

The continuous ranked probability score (CRPS) is the integral, over all possible thresholds, of the Brier
scores (Gneiting et al., 2004 (page 450)). In MET, the CRPS is calculated two ways: using a normal dis-
tribution fit to the ensemble forecasts (CRPS and CRPSCL), and using the empirical ensemble distribution
(CRPS_EMP and CRPSCL_EMP). The empirical ensemble CRPS can be adjusted (bias corrected) by sub-
tracting 1/(2*m) times the mean absolute difference of the ensemble members, where m is the ensemble
size. This is reported as a separate statistic called CRPS_EMP_FAIR. In some cases, use of other distributions
would be better.

WARNING: The normal distribution is probably a good fit for temperature and pressure, and possibly a not
horrible fit for winds. However, the normal approximation will not work on most precipitation forecasts and
may fail for many other atmospheric variables.

Closed form expressions for the CRPS are difficult to define when using data rather than distribution func-
tions. However, if a normal distribution can be assumed, then the following equation gives the CRPS for
each individual observation (denoted by a lowercase crps) and the corresponding distribution of forecasts.

crps𝑖(𝑁(𝜇, 𝜎2), 𝑦) = 𝜎(
𝑦 − 𝜇

𝜎
(2Φ(

𝑦 − 𝜇

𝜎
)− 1) + 2𝜑(

𝑦 − 𝜇

𝜎
)− 1√

𝜋
)

In this equation, the y represents the event threshold. The estimated mean and standard deviation of
the ensemble forecasts (𝜇 and 𝜎) are used as the parameters of the normal distribution. The values of
the normal distribution are represented by the probability density function (PDF) denoted by Φ and the
cumulative distribution function (CDF), denoted in the above equation by 𝜑.

The overall CRPS is calculated as the average of the individual measures. In equation form:

CRPS = average(crps) =
1

𝑁

𝑁∑︁
𝑖=1

crps𝑖

The score can be interpreted as a continuous version of the mean absolute error (MAE). Thus, the score
is negatively oriented, so smaller is better. Further, similar to MAE, bias will inflate the CRPS. Thus, bias
should also be calculated and considered when judging forecast quality using CRPS.

To calculate crps_emp_fair (bias adjusted, empirical ensemble CRPS) for each individual observation with
m ensemble members:

crps_emp_fair𝑖 = crps_emp𝑖 −
1

2 *𝑚
* 1

𝑚 * (𝑚− 1)

∑︁
𝑖 ̸=𝑗

|𝑓𝑖 − 𝑓𝑗 |

The overall CRPS_EMP_FAIR is calculated as the average of the individual measures. In equation form:

CRPS_EMP_FAIR = average(crps_emp_fair) =
1

𝑁

𝑁∑︁
𝑖=1

crps_emp_fair𝑖

33.5. MET verification measures for ensemble forecasts 519

MET User’s Guide, version 11.1.0-beta2

33.5.3 Ensemble Mean Absolute Difference

Called “SPREAD_MD” in ECNT output Table 13.2

The ensemble mean absolute difference is an alternative measure of ensemble spread. It is computed for
each individual observation (denoted by a lowercase spread_md) with m ensemble members:

spread_md𝑖 =
1

𝑚 * (𝑚− 1)

∑︁
𝑖 ̸=𝑗

|𝑓𝑖 − 𝑓𝑗 |

The overall SPREAD_MD is calculated as the average of the individual measures. In equation form:

SPREAD_MD = average(spread_md) =
1

𝑁

𝑁∑︁
𝑖=1

spread_md𝑖

A perfect forecast would have ensemble mean absolute difference = 0.

33.5.4 CRPS Skill Score

Called “CRPSS” and “CRPSS_EMP” in ECNT output Table 13.2

The continuous ranked probability skill score (CRPSS) is similar to the MSESS and the BSS, in that it
compares its namesake score to that of a reference forecast to produce a positively oriented score between
0 and 1.

CRPSS = 1−
CRPS𝑓𝑐𝑠𝑡

CRPS𝑟𝑒𝑓

For the normal distribution fit (CRPSS), the reference CRPS is computed using the climatological mean
and standard deviation. For the empirical distribution (CRPSS_EMP), the reference CRPS is computed by
sampling from the assumed normal climatological distribution defined by the mean and standard deviation.

33.5.5 Bias Ratio

Called “BIAS_RATIO” in ECNT output Table 13.2

The bias ratio (BIAS_RATIO) is computed when verifying an ensemble against gridded analyses or point
observations. It is defined as the mean error (ME) of ensemble member values greater than or equal to
the observation value to which they are matched divided by the absolute value of the mean error (ME) of
ensemble member values less than the observation values.

BIAS_RATIO =
ME𝑓>=𝑜

|ME𝑓<𝑜|

A perfect forecast has ME = 0. Since BIAS_RATIO is computed as the high bias (ME_GE_OBS) divide by the
absolute value of the low bias (ME_LT_OBS), a perfect forecast has BIAS_RATIO = 0/0, which is undefined.
In practice, the high and low bias values are unlikely to be 0.

The range for BIAS_RATIO is 0 to infinity. A score of 1 indicates that the high and low biases are equal. A
score greater than 1 indicates that the high bias is larger than the magnitude of the low bias. A score less
than 1 indicates the opposite behavior.

520 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.5.6 IGN

Called “IGN” in ECNT output Table 13.2

The ignorance score (IGN) is the negative logarithm of a predictive probability density function (Gneiting
et al., 2004 (page 450)). In MET, the IGN is calculated based on a normal approximation to the forecast
distribution (i.e. a normal pdf is fit to the forecast values). This approximation may not be valid, espe-
cially for discontinuous forecasts like precipitation, and also for very skewed forecasts. For a single normal
distribution N with parameters 𝜇 and 𝜎, the ignorance score is

ign(𝑁(𝜇, 𝜎), 𝑦) =
1

2
ln(2𝜋𝜎2) +

(𝑦 − 𝜇)2

2𝜎2
.

Accumulation of the ignorance score for many forecasts is via the average of individual ignorance scores.
This average ignorance score is the value output by the MET software. Like many error statistics, the IGN is
negatively oriented, so smaller numbers indicate better forecasts.

33.5.7 PIT

Called “PIT” in ORANK output Table 13.7

The probability integral transform (PIT) is the analog of the rank histogram for a probability distribution
forecast (Dawid, 1984 (page 449)). Its interpretation is the same as that of the verification rank histogram:
Calibrated probabilistic forecasts yield PIT histograms that are flat, or uniform. Under-dispersed (not enough
spread in the ensemble) forecasts have U-shaped PIT histograms while over-dispersed forecasts have bell-
shaped histograms. In MET, the PIT calculation uses a normal distribution fit to the ensemble forecasts. In
many cases, use of other distributions would be better.

33.5.8 RANK

Called “RANK” in ORANK output Table 13.7

The rank of an observation, compared to all members of an ensemble forecast, is a measure of dispersion of
the forecasts (Hamill, 2001 (page 451)). When ensemble forecasts possess the same amount of variability as
the corresponding observations, then the rank of the observation will follow a discrete uniform distribution.
Thus, a rank histogram will be approximately flat.

The rank histogram does not provide information about the accuracy of ensemble forecasts. Further, exami-
nation of “rank” only makes sense for ensembles of a fixed size. Thus, if ensemble members are occasionally
unavailable, the rank histogram should not be used. The PIT may be used instead.

33.5. MET verification measures for ensemble forecasts 521

MET User’s Guide, version 11.1.0-beta2

33.5.9 SPREAD

Called “SPREAD” in ECNT output Table 13.2

Called “SPREAD” in ORANK output Table 13.7

The ensemble spread for a single observation is the standard deviation of the ensemble member forecast
values at that location. When verifying against point observations, these values are written to the SPREAD
column of the Observation Rank (ORANK) line type. The ensemble spread for a spatial masking region is
computed as the square root of the mean of the ensemble variance for all observations falling within that
mask. These values are written to the SPREAD column of the Ensemble Continuous Statistics (ECNT) line
type.

Note that prior to met-9.0.1, the ensemble spread of a spatial masking region was computed as the average
of the spread values within that region. This algorithm was corrected in met-9.0.1 to average the ensemble
variance values prior to computing the square root.

33.6 MET verification measures for neighborhood methods

The results of the neighborhood verification approaches that are included in the Grid-Stat tool are summa-
rized using a variety of measures. These measures include the Fractions Skill Score (FSS) and the Fractions
Brier Score (FBS). MET also computes traditional contingency table statistics for each combination of thresh-
old and neighborhood window size.

The traditional contingency table statistics computed by the Grid-Stat neighborhood tool, and included in
the NBRCTS output, are listed below:

• Base Rate (called “BASER” in Table 12.3)

• Mean Forecast (called “FMEAN” in Table 12.3)

• Accuracy (called “ACC” in Table 12.3)

• Frequency Bias (called “FBIAS” in Table 12.3)

• Probability of Detection (called “PODY” in Table 12.3)

• Probability of Detection of the non-event (called “PODN” in Table 12.3)

• Probability of False Detection (called “POFD” in Table 12.3)

• False Alarm Ratio (called “FAR” in Table 12.3)

• Critical Success Index (called “CSI” in Table 12.3)

• Gilbert Skill Score (called “GSS” in Table 12.3)

• Hanssen-Kuipers Discriminant (called “HK” in Table 12.3)

• Heidke Skill Score (called “HSS” in Table 12.3)

• Odds Ratio (called “ODDS” in Table 12.3)

All of these measures are defined in Section 33.2.

522 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

In addition to these standard statistics, the neighborhood analysis provides additional continuous measures,
the Fractions Brier Score and the Fractions Skill Score. For reference, the Asymptotic Fractions Skill Score
and Uniform Fractions Skill Score are also calculated. These measures are defined here, but are explained in
much greater detail in Ebert (2008) (page 449) and Roberts and Lean (2008) (page 452). Roberts and Lean
(2008) (page 452) also present an application of the methodology.

33.6.1 Fractions Brier Score

Called “FBS” in NBRCNT output Table 12.5

The Fractions Brier Score (FBS) is defined as FBS = 1
𝑁

∑︀
𝑁 [⟨𝑃𝑓 ⟩𝑠 − ⟨𝑃𝑜⟩𝑠]2, where N is the number of

neighborhoods; ⟨𝑃𝑓 ⟩𝑠 is the proportion of grid boxes within a forecast neighborhood where the prescribed
threshold was exceeded (i.e., the proportion of grid boxes that have forecast events); and ⟨𝑃𝑜⟩𝑠 is the
proportion of grid boxes within an observed neighborhood where the prescribed threshold was exceeded
(i.e., the proportion of grid boxes that have observed events).

33.6.2 Fractions Skill Score

Called “FSS” in NBRCNT output Table 12.5

The Fractions Skill Score (FSS) is defined as

FSS = 1− FBS
1
𝑁 [

∑︀
𝑁 ⟨𝑃𝑓 ⟩2𝑠 +

∑︀
𝑁 ⟨𝑃𝑜⟩2𝑠]

,

where the denominator represents the worst possible forecast (i.e., with no overlap between forecast and
observed events). FSS ranges between 0 and 1, with 0 representing no overlap and 1 representing complete
overlap between forecast and observed events, respectively.

33.6.3 Asymptotic Fractions Skill Score

Called “AFSS” in NBRCNT output Table 12.5

The Asymptotic Fractions Skill Score (AFSS) is a special case of the Fractions Skill score where the entire
domain is used as the single neighborhood. This provides the user with information about the overall
frequency bias of forecasts versus observations. The formula is the same as for FSS above, but with N=1
and the neighborhood size equal to the domain.

33.6.4 Uniform Fractions Skill Score

Called “UFSS” in NBRCNT output Table 12.5

The Uniform Fractions Skill Score (UFSS) is a reference statistic for the Fractions Skill score based on a
uniform distribution of the total observed events across the grid. UFSS represents the FSS that would
be obtained at the grid scale from a forecast with a fraction/probability equal to the total observed event
proportion at every point. The formula is 𝑈𝐹𝑆𝑆 = (1+𝑓𝑜)/2 (i.e., halfway between perfect skill and random
forecast skill) where 𝑓𝑜 is the total observed event proportion (i.e. observation rate).

33.6. MET verification measures for neighborhood methods 523

MET User’s Guide, version 11.1.0-beta2

33.6.5 Forecast Rate

Called “F_rate” in NBRCNT output Table 12.5

The overall proportion of grid points with forecast events to total grid points in the domain. The forecast
rate will match the observation rate in unbiased forecasts.

33.6.6 Observation Rate

Called “O_rate” in NBRCNT output Table 12.5

The overall proportion of grid points with observed events to total grid points in the domain. The forecast
rate will match the observation rate in unbiased forecasts. This quantity is sometimes referred to as the base
rate.

33.7 MET verification measures for distance map methods

The distance map statistics include Baddeley’s ∆ Metric, a statistic which is a true mathematical metric. The
definition of a mathematical metric is included below.

A mathematical metric, 𝑚(𝐴,𝐵) ≥ 0, must have the following three properties:

1. Identity: 𝑚(𝐴,𝐵) = 0 if and only if 𝐴 = 𝐵.

2. Symmetry: 𝑚(𝐴,𝐵) = 𝑚(𝐵,𝐴)

3. Triangle inequality: 𝑚(𝐴,𝐶) ≤ 𝑚(𝐴,𝐵) +𝑚(𝐵,𝐶)

The first establishes that a perfect score is zero and that the only way to obtain a perfect score is if the two
sets are identical according to the metric. The second requirement ensures that the order by which the two
sets are evaluated will not change the result. The third property ensures that if C is closer to A than B is to
A, then 𝑚(𝐴,𝐶) < 𝑚(𝐴,𝐵).

It has been argued in Gilleland (2017) (page 450) that the second property of symmetry is not necessarily an
important quality to have for a summary measure for verification purposes because lack of symmetry allows
for information about false alarms and misses.

The results of the distance map verification approaches that are included in the Grid-Stat tool are summa-
rized using a variety of measures. These measures include Baddeley’s ∆ Metric, the Hausdorff Distance, the
Mean-error Distance, Pratt’s Figure of Merit, and Zhu’s Measure. Their equations are listed below.

524 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.7.1 Baddeley’s Δ Metric and Hausdorff Distance

Called “BADDELEY” and “HAUSDORFF” in the DMAP output Table 12.7

The Baddeley’s ∆ Metric is given by

∆𝑝,𝑤(𝐴,𝐵) = [
1

𝑁

∑︁
𝑠∈𝐷

|𝑤(𝑑(𝑠,𝐴))− 𝑤(𝑑(𝑠,𝐵))|]
1
𝑃

where 𝑑(𝑠, ·) is the distance map for the respective event area, 𝑤(·) is an optional concave function (i.e.,
𝑤(𝑡 + 𝑢) ≤ 𝑤(𝑡) + 𝑤(𝑢)) that is strictly increasing at zero with 𝑤(𝑡) = 0 if and only if 𝑡 = 0, N is the size of
the domain, and p is a user chosen parameter for the 𝐿𝑝 norm. The default choice of 𝑝 = 2 corresponds to
a Euclidean average, 𝑝 = 1 is a simple average of the difference in distance maps, and the limiting case of
𝑝 = ∞ gives the maximum difference between the two distance maps and is called the Hausdorff distance,
denoted as 𝐻(𝐴,𝐵), and is the metric that motivated the development of Baddeley’s ∆ metric. A typical
choice, and the only available with MET, for 𝑤(·) is 𝑤(𝑡) = min{𝑡, 𝑐}, where c is a user-chosen constant with
𝑐 = ∞ meaning that 𝑤(·) is not applied. This choice of 𝑤(·) provides a cutoff for distances beyond the
pre-specified amount given by c.

In terms of distance maps, Baddeley’s ∆ is the 𝐿𝑝 norm of the top left panel in Figure 12.4 provided 𝑐 = ∞.
If 0 < 𝑐 < ∞, then the distance maps in the bottom row of Figure 12.3 would be replaced by c wherever
they would otherwise exceed c before calculating their absolute differences in the top left panel of Figure
12.4.

The range for BADDELEY and HAUSDORFF is 0 to infinity, with a score of 0 indicating a perfect forecast.

33.7.2 Mean-error Distance

Called “MED_FO”, “MED_OF”, “MED_MIN”, “MED_MAX”, and “MED_MEAN” in the DMAP output Table
12.7

The mean-error distance (MED) is given by

MED (𝐴,𝐵) =
1

𝑛𝐵

∑︁
𝑠∈𝐵

𝑑(𝑥,𝐴)

where 𝑛𝐵 is the number of non-zero grid points that fall in the event set B. That is, it is the average of the
distance map for the event set A calculated only over those grid points that fall inside the event set B. It gives
the average shortest-distance from every point in B to the nearest point in A.

Unlike Baddeley’s ∆ metric, the MED is not a mathematical metric because it fails the symmetry property.
However, if a metric is desired, then any of the following modifications, which are metrics, can be employed
instead, and all are available through MET.

𝑚𝑖𝑛MED(𝐴,𝐵) = 𝑚𝑖𝑛(MED(𝐴,𝐵),MED(𝐵,𝐴))

𝑚𝑎𝑥MED(𝐴,𝐵) = 𝑚𝑎𝑥(MED(𝐴,𝐵),MED(𝐵,𝐴))

𝑚𝑒𝑎𝑛MED(𝐴,𝐵) =
1

2
(MED(𝐴,𝐵) + MED(𝐵,𝐴))

From the distance map perspective, MED (A,B) is the average of the values in Figure 12.4 (top right), and
MED (B,A) is the average of the values in Figure 12.4 (bottom left). Note that the average is only over the
circular regions depicted in the figure.

33.7. MET verification measures for distance map methods 525

MET User’s Guide, version 11.1.0-beta2

The range for MED is 0 to infinity, with a score of 0 indicating a perfect forecast.

33.7.3 Pratt’s Figure of Merit

Called “FOM_FO”, “FOM_OF”, “FOM_MIN”, “FOM_MAX”, and “FOM_MEAN” in the DMAP output Table
12.7

Pratt’s Figure of Merit (FOM) is given by

FOM (𝐴,𝐵) =
1

𝑚𝑎𝑥(𝑛𝐴, 𝑛𝐵)

∑︁
𝑠∈𝐵

1

1 + 𝛼𝑑(𝑠,𝐴)2

where 𝑛𝐴and 𝑛𝐵 are the number of events within event areas A and B, respectively, 𝑑(𝑠,𝐴) is the distance
map related to the event area A, and 𝛼 is a user-defined scaling constant. The default, and usual choice, is
𝛼 = 1

9 when the distances of the distance map are normalized so that the smallest nonzero distance between
grid point neighbors equals one. Clearly, FOM is not a metric because like MED, it is not symmetric. Like
MED, MET computes the minimum, maximum, and average of FOM_FO and FOM_OF.

Note that 𝑑(𝑠,𝐴) in the denominator is summed only over the grid squares falling within the event set B.
That is, it represents the circular area in the top right panel of Figure 12.4.

The range for FOM is 0 to 1, with a score of 1 indicating a perfect forecast.

33.7.4 Zhu’s Measure

Called “ZHU_FO”, “ZHU_OF”, “ZHU_MIN”, “ZHU_MAX”, and “ZHU_MEAN” in the DMAP output Table 12.7

Another measure incorporates the amount of actual overlap between the event sets across the fields in
addition to the MED from above and was proposed by Zhu et al. (2011). Their main proposed measure
was a comparative forecast performance measure of two competing forecasts against the same observation,
which is not included here, but as defined is a true mathematical metric. They also proposed a similar
measure of only the forecast against the observation, which is included in MET. It is simply

𝑍(𝐴,𝐵) = 𝜆

√︃
1

𝑁

∑︁
𝑠∈𝐷

(𝐼𝐹 (𝑠)− 𝐼𝑂(𝑠))2 + (1− 𝜆) · MED(𝐴,𝐵)

where MED (A,B) is as in the Mean-error distance, N is the total number of grid squares as in Baddeley’s
∆ metric, 𝐼𝐹 (𝑠)((𝐼𝑂(𝑠)) is the binary field derived from the forecast (observation), and 𝜆 is a user-chosen
weight. The first term is just the RMSE of the binary forecast and observed fields, so it measures the average
amount of overlap of event areas where zero would be a perfect score. It is not a metric because of the MED
in the second term. A user might choose different weights depending on whether they want to emphasize
the overlap or the MED terms more, but generally equal weight (𝜆 = 1

2) is sufficient. In Zhu et al (2011),
they actually only consider 𝑍(𝐹,𝑂) and not 𝑍(𝑂,𝐹), but both are included in MET for the same reasons as
argued with MED. Similar to MED, the average of these two directions (avg Z), as well as the min and max
are also provided for convenience.

The range for ZHU is 0 to infinity, with a score of 0 indicating a perfect forecast.

526 Chapter 33. Appendix C Verification Measures

MET User’s Guide, version 11.1.0-beta2

33.7.5 𝐺 and 𝐺𝛽

Called “G” and “GBETA” in the DMAP output Table 12.7

See Section 12.2.9 for a description.

Let 𝑦 = 𝑦1𝑦2 where 𝑦1 = 𝑛𝐴+𝑛𝐵−2𝑛𝐴𝐵, and 𝑦2 = 𝑀𝐸𝐷(𝐴,𝐵) ·𝑛𝐵+𝑀𝐸𝐷(𝐵,𝐴) ·𝑛𝐴, with the mean-error
distance (𝑀𝐸𝐷) as described above, and where 𝑛𝐴, 𝑛𝐵, and 𝑛𝐴𝐵 are the number of events within event
areas A, B, and the intersection of A and B, respectively.

The 𝐺 performance measure is given by

𝐺(𝐴,𝐵) = 𝑦1/3

and the 𝐺𝛽 performance measure is given by

𝐺𝛽(𝐴,𝐵) = 𝑚𝑎𝑥{1− 𝑦

𝛽
, 0}

where 𝛽 > 0 is a user-chosen parameter with a default value of 𝑛2/2.0 with 𝑛 equal to the number of points
in the domain. The square-root of 𝐺 will give units of grid points, where 𝑦1/3 gives units of grid points
squared.

The range for 𝐺𝛽 is 0 to 1, with a score of 1 indicating a perfect forecast.

33.8 Calculating Percentiles

Several of the MET tools make use of percentiles in one way or another. Percentiles can be used as part of
the internal computations of a tool, or can be written out as elements of some of the standard verification
statistics. There are several widely-used conventions for calculating percentiles however, so in this section
we describe how percentiles are calculated in MET.

The explanation makes use of the floor function. The floor of a real number x, denoted ⌊𝑥⌋, is defined to
be the greatest integer ≤ 𝑥. For example, ⌊3.01⌋ = 3, ⌊3.99⌋ = 3, ⌊−3.01⌋ = −4, ⌊−3.99⌋ = −4. These
examples show that the floor function does not simply round its argument to the nearest integer. Note also
that ⌊𝑥⌋ = 𝑥 if and only if x is an integer.

Suppose now that we have a collection of N data points 𝑥𝑖for 𝑖 = 0, 1, 2, . . . , 𝑁 − 1. (Note that we’re using
the C/C++ convention here, where array indices start at zero by default.) We will assume that the data
are sorted in increasing (strictly speaking, nondecreasing) order, so that 𝑖 ≤ 𝑗 implies 𝑥𝑖 ≤ 𝑥𝑗 . Suppose also
that we wish to calculate the t percentile of the data, where 0 ≤ 𝑡 < 1. For example, 𝑡 = 0.25 for the 25th
percentile of the data. Define

𝐼 = ⌊(𝑁 − 1)𝑡⌋
∆ = (𝑁 − 1)𝑡− 𝐼

Then the value p of the percentile is

𝑝 = (1−∆)𝑥𝐼 +∆𝑥𝐼+1

33.8. Calculating Percentiles 527

MET User’s Guide, version 11.1.0-beta2

528 Chapter 33. Appendix C Verification Measures

Chapter 34

Appendix D Confidence Intervals

A single verification statistic is statistically meaningless without associated uncertainty information in ac-
companiment. There can be numerous sources of uncertainty associated with such a statistic including
observational, physical uncertainties about the underlying processes governing the equation, sample uncer-
tainty, etc. Although all of the sources of uncertainty can be important, the most heavily researched, and
easiest to calculate, is that of sampling uncertainty. It is this source of uncertainty that can presently be ob-
tained with MET, and the techniques for deriving these estimates are described here. Sampling uncertainty
through MET is gleaned by way of confidence intervals (CIs) as these are generally most informative. A
(1−𝛼) · 100% confidence interval is interpreted, somewhat awkwardly, in the following way. If the test were
repeated 100 times (so that we have 100 such intervals), then we expect the true value of the statistics to
fall inside (1−𝛼) ·100 of these intervals. For example, if 𝛼 = 0.05 then we expect the true value to fall within
95 of the intervals.

There are two main types of CIs available with MET: parametric and non-parametric. All of the parametric
intervals used with MET rely on the underlying sample (or the errors, 𝐹 −𝑂) to be at least approximately in-
dependent and normally distributed. Future releases will allow for some types of dependency in the sample.
The non-parametric techniques utilize what is known in the statistical literature as bootstrap resampling,
which does not rely on any distributional assumptions for the sample; the assumption is that the sample is
representative of the population. Bootstrap CIs can be inaccurate if the sample is not independent, but there
are ways of accounting for dependence with the bootstrap, some of which will be added to MET in future
releases. Details about which verification statistics have parametric CIs in MET are described next, and it
should be noted that the bootstrap can be used for any statistic, though care should be taken in how it is
carried out, and this is described subsequently.

The most commonly used confidence interval about an estimate for a statistic (or parameter), 𝜃, is given by
the normal approximation

𝜃 ± 𝑧𝛼/2 · 𝑉 (𝜃)

where 𝑧𝛼/2 is the 𝛼 − th quantile of the standard normal distribution, and 𝑉 (𝜃) is the standard error of the
statistic (or parameter), 𝜃. For example, the most common example is for the mean of a sample, 𝑋1, · · · , 𝑋𝑛,
of independent and identically distributed (iid) normal random variables with mean 𝜇 and variance 𝜎. Here,
the mean is estimated by 1

𝑛

∑︀𝑛
𝑖=1𝑋𝑖 = 𝑋̄, and the standard error is just the standard deviation of the random

variables divided by the square root of the sample size. That is, 𝑉 (𝜃) = 𝑉 (𝑋̄) = 𝜎√
𝑛

, and this must be

estimated by 𝑉 (𝑋̄), which is obtained here by replacing 𝜎 by its estimate, 𝜎̂, where 𝜎̂ = 1
𝑛−1

∑︀𝑛
𝑖=1(𝑋𝑖− 𝑋̄)2.

529

MET User’s Guide, version 11.1.0-beta2

Mostly, the normal approximation is used as an asymptotic approximation. That is, the interval for 𝜃 may
only be appropriate for large n. For small n, the mean has an interval based on the Student’s t distribu-
tion with n-1 degrees of freedom. Essentially, 𝑧𝛼/2 of the question is replaced with the quantile of this t
distribution. That is, the interval is given by

𝜇± 𝑡𝛼/2,𝜈−1 ·
𝜎√
𝑛

where again, 𝜎 is replaced by its estimate, 𝜎̂, as described above.

Table 34.1 summarizes the verification statistics in MET that have normal approximation CIs given by 𝜃
along with their corresponding standard error estimates, . It should be noted that for the first two rows of
this table (i.e., Forecast/Observation Mean and Mean error) MET also calculates the interval around 𝜇 for
small sample sizes.

Table 34.1: Verification statistics with normal approximation
CIs given by the equation for 𝜃 provided in MET along with
their associated standard error estimate.

𝜃 𝑉 (𝜃)

Forecast /
Observation
Mean

𝑉 (𝑋̄) = 𝜎𝑥√
𝑛

where 𝜎𝑥 emphasizes that this is the estimated standard deviation of the
underlying sample.

Mean error 𝑉 (𝐹 − 𝑂̄) =
𝜎𝐹−𝑂√

𝑛
, where 𝜎𝐹−𝑂 emphasizes that this is the estimated standard deviation

of the errors, 𝐹 −𝑂.
Brier Score
(BS)

𝑉 (BS) = 1
𝑇 [
∑︀

𝐹 4 + 𝑂̄(1 − 4
∑︀

𝐹 3
𝐹 |𝑂=1 + 6

∑︀
𝐹 2
𝐹 |𝑂=1 − 4

∑︀
𝐹𝐹 |𝑂=1) − BS2] where F is

the probability forecast and O is the observation. See Bradley et al, 2008 (page 447) for
derivation and details.

Peirce Skill
Score (PSS)

𝑉 (PSS) =
√︁

𝐻(1−𝐻)
𝑛𝐻

+ 𝐹 (1−𝐹)
𝑛𝐹

, where H is the hit rate, F the false alarm rate, 𝑛ℎ the
number of hits and misses, and 𝑛𝐹 the number of false alarms and correct negatives.

Logarithm of
the odds ratio
(OR)

𝑉 (ln(OR)) =
√︁

1
𝑎 + 1

𝑏 +
1
𝑐 +

1
𝑑 , where the values in the denominators are the usual con-

tingency table counts.

Other statistics in MET having parametric CIs that rely on the underlying sample to be at least approximately
iid normal, but have a different form derived from the normality assumption on the sample include the
variance, standard deviation, and the linear correlation coefficient. These are addressed subsequently.

Generally, the normal interval around 𝜃 is appropriate for statistics of continuous variables, but a limit law
for the binomial distribution allows for use of this interval with proportions. The most intuitive estimate for
𝑉 (𝜃) in this case is given by 𝑉 (𝑝) =

√︀
𝑝(1− 𝑝)/𝑛. However, this only applies when the sample size is large.

A better approximation to the CI for proportions is given by Wilson’s interval, which is

𝑝+ 𝑧2𝛼/2 + 𝑧𝛼/2
√︀
𝑝(1− 𝑝)/4𝑛

1 + 𝑧2𝛼/2/𝑛

where 𝑝 is the estimated proportion (e.g., hit rate, false alarm rate, PODy, PODn, etc.). Because this interval
around 𝑝 generally works better than the more intuitive normal approximation interval for both large and
small sample sizes, this is the interval employed by MET.

530 Chapter 34. Appendix D Confidence Intervals

MET User’s Guide, version 11.1.0-beta2

The forecast/observation variance has CIs derived from the underlying sample being approximately iid nor-
mal with mean 𝜇 and variance 𝜎. The lower and upper limits for the interval are given by

𝑙(𝜎2) =
(𝑛− 1)𝑠2

𝜒2
𝛼/2,𝑛−1

and 𝑢(𝜎2) =
(𝑛− 1)𝑠2

𝜒2
1−𝛼/2,𝑛−1

respectively, where 𝜒2
𝛼,𝜈 is the 𝛼 − th quantile of the chi-square distribution with n-1 degrees of freedom.

Taking the square roots of the limits of 𝑙 yields the CI for the forecast/observation standard deviation.

Finally, the linear correlation coefficient has limits given by

(
𝑒2𝑐𝑙 − 1

𝑒2𝑐𝑙 + 1
,
𝑒2𝑐𝑢 − 1

𝑒2𝑐𝑢 + 1
)

where 𝑐𝑙 = 𝑣 − 𝑧𝛼/2√
𝑛−3

and 𝑐𝑢 = 𝑣 +
𝑧𝛼/2√
𝑛−3

.

All other verification scores with CIs in MET must be obtained through bootstrap resampling. However, it is
also possible to obtain bootstrap CIs for any of the statistics given above, and indeed it has been proven that
the bootstrap intervals have better accuracy for the mean than the normal approximation. The bootstrap
algorithm is described below.

1. Assume the sample is representative of the population.

2. Resample with replacement from the sample (see text below).

3. Estimate the parameter(s) of interest for the current replicated sample.

4. Repeat steps 2 and 3 numerous times, say B times, so that you now have a sample of size B of the
parameter(s).

5. Calculate CIs for the parameters directly from the sample (see text below for more details)

Typically, a simple random sample is taken for step 2, and that is how it is done in MET. As an example
of what happens in this step, suppose our sample is 𝑋1, 𝑋2, 𝑋3, 𝑋4. Then, one possible replicate might be
𝑋2, 𝑋2, 𝑋2, 𝑋4. Usually one samples 𝑚 = 𝑛 points in this step, but there are cases where one should use
𝑚 < 𝑛. For example, when the underlying distribution is heavy-tailed, one should use a smaller size m than
n (e.g., the closest integer value to the square root of the original sample size). See Gilleland (2020, part
II) (page 450) for considerably more information about the issues with estimators that follow a heavy tailed
distribution and the closely related issue of bootstrapping extreme-valued estimators, such as the maximum,
in the atmospheric science domain.

There are numerous ways to construct CIs from the sample obtained in step 4. MET allows for two of
these procedures: the percentile and the BCa. The percentile is the most commonly known method, and
the simplest to understand. It is merely the 𝛼/2 and 1 − 𝛼/2 percentiles from the sample of statistics.
Unfortunately, however, it has been shown that this interval is too optimistic in practice (i.e., it doesn’t
have accurate coverage). One solution is to use the BCa method, which is very accurate, but it is also
computationally intensive. This method adjusts for bias and non-constant variance, and yields the percentile
interval in the event that the sample is unbiased with constant variance.

If there is dependency in the sample, then it is prudent to account for this dependency in some way. Gilleland
(2010) (page 449) describes the bootstrap procedure, along with the above-mentioned parametric methods,
in more detail specifically for the verification application. If there is dependency in the sample, then it is
prudent to account for this dependency in some way (see Gilleland (2020, part I) (page 450) part I for an
in-depth discussion of bootstrapping in the competing forecast verification domain). One method that is
particularly appropriate for serially dependent data is the circular block resampling procedure for step 2.

531

MET User’s Guide, version 11.1.0-beta2

532 Chapter 34. Appendix D Confidence Intervals

Chapter 35

Appendix E WWMCA Tools

There are two WWMCA tools available. The WWMCA-Plot tool makes a PostScript plot of one or more
WWMCA cloud percent files and the WWMCA-Regrid tool regrids WWMCA cloud percent files and reformats
them into netCDF files that the other MET tools can read.

The WWMCA tools get valid time and hemisphere (north or south) information from the file names, so it’s
important for both of the WWMCA tools that these file names not be changed.

The usage statement for wwmca_plot is

wwmca_plot [-outdir path] wwmca_cloud_pct_file_list

Here, wwmca_cloud_pct_file_list represents one or more WWMCA cloud percent files given on the com-
mand line. As with any command given to a UNIX shell, the user can use meta-characters as a shorthand
way to specify many filenames.

The optional -outdir argument specifies a directory where the output PostScript plots will be placed. If not
specified, then the plots will be put in the current (working) directory. Figure 35.1 shows an example of the
wwmca_plot output.

533

MET User’s Guide, version 11.1.0-beta2

Figure 35.1: Example output of WWMCA-Plot tool.

The usage statement for wwmca_regrid is

wwmca_regrid -out filename config filename [-nh filename] [-sh filename]

Here, the -out switch tells wwmca_regrid what to name the output netCDF file. The -config switch gives
the name of the config file that wwmca_regrid should use-like many of the MET tools, wwmca-regrid uses a
configuration file to specify user-changeable parameters. The format of this file will be explained below.

The -nh and -sh options give names of WWMCA cloud percent files that wwmca_regrid should use as input.
Northern hemisphere files are specified with -nh, and southern hemisphere files with -sh. At least one of
these must be given, but in many cases both need not be given.

In any regridding problem, there are two grids involved: the “From” grid, which is the grid the input data
are on, and the “To” grid, which is the grid the data are to be moved onto. For wwmca_regrid, the “To”
grid is specified in the config file. If this grid is entirely confined to one hemisphere, then only the WWMCA
data file for that hemisphere needs to be given. It’s only when the “To” grid straddles the equator that data
files for both hemispheres need to be given (though the interpolation width parameter in the config file can
change this-see below). Once the “To” grid is specified in the config file, the WWMCA-Regrid tool will know
which input data files it needs, and will complain if it’s not given the right ones.

534 Chapter 35. Appendix E WWMCA Tools

MET User’s Guide, version 11.1.0-beta2

Now let’s talk about the details of the config file. The config file has the same C-like syntax that all the other
MET config files use. The first (and most complicated) thing to specify is the “To” grid. This is given by the
to_grid parameter. If you are using one of the standard NCEP grids, for example grid #218, you can simply
write

To grid = "G218";

and that will work. Failing that, you must give the parameters that specify the grid and it’s projection.
Please refer the description of the grid specification strings in Appendix B Map Projections, Grids, and Polylines
(page 489).

Thankfully, the rest of the parameters in the config file are easier to specify.

The next two config file parameters have to do with specifying the interpolation scheme used. The in-
terp_method parameter specifies which interpolation method is to be used. Four methods are supported:
average, maximum, minimum and nearest neighbor. As an example, to specify the “average” method, one
would write

interp_method = "average";

The other interpolation parameter is interp_width. This specifies the width of the interpolation box used in
the above interpolation method. An example value could be

interp_width = 5;

The value must be odd and ≧ 1. If a value of 1 is specified, then nearest neighbor interpolation will be used
regardless of the value assigned to interp_method.

The fact that an interpolation box is used has one subtle implication-the “To” grid is effectively fattened by
half the width of the interpolation box. This means that even for a “To” grid that is entirely contained in one
hemisphere, if it comes close to the equator, this virtual fattening may be enough to push it over the equator,
and the user will then have to provide input WWMCA files for both hemispheres, even though the “To” grid
doesn’t cross the equator. The WWMCA-Regrid tool should detect this situation and complain to the user if
not given the correct input files.

The next variable, good_percent, tells what fraction of the values in the interpolation square needs to be
“good” in order for the interpolation scheme to return a “good” result. Example:

good percent = 0;

The rest of the config file parameters have to do with how the output netCDF file represents the data. These
should be self-explanatory, so I’ll just give an example:

variable_name = "Cloud Pct";
long_name = "cloud cover percent";
grib_code = 100;
units = "percent";
level = "SFC";

535

MET User’s Guide, version 11.1.0-beta2

536 Chapter 35. Appendix E WWMCA Tools

Chapter 36

Appendix F Python Embedding

36.1 Introduction

MET includes the ability to embed Python to a limited degree. Users may use their own Python scripts and
any associated Python packages they wish in order to prepare 2D gridded data fields, point observations,
and matched pairs as input to the MET tools. We fully expect that this degree of embedding will increase in
the future. In addition, plans are in place to extend Python with MET in upcoming releases, allowing users
to invoke MET tools directly from their Python script. While MET version 8.0 was built on Python 2.x, MET
versions 9.0 and beyond are built on Python 3.6+.

36.2 Compiling MET for Python Embedding

In order to use Python embedding, a local Python installation must be available when compiling the MET
software with the following requirements:

1. Python version 3.10.4+

2. C-language Python header files and libraries

3. NumPy Python package

4. netCDF4 Python package

5. Pandas Python package

6. Xarray Python package

Users should be aware that in some cases, the C-language Python header files and libraries may be deleted at
the end of the Python installation process, and they may need to confirm their availability prior to compiling
MET. Once the user has confirmed the above requirements are satisfied, they can compile the MET software
for Python embedding by passing the --enable-python option to the configure script on the command
line. This will link the MET C++ code directly to the Python libraries. The NumPy and netCDF4 Python
packages are required by the Python scripts included with the MET software that facilitate the passing of
data in memory and the reading and writing of temporary files when Python embedding is used.

537

MET User’s Guide, version 11.1.0-beta2

In addition to using --enable-python with configure as mentioned above, the following environment vari-
ables must also be set prior to executing configure: MET_PYTHON_BIN_EXE, MET_PYTHON_CC, and
MET_PYTHON_LD. These may either be set as environment variables or as command line options to config-
ure. These environment variables are used when building MET to enable the compiler to find the requisite
Python executable, header files, and libraries in the user’s local filesystem. Fortunately, Python provides a
way to set these variables properly. This frees the user from the necessity of having any expert knowledge
of the compiling and linking process. Along with the Python executable in the users local Python instal-
lation, there should be another executable called python3-config, whose output can be used to set these
environment variables as follows:

• Set MET_PYTHON_BIN_EXE to the full path of the desired Python executable.

• On the command line, run “python3-config --cflags”. Set the value of MET_PYTHON_CC to the
output of that command.

• Again on the command line, run “python3-config --ldflags --embed”. Set the value of
MET_PYTHON_LD to the output of that command.

Make sure that these are set as environment variables or that you have included them on the command line
prior to running configure

If a user attempts to invoke Python embedding with a version of MET that was not compiled with Python,
MET will return an ERROR:

Listing 36.1: MET Errors Without Python Enabled

ERROR : Met2dDataFileFactory::new_met_2d_data_file() -> Support for Python has not been␣
→˓compiled!
ERROR : To run Python scripts, recompile with the --enable-python option.

- or -

ERROR : process_point_obs() -> Support for Python has not been compiled!
ERROR : To run Python scripts, recompile with the --enable-python option.

36.3 Controlling Which Python MET Uses When Running

When MET is compiled with Python embedding support, MET uses the Python executable in that Python
installation by default when Python embedding is used. However, for users of highly configurable Python
environments, the Python instance set at compilation time may not be sufficient. Users may want to use
an alternate Python installation if they need additional packages not available in the Python installation
used when compiling MET. In MET versions 9.0+, users have the ability to use a different Python exe-
cutable when running MET than the version used when compiling MET by setting the environment variable
MET_PYTHON_EXE.

If a user’s Python script requires packages that are not available in the Python installation used when com-
piling the MET software, they will encounter a runtime error when using MET. In this instance, the user
will need to change the Python MET is using to a different installation with the required packages for their
script. It is the responsibility of the user to manage this Python installation, and one popular approach is

538 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

to use a custom Anaconda (Conda) Python environment. Once the Python installation meeting the user’s
requirements is available, the user can force MET to use it by setting the MET_PYTHON_EXE environment
variable to the full path of the Python executable in that installation. For example:

Listing 36.2: Setting MET_PYTHON_EXE

export MET_PYTHON_EXE=/usr/local/python3/bin/python3

Setting this environment variable triggers slightly different processing logic in MET than when MET uses
the Python installation that was used when compiling MET. When using the Python installation that was
used when compiling MET, Python is called directly and data are passed in memory from Python to the MET
tools. When the user sets MET_PYTHON_EXE, MET does the following:

1. Wrap the user’s Python script and arguments with a wrapper script (write_tmp_mpr.py,
write_tmp_point.py, or write_tmp_dataplane.py) and specify the name of a temporary file to be writ-
ten.

2. Use a system call to the MET_PYTHON_EXE Python instance to execute these commands and write
the resulting data objects to a temporary ASCII or NetCDF file.

3. Use the Python instance that MET was compiled with to run a wrapper script (read_tmp_ascii.py or
read_tmp_dataplane.py) to read data from that temporary file.

With this approach, users are able to execute Python scripts using their own custom Python installations.

36.4 Data Structures Supported by Python Embedding

Python embedding with MET tools offers support for three different types of data structures:

1. Two-dimensional (2D) gridded dataplanes

2. Point data conforming to the MET 11-column format (page 148)

3. Matched-pair data conforming to the MET MPR Line Type (page 222)

Details for each of these data structures are provided below.

Note: All sample commands and directories listed below are relative to the top level of the MET source
code directory.

36.4.1 Python Embedding for 2D Gridded Dataplanes

Currently, MET supports two different types of Python objects for two-dimensional gridded dataplanes:
NumPy N-dimensional arrays (ndarrays) and Xarray DataArrays. The keyword PYTHON_NUMPY is used on
the command line when using ndarrays, and PYTHON_XARRAY when using Xarray DataArrays. Example
commands are included at the end of this section.

36.4. Data Structures Supported by Python Embedding 539

MET User’s Guide, version 11.1.0-beta2

36.4.1.1 Python Script Requirements for 2D Gridded Dataplanes

1. The data must be stored in a variable with the name met_data

2. The met_data variable must be of type Xarray DataArray or NumPy N-D Array

3. The data inside the met_data variable must be double precision floating point type

4. A Python dictionary named attrs must be defined in the user’s script and contain the required attributes
(page 540)

36.4.1.2 Required Attributes for 2D Gridded Dataplanes

The attrs dictionary must contain the following information:

Table 36.1: 2D Dataplane Attributes

key description data type/format
valid valid time string (YYYYMMDD_HHMMSS)
init initialization time string (YYYYMMDD_HHMMSS)
lead forecast lead string (HHMMSS)
accum accumulation interval string (HHMMSS)
name variable name string
long_name variable long name string
level variable level string
units variable units string
grid grid information string or dict

Note: Often times Xarray DataArray objects come with their own set of attributes available as a property.
To avoid conflict with the required attributes for MET, it is advised to strip these attributes and rely on the
attrs dictionary defined in your script.

The grid entry in the attrs dictionary must contain the grid size and projection information in the same
format that is used in the netCDF files written out by the MET tools. The value of this item in the dictionary
can either be a string, or another dictionary. Examples of the grid entry defined as a string are:

• Using a named grid supported by MET:

Listing 36.3: Named Grid

'grid': 'G212'

• As a grid specification string, as described in Appendix B Map Projections, Grids, and Polylines
(page 489):

540 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

Listing 36.4: Grid Specification String

'grid': 'lambert 185 129 12.19 -133.459 -95 40.635 6371.2 25 25 N'

• As the path to an existing gridded data file:

Listing 36.5: Grid From File

'grid': '/path/to/sample_data.grib'

When specified as a dictionary, the contents of the grid entry vary based upon the grid type. The required
elements for supported grid types are:

• Lambert Conformal grid dictionary entries:

– type (“Lambert Conformal”)

– name (string)

– hemisphere (string: “N” or “S”)

– scale_lat_1, scale_lat_2 (double)

– lat_pin, lon_pin, x_pin, y_pin (double)

– lon_orient (double)

– d_km, r_km (double)

– nx, ny (int)

• Polar Stereographic grid dictionary entries:

– type (“Polar Stereographic”)

– name (string)

– hemisphere (string: “N” or “S”)

– scale_lat (double)

– lat_pin, lon_pin, x_pin, y_pin (double)

– lon_orient (double)

– d_km, r_km (double)

– nx, ny (int)

• Mercator grid dictionary entries:

– type (“Mercator”)

– name (string)

– lat_ll (double)

– lon_ll (double)

36.4. Data Structures Supported by Python Embedding 541

MET User’s Guide, version 11.1.0-beta2

– lat_ur (double)

– lon_ur (double)

– nx, ny (int)

• LatLon grid dictionary entries:

– type (“LatLon”)

– name (string)

– lat_ll, lon_ll (double)

– delta_lat, delta_lon (double)

– Nlat, Nlon (int)

• Rotated LatLon grid dictionary entries:

– type (“Rotated LatLon”)

– name (string)

– rot_lat_ll, rot_lon_ll (double)

– delta_rot_lat, delta_rot_lon (double)

– Nlat, Nlon (int)

– true_lat_south_pole, true_lon_south_pole (double)

– aux_rotation (double)

• Gaussian grid dictionary entries:

– type (“Gaussian”)

– name (string)

– lon_zero (double)

– nx, ny (int)

• SemiLatLon grid dictionary entries:

– type (“SemiLatLon”)

– name (string)

– lats (list of doubles)

– lons (list of doubles)

– levels (list of doubles)

– times (list of doubles)

Additional information about supported grids can be found in Appendix B Map Projections, Grids, and Poly-
lines (page 489).

Finally, an example attrs dictionary is shown below:

542 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

Listing 36.6: Sample Attrs Dictionary

attrs = {

'valid': '20050807_120000',
'init': '20050807_000000',
'lead': '120000',
'accum': '120000',

'name': 'Foo',
'long_name': 'FooBar',
'level': 'Surface',
'units': 'None',

Define 'grid' as a string or a dictionary

'grid': {
'type': 'Lambert Conformal',
'hemisphere': 'N',
'name': 'FooGrid',
'scale_lat_1': 25.0,
'scale_lat_2': 25.0,
'lat_pin': 12.19,
'lon_pin': -135.459,
'x_pin': 0.0,
'y_pin': 0.0,
'lon_orient': -95.0,
'd_km': 40.635,
'r_km': 6371.2,
'nx': 185,
'ny': 129,

}
}

36.4.1.3 Running Python Embedding for 2D Gridded Dataplanes

On the command line for any of the MET tools which will be obtaining its data from a Python script rather
than directly from a data file, the user should specify either PYTHON_NUMPY or PYTHON_XARRAY wher-
ever a (forecast or observation) data file would normally be given. Then in the name entry of the config
file dictionaries for the forecast or observation data (typically used to specify the field name from the input
data file), the user should list the full path to the Python script to be run followed by any command line
arguments for that script. Note that for tools like MODE that take two data files, it is entirely possible to use
the PYTHON_NUMPY for one file and the PYTHON_XARRAY for the other.

Listed below is an example of running the Plot-Data-Plane tool to call a Python script for data that is included
with the MET release tarball. Assuming the MET executables are in your path, this example may be run from

36.4. Data Structures Supported by Python Embedding 543

MET User’s Guide, version 11.1.0-beta2

the top-level MET source code directory:

Listing 36.7: plot_data_plane Python Embedding

plot_data_plane PYTHON_NUMPY fcst.ps \
'name="scripts/python/examples/read_ascii_numpy.py data/python/fcst.txt FCST";' \
-title "Python enabled plot_data_plane"

The first argument for the Plot-Data-Plane tool is the gridded data file to be read. When calling Python script
that has a two-dimensional gridded dataplane stored in a NumPy N-D array object, set this to the constant
string PYTHON_NUMPY. The second argument is the name of the output PostScript file to be written. The
third argument is a string describing the data to be plotted. When calling a Python script, set name to the
full path of the Python script to be run along with any command line arguments for that script. Lastly, the
-title option is used to add a title to the plot. Note that any print statements included in the Python script
will be printed to the screen. The above example results in the following log messages:

DEBUG 1: Opening data file: PYTHON_NUMPY
Input File: 'data/python/fcst.txt'
Data Name : 'FCST'
Data Shape: (129, 185)
Data Type: dtype('float64')
Attributes: {'name': 'FCST', 'long_name': 'FCST_word',

'level': 'Surface', 'units': 'None',
'init': '20050807_000000', 'valid': '20050807_120000',
'lead': '120000', 'accum': '120000'
'grid': {...} }

DEBUG 1: Creating postscript file: fcst.ps

36.4.1.4 Special Case for Ensemble-Stat, Series-Analysis, and MTD

The Ensemble-Stat, Series-Analysis, MTD and Gen-Ens-Prod tools all have the ability to read multiple input
files. Because of this feature, a different approach to Python embedding is required. A typical use of these
tools is to provide a list of files on the command line. For example:

Listing 36.8: Gen-Ens-Prod Command Line

gen_ens_prod ens1.nc ens2.nc ens3.nc ens4.nc -out ens_prod.nc -config GenEnsProd_config

In this case, a user is passing 4 ensemble members to Gen-Ens-Prod to be evaluated, and each member is in
a separate file. If a user wishes to use Python embedding to process the ensemble input files, then the same
exact command is used however special modifications inside the GenEnsProd_config file are needed. In the
config file dictionary, the user must set the file_type entry to either PYTHON_NUMPY or PYTHON_XARRAY
to activate the Python embedding for these tools. Then, in the name entry of the config file dictionaries for
the forecast or observation data, the user must list the full path to the Python script to be run. However,
in the Python command, replace the name of the input gridded data file to the Python script with the
constant string MET_PYTHON_INPUT_ARG. When looping over all of the input files, the MET tools will
replace that constant MET_PYTHON_INPUT_ARG with the path to the input file currently being processed

544 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

and optionally, any command line arguments for the Python script. Here is what this looks like in the
GenEnsProd_config file for the above example:

Listing 36.9: Gen-Ens-Prod MET_PYTHON_INPUT_ARG
Config

file_type = PYTHON_NUMPY;
field = [{ name = "gen_ens_prod_pyembed.py MET_PYTHON_INPUT_ARG"; }];

In the event the user requires command line arguments to their Python script, they must be included along-
side the file names separated by a delimiter. For example, the above Gen-Ens-Prod command with command
line arguments for Python would look like:

Listing 36.10: Gen-Ens-Prod Command Line with Python
Args

gen_ens_proce ens1.nc,arg1,arg2 ens2.nc,arg1,arg2 ens3.nc,arg1,arg2 ens4.nc,arg1,arg2 \
-out ens_prod.nc -config GenEnsProd_config

In this case, the user’s Python script will receive “ens1.nc,arg1,arg2” as a single command line argument for
each execution of the Python script (i.e. 1 time per file). The user must parse this argument inside their
Python script to obtain arg1 and arg2 as separate arguments. The list of input files and optionally, any
command line arguments can be written to a single file called file_list that is substituted for the file names
and command line arguments. For example:

Listing 36.11: Gen-Ens-Prod File List

echo "ens1.nc,arg1,arg2 ens2.nc,arg1,arg2 ens3.nc,arg1,arg2 ens4.nc,arg1,arg2" > file_list
gen_ens_prod file_list -out ens_prod.nc -config GenEnsProd_config

Finally, the above tools do not require data files to be present on a local disk. If the user wishes, their Python
script can obtain data from other sources based upon only the command line arguments to their Python
script. For example:

36.4. Data Structures Supported by Python Embedding 545

MET User’s Guide, version 11.1.0-beta2

Listing 36.12: Gen-Ens-Prod Python Args Only

gen_ens_prod 20230101,0 20230102,0 20230103,0 -out ens_prod.nc -confg GenEnsProd_config

In the above command, each of the arguments “20230101,0”, “20230102,0”, and “20230103,0” are provided
to the user’s Python script in separate calls. Then, inside the Python script these arguments are used to
construct a filename or query to a data server or other mechanism to return the desired data and format it
the way MET expects inside the Python script, prior to calling Gen-Ens-Prod.

36.4.1.5 Examples of Python Embedding for 2D Gridded Dataplanes

Grid-Stat with Python embedding for forecast and observations

Listing 36.13: GridStat Command with Dual Python Embed-
ding

grid_stat 'PYTHON_NUMPY' 'PYTHON_NUMPY' GridStat_config -outdir /path/to/output

Listing 36.14: GridStat Config with Dual Python Embedding

fcst = {
field = [

{
name = "/path/to/fcst/python/script.py python_arg1 python_arg2";

}
];

}

obs = {
field = [

{
name = "/path/to/obs/python/script.py python_arg1 python_arg2";

}
];

}

546 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

36.4.2 Python Embedding for Point Observations

MET also supports point observation data supplied in the MET 11-column format (page 148).

36.4.2.1 Python Script Requirements for Point Observations

1. The data must be stored in a variable with the name point_data

2. The point_data variable must be a Python list representation of a NumPy N-D Array created from a
Pandas DataFrame

3. The point_data variable must have data in each of the 11 columns required for the MET tools even if
it is NA

To provide the data that MET expects for point observations, the user is encouraged when designing their
Python script to consider how to map their observations into the MET 11-column format. Then, the user can
populate their observations into a Pandas DataFrame with the following column names and dtypes:

Table 36.2: Point Observation DataFrame Columns and
Dtypes

column name data type (dtype) description
typ string Message Type
sid string Station ID
vld string Valid Time (YYYYMMDD_HHMMSS)
lat numeric Latitude (Degrees North)
lon numeric Longitude (Degrees East)
elv numeric Elevation (MSL)
var string Variable name (or GRIB code)
lvl numeric Level
hgt numeric Height (MSL or AGL)
qc string QC string
obs numeric Observation Value

To create the variable for MET, use the .values property of the Pandas DataFrame and the .tolist() method
of the NumPy N-D Array. For example:

36.4. Data Structures Supported by Python Embedding 547

MET User’s Guide, version 11.1.0-beta2

Listing 36.15: Convert Pandas DataFrame to MET variable

Pandas DataFrame
my_dataframe = pd.DataFrame()

Convert to MET variable
point_data = my_dataframe.values.tolist()

36.4.2.2 Running Python Embedding for Point Observations

The Point2Grid, Plot-Point-Obs, Ensemble-Stat, and Point-Stat tools support Python embedding for point
observations. Python embedding for these tools can be invoked directly on the command line by replacing
the input MET NetCDF point observation file name with the full path to the Python script and any arguments.
The Python command must begin with the prefix PYTHON_NUMPY=. The full command should be enclosed
in quotes to prevent embedded whitespace from causing parsing errors. An example of this is shown below
for Plot-Point-Obs:

Listing 36.16: plot_point_obs with Python Embedding

plot_point_obs \
"PYTHON_NUMPY=scripts/python/examples/read_ascii_point.py data/sample_obs/ascii/sample_ascii_
→˓obs.txt" \
output_image.ps

The ASCII2NC tool also supports Python embedding, however invoking it varies slightly from other MET
tools. For ASCII2NC, Python embedding is used by providing the “-format python” option on the command
line. With this option, point observations may be passed as input. An example of this is shown below:

548 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

Listing 36.17: ascii2nc with Python Embedding

ascii2nc -format python \
"scripts/python/examples/read_ascii_point.py data/sample_obs/ascii/sample_ascii_obs.txt" \
sample_ascii_obs_python.nc

Both of the above examples use the read_ascii_point.py example script which is included with the MET
code. It reads ASCII data in MET’s 11-column point observation format and stores it in a Pandas DataFrame
to be read by the MET tools using Python embedding for point data. The read_ascii_point.py example
script can be found in:

• MET installation directory in scripts/python/examples.

• MET GitHub repository in scripts/python/examples.

36.4.2.3 Examples of Python Embedding for Point Observations

Point-Stat with Python embedding for forecast and observations

Listing 36.18: PointStat Command with Dual Python Embed-
ding

point_stat 'PYTHON_NUMPY' 'PYTHON_NUMPY=/path/to/obs/python/script.py python_arg1 python_arg2
→˓' PointStat_config -outdir /path/to/output

Listing 36.19: PointStat Config with Dual Python Embedding

fcst = {
field = [

{
name = "/path/to/fcst/python/script.py python_arg1 python_arg2";

}
];

}

36.4.3 Python Embedding for MPR Data

The MET Stat-Analysis tool also supports Python embedding. By using the command line option -lookin
python, Stat-Analysis can read matched pair (MPR) data formatted in the MET MPR line-type format via
Python.

Note: This functionality assumes you are passing only the MPR line type information, and not other
statistical line types. Sometimes users configure MET tools to write the MPR line type to the STAT file (along
with all other line types). The example below will not work for those files, but rather only files from MET
tools containing just the MPR line type information, or optionally, data in another format that the user adapts

36.4. Data Structures Supported by Python Embedding 549

https://github.com/dtcenter/MET

MET User’s Guide, version 11.1.0-beta2

to the MPR line type format.

36.4.3.1 Python Script Requirements for MPR Data

1. The data must be stored in a variable with the name mpr_data

2. The mpr_data variable must be a Python list representation of a NumPy N-D Array created from a
Pandas DataFrame

3. The met_data variable must have data in exactly 36 columns, corresponding to the summation of the
common STAT output (page 209) and the MPR line type output (page 222).

If a user does not have an existing MPR line type file created by the MET tools, they will need to map their
data into the 36 columns expected by Stat-Analysis for the MPR line type data. If a user already has MPR
line type files, the most direct way for a user to read MPR line type data is to model their Python script after
the sample read_ascii_mpr.py script. Sample code is included here for convenience:

Listing 36.20: Reading MPR line types with Pandas

Open the MPR line type file
mpr_dataframe = pd.read_csv(input_mpr_file,\

header=None,\
delim_whitespace=True,\
keep_default_na=False,\
skiprows=1,\
usecols=range(1,36),\
dtype=str)

Convert to the variable MET expects
mpr_data = mpr_dataframe.values.tolist()

36.4.3.2 Running Python Embedding for MPR Data

Stat-Analysis can be run using the -lookin python command line option:

Listing 36.21: Stat-Analysis with Python Embedding of MPR
Data

stat_analysis \
-lookin python scripts/python/examples/read_ascii_mpr.py point_stat_mpr.txt \
-job aggregate_stat -line_type MPR -out_line_type CNT \
-by FCST_VAR,FCST_LEV

In this example, rather than passing the MPR output lines from Point-Stat directly into Stat-Analysis (which
is the typical approach), the read_ascii_mpr.py Python embedding script reads that file and passes the data
to Stat-Analysis. The aggregate_stat job is defined on the command line and CNT statistics are derived from

550 Chapter 36. Appendix F Python Embedding

MET User’s Guide, version 11.1.0-beta2

the MPR input data. Separate CNT statistics are computed for each unique combination of FCST_VAR and
FCST_LEV present in the input.

The read_ascii_mpr.py sample script can be found in:

• MET installation directory in scripts/python/examples.

• MET GitHub repository in MET/scripts/python/examples.

36.5 MET Python Package

MET comes with a Python package that provides core functionality for the Python embedding capability. In
rare cases, advanced users may find the classes and functions included with this Python package useful.

To utilize the MET Python package standalone when NOT using it with Python embedding, users must add
the following to their PYTHONPATH environment variable:

Listing 36.22: MET Python Module PYTHONPATH

export PYTHONPATH={MET_INSTALL_DIR}/share/met/python

where {MET_INSTALL_DIR} is the top level directory where MET is installed, for example /usr/local/met.

36.5. MET Python Package 551

https://github.com/dtcenter/MET

MET User’s Guide, version 11.1.0-beta2

552 Chapter 36. Appendix F Python Embedding

Chapter 37

Appendix G Vectors and Vector Statistics

In this appendix, we discuss some basic properties of vectors, concentrating on the two-dimensional case.
To keep the discussion simple, we will assume we are using a Cartesian coordinate system.

Traditionally, vectors have been defined as quantities having both magnitude and direction, exemplified by a
directed line segment. The magnitude of the vector is shown by the length of the segment, and the direction
of the vector is usually shown by drawing an arrowhead on one end of the segment. Computers (and, in
the author’s experience, people) are usually more comfortable working with numbers, and so instead of
the usual graphical definition of a vector, we will take the definition used in analytic geometry: A (two-
dimensional) vector is an ordered pair of numbers. We will use boldface type to denote vectors, and so we
can write

v = (𝑎, 𝑏)

to show that the vector v consists of the ordered pair of numbers a and b. The number a is called the first (or
x) component of v, and b is called the second (or y) component. Vector addition is performed component-
wise: (𝑎, 𝑏)+(𝑐, 𝑑) = (𝑎+𝑐, 𝑏+𝑑), and similarly for subtraction. If 𝛼 is a scalar, then we define multiplication
by the scalar 𝛼 as 𝛼(𝑎, 𝑏) = (𝛼𝑎, 𝛼𝑏), and similarly for division by a (nonzero) scalar.

The norm (or length, or magnitude) of a vector v = (𝑎, 𝑏), is

|v| =
√︀
𝑎2 + 𝑏2

Note that |v| = 0 if and only if 𝑎 = 𝑏 = 0, in which case we say that v is the zero vector. If 𝛼 is a scalar, then

|𝛼v| = |𝛼||v|

The most important relation between vectors and their norms is given by the triangle inequality:

|v +w| ≤ |v|+ |w|

In some cases, only the direction of a vector is of interest, and in such cases we can replace a nonzero vector
v by the unique vector 𝑁(v) that has the same direction as v, but has norm 1:

𝑁(v) =
v

|v|

553

MET User’s Guide, version 11.1.0-beta2

The vector 𝑁(v) will be called the unit vector corresponding to v, or more simply the direction of v. Note
that the zero vector has no direction.

Since vectors are characterized by magnitude (norm) and direction, this gives two ways to compare vectors:
we can compare either their magnitudes or their directions. If v and w are vectors, then we can compare
their norms by either taking the norm of the difference |v −w| or the difference of the norms |v| − |w|. It’s
not always made clear in verification studies which of these is meant, and in general these two quantities
will be different. However, by making use of the triangle inequality it can be shown that there is a relation
between them. To derive this, let z = v −w, from which we get v = w + z. Now taking norms and using
the triangle inequality,

|v| = |w + z| ≤ |w|+ |z| = |w|+ |v −w|

which gives

|v| − |w| ≤ |v −w|

Reversing the roles of v and w now gives the result:

||v| − |w|| ≤ |v −w|

In the same manner, we can compare the directions of two different nonzero vectors v and w by either the
direction of the difference 𝑁(v − w), or by the difference in the directions 𝑁(v) − 𝑁(w). Unlike the case
for magnitudes, however, there is in general no relationship at all between these two measures of direction
difference.

Now let us specialize this discussion of vectors to verification of wind vector data. We will denote the forecast
wind vector by F, and the observed wind vector by O. These are two-dimensional horizontal vectors with u
and v components as follows:

F = (𝑢𝑓 , 𝑣𝑓) and O = (𝑢𝑜, 𝑣𝑜)

We will assume that we have N observations of forecast and observed wind:

F𝑖 = (𝑢𝑓𝑖, 𝑣𝑓𝑖) and O𝑖 = (𝑢𝑜𝑖, 𝑣𝑜𝑖)

for 1 ≤ 𝑖 ≤ 𝑁 . We also have the forecast and observed wind speeds:

𝑠𝑓 = |F| =
√︁
𝑢2𝑓 + 𝑣2𝑓 and 𝑠𝑜 = |O| =

√︀
𝑢2𝑜 + 𝑣2𝑜

and, at each data point,

𝑠𝑓𝑖 = |F𝑖| =
√︁

𝑢2𝑓𝑖 + 𝑣2𝑓𝑖 and 𝑠𝑜𝑖 = |O𝑖| =
√︁
𝑢2𝑜𝑖 + 𝑣2𝑜𝑖

It will be convenient to denote the average forecast and observed wind vectors by F𝑎 and O𝑎:

F𝑎 =
1

𝑁

∑︁
𝑖

F𝑖 and O𝑎 =
1

𝑁

∑︁
𝑖

O𝑖

Now let us look at the definitions of the vector statistics produced by MET:

554 Chapter 37. Appendix G Vectors and Vector Statistics

MET User’s Guide, version 11.1.0-beta2

FBAR and OBAR are the average values of the forecast and observed wind speed.

FBAR =
1

𝑁

∑︁
𝑖

𝑠𝑓𝑖

OBAR =
1

𝑁

∑︁
𝑖

𝑠𝑜𝑖

FS_RMS and OS_RMS are the root-mean-square values of the forecast and observed wind speeds.

FS_RMS = [
1

𝑁

∑︁
𝑖

𝑠2𝑓𝑖]
1/2

OS_RMS = [
1

𝑁

∑︁
𝑖

𝑠2𝑜𝑖]
1/2

MSVE and RMSVE are, respectively, the mean squared, and root mean squared, lengths of the vector differ-
ence between the forecast and observed wind vectors.

MSVE =
1

𝑁

∑︁
𝑖

|F𝑖 −O𝑖|2

RMSVE =
√
𝑀𝑆𝑉 𝐸

FSTDEV and OSTDEV are the standard deviations of the forecast and observed wind speeds.

FSTDEV =
1

𝑁

∑︁
𝑖

(𝑠𝑓𝑖 − FBAR)2 =
1

𝑁

∑︁
𝑖

𝑠2𝑓𝑖 − FBAR2

OSTDEV =
1

𝑁

∑︁
𝑖

(𝑠𝑜𝑖 − OBAR)2 =
1

𝑁

∑︁
𝑖

𝑠2𝑜𝑖 − OBAR2

FDIR and ODIR are the direction (angle) of F𝑎 and O𝑎 with respect to the grid directions.

FDIR = direction angle of F𝑎

ODIR = direction angle of O𝑎

FBAR_SPEED and OBAR_SPEED are the lengths of the average forecast and observed wind vectors. Note
that this is not the same as the average forecast and observed wind speeds (ie., the length of an average
vector ̸= the average length of the vector).

FBAR_SPEED = |F𝑎|
OBAR_SPEED = |O𝑎|

555

MET User’s Guide, version 11.1.0-beta2

VDIFF_SPEED is the length (ie. speed) of the vector difference between the average forecast and average
observed wind vectors.

VDIFF_SPEED = |F𝑎 −O𝑎|

Note that this is not the same as the difference in lengths (speeds) of the average forecast and observed
wind vectors. That quantity is called SPEED_ERR (see below). There is a relationship between these two
statistics however: using some of the results obtained in the introduction to this appendix, we can say that
||F𝑎| − |O𝑎|| ≤ |F𝑎 −O𝑎| or, equivalently, that |SPEED_ERR | ≤ VDIFF_SPEED.

VDIFF_DIR is the direction of the vector difference of the average forecast and average observed wind
vectors. Note that this is {it not} the same as the difference in direction of the average forecast and average
observed wind vectors. This latter quantity would be FDIR − ODIR.

VDIFF_DIR = direction of (F𝑎 −O𝑎)

SPEED_ERR is the difference in the lengths (speeds) of the average forecast and average observed wind
vectors. (See the discussion of VDIFF_SPEED above.)

SPEED_ERR = |F𝑎| − |O𝑎| = FBAR_SPEED − OBAR_SPEED

SPEED_ABSERR is the absolute value of SPEED_ERR. Note that we have SPEED_ABSERR ≤ VDIFF_SPEED
(see the discussion of VDIFF_SPEED above).

SPEED_ABSERR = |SPEED_ERR |

DIR_ERR is the signed angle between the directions of the average forecast and average observed wind
vectors. Positive if the forecast vector is counterclockwise from the observed vector.

DIR_ERR = direction between 𝑁(F𝑎) and 𝑁(O𝑎)

DIR_ABSERR is the absolute value of DIR_ERR. In other words, it’s an unsigned angle rather than a signed
angle.

DIR_ABSERR = |DIR_ERR |

556 Chapter 37. Appendix G Vectors and Vector Statistics

	Overview of MET
	Purpose and organization of the User’s Guide
	The Developmental Testbed Center (DTC)
	MET goals and design philosophy
	MET components
	Future development plans
	Code support
	Fortify and SonarQube

	MET Release Information
	MET Release Notes
	MET Version 11.1.0-beta2 release notes (20230505)
	MET Version 11.1.0-beta1 release notes (20230228)
	MET Version 11.0.0 release notes (20221209)

	MET Upgrade Instructions
	MET Version 11.1.0 upgrade instructions
	MET Version 11.0.0 upgrade instructions

	Software Installation/Getting Started
	Introduction
	Supported Architectures
	Programming Languages
	Required Compilers and Scripting Languages
	Required Libraries and Optional Utilities
	Installation of Required Libraries
	Installation of Optional Utilities
	MET Directory Structure
	Building the MET Package
	Get the MET source code
	Install the Required Libraries
	Set Environment Variables
	Configure and Execute the Build
	Make Targets

	Sample Test Cases

	MET Data I/O
	Input data formats
	Requirements for CF Compliant NetCDF
	Performance with NetCDF input data

	Intermediate data formats
	Output data formats
	Data format summary
	Configuration File Details

	Configuration File Overview
	Runtime Environment Variables
	User-Specified Environment Variables
	MET_AIRNOW_STATIONS
	MET_NDBC_STATIONS
	MET_BASE
	MET_OBS_ERROR_TABLE
	MET_GRIB_TABLES
	OMP_NUM_THREADS

	Settings common to multiple tools
	exit_on_warning
	nc_compression
	output_precision
	tmp_dir
	message_type_group_map
	message_type_map
	model
	desc
	obtype
	regrid
	fcst
	obs
	climo_mean
	climo_stdev
	climo_cdf
	climato_data
	mask_missing_flag
	obs_window
	mask
	ci_alpha
	boot
	interp
	land_mask
	topo_mask
	hira
	output_flag
	nc_pairs_flag
	nc_pairs_var_name
	nc_pairs_var_suffix
	ps_plot_flag
	grid_weight_flag
	hss_ec_value
	rank_corr_flag
	duplicate_flag
	obs_summary
	obs_perc_value
	obs_quality_inc
	obs_quality_exc
	met_data_dir
	many_plots
	output_prefix
	version
	time_summary

	Settings specific to individual tools
	EnsembleStatConfig_default
	ens
	nbrhd_prob
	nmep_smooth
	fcst, obs
	nc_var_str
	obs_thresh
	skip_const
	obs_error
	ensemble_flag
	rng

	MODEAnalysisConfig_default
	MODEConfig_default
	quilt
	fcst, obs
	grid_res
	match_flag
	max_centroid_dist
	weight
	interest_function
	total_interest_thresh
	print_interest_thresh
	plot_valid_flag
	plot_gcarc_flag
	ct_stats_flag
	shift_right

	PB2NCConfig_default
	message_type
	station_id
	elevation_range
	pb_report_type
	in_report_type
	instrument_type
	level_range
	level_category
	obs_bufr_var
	obs_bufr_map
	obs_prepbufr_map
	quality_mark_thresh
	event_stack_flag

	SeriesAnalysisConfig_default
	block_size
	vld_thresh
	output_stats

	STATAnalysisConfig_default
	jobs

	WaveletStatConfig_default
	grid_decomp_flag
	tile
	wavelet
	obs_raw_wvlt_object_plots

	WWMCARegridConfig_default
	to_grid
	NetCDF output information
	max_minutes (pixel age)
	swap_endian
	write_pixel_age

	Tropical Cyclone Configuration Options
	Configuration settings common to multiple tools
	storm_id
	basin
	cyclone
	storm_name
	init_beg end inc exc
	valid_beg end inc exc
	init_hour
	lead_req
	version

	Settings specific to individual tools
	TCPairsConfig_default
	model
	init_mask, valid_mask
	check_dup
	interp12
	consensus
	lag_time
	best
	anly_track
	match_points
	dland_file
	watch_warn
	basin_map

	TCStatConfig_default
	amodel, bmodel
	init valid_hour lead req
	init_mask, valid_mask
	line_type
	track_watch_warn
	column_thresh_name_and_val
	column_str_name, column_str_val
	column_str_name val
	init_thresh_name, init_thresh_val
	init_str_name, init_str_val
	init_str_exc_name and _exc_val
	water_only
	rirw
	landfall beg end
	event_equal
	event_equal_lead
	out_int_mask
	out_valid_mask
	job

	TCGenConfig_default
	init_freq
	lead_window
	min_duration
	fcst_genesis
	best_genesis
	oper_genesis
	filter
	desc
	model
	init_beg, init_end
	valid_beg, valid_end
	lead
	vx_mask
	dland_thresh
	genesis_window
	genesis_radius
	ci_alpha
	output_flag

	Re-Formatting of Point Observations
	PB2NC tool
	pb2nc usage
	Required arguments for pb2nc
	Optional arguments for pb2nc

	pb2nc configuration file
	pb2nc output

	ASCII2NC tool
	ascii2nc usage
	Required arguments for ascii2nc
	Optional arguments for ascii2nc

	ascii2nc configuration file
	ascii2nc output

	MADIS2NC tool
	madis2nc usage
	Required arguments for madis2nc
	Optional arguments for madis2nc

	madis2nc configuration file
	madis2nc output

	LIDAR2NC tool
	lidar2nc usage
	Required arguments for lidar2nc
	Optional arguments for lidar2nc

	lidar2nc output

	IODA2NC tool
	ioda2nc usage
	Required arguments for ioda2nc
	Optional arguments for ioda2nc

	ioda2nc configuration file
	ioda2nc output

	Point2Grid tool
	point2grid usage
	Required arguments for point2grid
	Optional arguments for point2grid

	point2grid output
	point2grid configuration file

	Point NetCDF to ASCII Python Utility

	Re-Formatting of Gridded Fields
	Pcp-Combine tool
	pcp_combine usage
	Required arguments for the pcp_combine
	Optional arguments for pcp_combine
	Required arguments for the pcp_combine sum command
	Optional arguments for pcp_combine sum command
	Required arguments for the pcp_combine derive command
	Input files for pcp_combine add, subtract, and derive commands

	pcp_combine output

	Regrid-Data-Plane tool
	regrid_data_plane usage
	Required arguments for regrid_data_plane
	Optional arguments for regrid_data_plane

	Automated regridding within tools

	Shift-Data-Plane tool
	shift_data_plane usage
	Required arguments for shift_data_plane
	Optional arguments for shift_data_plane

	MODIS regrid tool
	modis_regrid usage
	Required arguments for modis_regrid
	Optional arguments for modis_regrid

	WWMCA Tool Documentation
	wwmca_plot usage
	Required arguments for wwmca_plot
	Optional arguments for wwmca_plot

	wwmca_regrid usage
	Required arguments for wwmca_regrid
	Optional arguments for wwmca_regrid

	wwmca_regrid configuration file

	Gen-Ens-Prod Tool
	Introduction
	Scientific and statistical aspects
	Ensemble forecasts derived from a set of deterministic ensemble members
	Climatology data

	Practical Information
	gen_ens_prod usage
	Required arguments gen_ens_prod
	Optional arguments for gen_ens_prod
	gen_ens_prod configuration file
	gen_ens_prod output

	Regional Verification using Spatial Masking
	Gen-Vx-Mask tool
	gen_vx_mask usage
	Required arguments for gen_vx_mask
	Optional arguments for gen_vx_mask

	Feature-Relative Methods

	Point-Stat Tool
	Introduction
	Scientific and statistical aspects
	Interpolation/matching methods
	HiRA framework
	SEEPS scores
	Statistical measures
	Measures for categorical variables
	Measures for continuous variables
	Measures for probabilistic forecasts and dichotomous outcomes
	Measures for comparison against climatology

	Statistical confidence intervals

	Practical information
	point_stat usage
	Required arguments for point_stat
	Optional arguments for point_stat

	point_stat configuration file
	point_stat output

	Grid-Stat Tool
	Introduction
	Scientific and statistical aspects
	Statistical measures
	Measures for categorical variables
	Measures for continuous variables
	Measures for probabilistic forecasts and dichotomous outcomes
	Use of a climatology field for comparative verification
	Use of analysis fields for verification

	Statistical confidence intervals
	Grid weighting
	Neighborhood methods
	SEEPS scores
	Fourier Decomposition
	Gradient Statistics
	Distance Maps
	 and G

	Practical information
	grid_stat usage
	Required arguments for grid_stat
	Optional arguments for grid_stat

	grid_stat configuration file
	grid_stat output

	Ensemble-Stat Tool
	Introduction
	Scientific and statistical aspects
	HiRA framework
	Ensemble statistics
	Climatology data
	Ensemble observation error

	Practical Information
	ensemble_stat usage
	Required arguments ensemble_stat
	Optional arguments for ensemble_stat

	ensemble_stat configuration file
	ensemble_stat output

	Wavelet-Stat Tool
	Introduction
	Scientific and statistical aspects
	The method
	The spatial domain constraints
	Aggregation of statistics on multiple cases

	Practical information
	wavelet_stat usage
	Required arguments for wavelet_stat
	Optional arguments for wavelet_stat

	wavelet_stat configuration file
	wavelet_stat output

	GSI Tools
	GSID2MPR tool
	gsid2mpr usage
	Required arguments for gsid2mpr
	Optional arguments for gsid2mpr

	gsid2mpr output

	GSIDENS2ORANK tool
	gsidens2orank usage
	Required arguments for gsidens2orank
	Optional arguments for gsidens2orank

	gsidens2orank output

	Stat-Analysis Tool
	Introduction
	Scientific and statistical aspects
	Filter STAT lines
	Summary statistics for columns
	Aggregated values from multiple STAT lines
	Aggregate STAT lines and produce aggregated statistics
	Skill Score Index
	GO Index
	CBS Index
	Ramp Events
	Wind Direction Statistics

	Practical information
	stat_analysis usage
	Required arguments for stat_analysis
	Optional arguments for stat_analysis

	stat_analysis configuration file
	stat-analysis tool output
	Job: filter
	Job: summary
	Job: aggregate
	Job: aggregate_stat
	Job: ss_index, go_index, cbs_index
	Job: ramp

	Series-Analysis Tool
	Introduction
	Practical Information
	series_analysis usage
	Required arguments series_stat
	Optional arguments for series_analysis

	series_analysis output
	series_analysis configuration file

	Grid-Diag Tool
	Introduction
	Practical information
	grid_diag usage
	Required arguments for grid_diag
	Optional arguments for grid_diag

	grid_diag configuration file
	grid_diag output file

	MODE Tool
	Introduction
	Scientific and statistical aspects
	Resolving objects
	Attributes
	Fuzzy logic
	Summary statistics
	Multi-Variate MODE

	Practical information
	mode usage
	Required arguments for mode
	Optional arguments for mode

	mode configuration file
	mode output

	MODE-Analysis Tool
	Introduction
	Scientific and statistical aspects
	Practical information
	mode_analysis usage
	Required arguments for mode_analysis:
	Optional arguments for mode_analysis
	Analysis options
	MODE Command Line Options
	Toggles
	Multiple-set string options
	Multiple-set integer options
	Integer max/min options
	Date/time max/min options
	Floating-point max/min options
	Miscellaneous options

	mode_analysis configuration file
	mode_analysis output

	MODE Time Domain Tool
	Introduction
	Motivation

	Scientific and statistical aspects
	Attributes
	Convolution
	3D Single Attributes
	3D Pair Attributes
	2D Constant-Time Attributes
	Matching and Merging

	Practical information
	MTD input
	MTD usage
	Required arguments for mtd
	Optional arguments for mtd

	MTD configuration file
	mtd output

	MET-TC Overview
	Introduction
	MET-TC components
	Input data format
	Output data format

	TC-Dland Tool
	Introduction
	Input/output format
	Practical information
	tc_dland usage
	Required arguments for tc_dland
	Optional arguments for tc_dland

	TC-Pairs Tool
	Introduction
	Scientific and statistical aspects
	TC Diagnostics

	Practical information
	tc_pairs usage
	Required arguments for tc_pairs
	Optional arguments for tc_pairs

	tc_pairs configuration file
	tc_pairs output

	TC-Stat Tool
	Introduction
	Statistical aspects
	Filter TCST lines
	Summary statistics for columns
	Frequency of Superior Performance
	Time-Series Independence

	Rapid Intensification/Weakening
	Probability of Rapid Intensification

	Practical information
	tc_stat usage
	Required arguments for tc_stat
	Optional arguments for tc_stat
	tc_stat configuration file

	tc_stat output

	TC-Gen Tool
	Introduction
	Statistical aspects
	Practical information
	tc_gen usage
	Required arguments for tc_gen
	Optional arguments for tc_gen
	Scoring Logic

	tc_gen configuration file
	tc_gen output

	TC-RMW Tool
	Introduction
	Practical information
	tc_rmw usage
	Required arguments for tc_rmw
	Optional arguments for tc_rmw

	tc_rmw configuration file
	tc_rmw output file

	RMW-Analysis Tool
	Introduction
	Practical information
	rmw_analysis usage
	Required arguments for rmw_analysis
	Optional arguments for rmw_analysis

	rmw_analysis configuration file
	rmw_analysis output file

	Plotting and Graphics Support
	Plotting Utilities
	plot_point_obs usage
	Required arguments for plot_point_obs
	Optional arguments for plot_point_obs

	plot_point_obs configuration file
	plot_data_plane usage
	Required arguments for plot_data_plane
	Optional arguments for plot_data_plane

	plot_mode_field usage
	Required arguments for plot_mode_field
	Optional arguments for plot_mode_field

	Examples of plotting MET output
	Grid-Stat tool examples
	MODE tool examples
	TC-Stat tool example

	References
	Appendix A FAQs & How do I … ?
	Frequently Asked Questions
	File-IO
	Q. How do I improve the speed of MET tools using Gen-Vx-Mask?
	Q. How do I use map_data?
	Q. How can I understand the number of matched pairs?
	Q. What types of NetCDF files can MET read?
	Q. How do I choose a time slice in a NetCDF file?
	Q. How do I use the UNIX time conversion?
	Q. Does MET use a fixed-width output format for its ASCII output files?
	Q. Do the ASCII output files created by MET use scientific notation?

	Gen-Vx-Mask
	Q. I have a list of stations to use for verification. I also have a poly region defined. If I specify both of these should the result be a union of them?
	Q. How do I define a masking region with a GFS file?

	Grid-Stat
	Q. How do I define a complex masking region?
	Q. How do I use neighborhood methods to compute fraction skill score?
	Q. Is an example of verifying forecast probabilities?
	Q. What is an example of using Grid-Stat with regridding and masking turned on?
	Q. How do I use one mask for the forecast field and a different mask for the observation field?

	Pcp-Combine
	Q. How do I add and subtract with Pcp-Combine?
	Q. How do I combine 12-hour accumulated precipitation from two different initialization times?
	Q. How do I correct a precipitation time range?
	Q. How do I use Pcp-Combine as a pass-through to simply reformat from GRIB to NetCDF or to change output variable name?
	Q. How do I use “-pcprx” to run a project faster?
	Q. How do I enter the time format correctly?
	Q. How do I use Pcp-Combine when my GRIB data doesn’t have the appropriate accumulation interval time range indicator?
	Q. How do I use “-sum”, “-add”, and “-subtract“ to achieve the same accumulation interval?
	Q. What is the difference between “-sum” vs. “-add”?
	Q. How do I select a specific GRIB record?

	Plot-Data-Plane
	Q. How do I inspect Gen-Vx-Mask output?
	Q. How do I specify the GRIB version?
	Q. How do I test the variable naming convention? (Record number example.)
	Q. How do I compute and verify wind speed?

	Stat-Analysis
	Q. How does ‘-aggregate_stat’ work?
	Q. What is the best way to average the FSS scores within several days or even several months using ‘Aggregate to Average Scores’?
	Q. How do I use ‘-by’ to capture unique entries?
	Q. How do I use ‘-filter’ to refine my output?
	Q. How do I use the “-by” flag to stratify results?
	Q. How do I speed up run times?

	TC-Stat
	Q. How do I use the “-by” flag to stratify results?
	Q. How do I use rapid intensification verification?

	Utilities
	Q. What would be an example of scripting to call MET?
	Q. How do I convert TRMM data files?
	Q. How do I convert a PostScript to png?
	Q. How does pairwise differences using plot_tcmpr.R work?

	Miscellaneous
	Q. Regrid-Data-Plane - How do I define a LatLon grid?
	Q. Pre-processing - How do I use wgrib2, pcp_combine regrid and reformat to format NetCDF files?
	Q. TC-Pairs - How do I get rid of WARNING: TrackInfo Using Specify Model Suffix?
	Q. Why is the grid upside down?
	Q. Why was the MET written largely in C++ instead of FORTRAN?
	Q. How does MET differ from the previously mentioned existing verification packages?
	Q. Will the MET work on data in native model coordinates?
	Q. How do I get help if my questions are not answered in the User’s Guide?
	Q. What graphical features does MET provide?
	Q. How do I find the version of the tool I am using?
	Q. What are MET’s conventions for latitude, longitude, azimuth and bearing angles?

	Troubleshooting
	MET won’t compile
	BUFRLIB Errors during MET installation
	Command line double quotes
	Environment variable settings
	NetCDF install issues
	Error while loading shared libraries
	General troubleshooting

	Where to get help
	How to contribute code

	Appendix B Map Projections, Grids, and Polylines
	Map Projections
	Grid Specification Strings
	Grids
	Polylines for NCEP Regions

	Appendix C Verification Measures
	Which statistics are the same, but with different names?
	MET verification measures for categorical (dichotomous) variables
	TOTAL
	Base rate
	Mean forecast
	Accuracy
	Frequency Bias
	H_RATE
	Probability of Detection (POD)
	Probability of False Detection (POFD)
	Probability of Detection of the non-event (PODn)
	False Alarm Ratio (FAR)
	Critical Success Index (CSI)
	Gilbert Skill Score (GSS)
	Hanssen-Kuipers Discriminant (HK)
	Heidke Skill Score (HSS)
	Heidke Skill Score - Expected Correct (HSS_EC)
	Odds Ratio (OR)
	Logarithm of the Odds Ratio (LODDS)
	Odds Ratio Skill Score (ORSS)
	Extreme Dependency Score (EDS)
	Extreme Dependency Index (EDI)
	Symmetric Extreme Dependency Score (SEDS)
	Symmetric Extremal Dependency Index (SEDI)
	Bias-Adjusted Gilbert Skill Score (BAGSS)
	Economic Cost Loss Relative Value (ECLV)
	Stable Equitable Error in Probability Space (SEEPS)

	MET verification measures for continuous variables
	Mean forecast
	Mean observation
	Forecast standard deviation
	Observation standard deviation
	Pearson Correlation Coefficient
	Spearman rank correlation coefficient (s)
	Kendall’s Tau statistic ()
	Mean Error (ME)
	Mean Error Squared (ME2)
	Multiplicative Bias
	Mean-squared error (MSE)
	Root-mean-squared error (RMSE)
	Scatter Index (SI)
	Standard deviation of the error
	Bias-Corrected MSE
	Mean Absolute Error (MAE)
	InterQuartile Range of the Errors (IQR)
	Median Absolute Deviation (MAD)
	Mean Squared Error Skill Score
	Root-mean-squared Forecast Anomaly
	Root-mean-squared Observation Anomaly
	Percentiles of the errors
	Anomaly Correlation Coefficient
	Partial Sums lines (SL1L2, SAL1L2, VL1L2, VAL1L2)
	Scalar L1 and L2 values
	Scalar anomaly L1 and L2 values
	Vector L1 and L2 values
	Vector anomaly L1 and L2 values
	Gradient values

	MET verification measures for probabilistic forecasts
	Reliability
	Resolution
	Uncertainty
	Brier score
	Brier Skill Score (BSS)
	OY_TP - Observed Yes Total Proportion
	ON_TP - Observed No Total Proportion
	Calibration
	Refinement
	Likelihood
	Base Rate
	Reliability diagram
	Receiver operating characteristic
	Area Under the ROC curve (AUC)

	MET verification measures for ensemble forecasts
	RPS
	CRPS
	Ensemble Mean Absolute Difference
	CRPS Skill Score
	Bias Ratio
	IGN
	PIT
	RANK
	SPREAD

	MET verification measures for neighborhood methods
	Fractions Brier Score
	Fractions Skill Score
	Asymptotic Fractions Skill Score
	Uniform Fractions Skill Score
	Forecast Rate
	Observation Rate

	MET verification measures for distance map methods
	Baddeley’s Metric and Hausdorff Distance
	Mean-error Distance
	Pratt’s Figure of Merit
	Zhu’s Measure
	G and G

	Calculating Percentiles

	Appendix D Confidence Intervals
	Appendix E WWMCA Tools
	Appendix F Python Embedding
	Introduction
	Compiling MET for Python Embedding
	Controlling Which Python MET Uses When Running
	Data Structures Supported by Python Embedding
	Python Embedding for 2D Gridded Dataplanes
	Python Script Requirements for 2D Gridded Dataplanes
	Required Attributes for 2D Gridded Dataplanes
	Running Python Embedding for 2D Gridded Dataplanes
	Special Case for Ensemble-Stat, Series-Analysis, and MTD
	Examples of Python Embedding for 2D Gridded Dataplanes

	Python Embedding for Point Observations
	Python Script Requirements for Point Observations
	Running Python Embedding for Point Observations
	Examples of Python Embedding for Point Observations

	Python Embedding for MPR Data
	Python Script Requirements for MPR Data
	Running Python Embedding for MPR Data

	MET Python Package

	Appendix G Vectors and Vector Statistics

