MET User’s Guide

version 12.0.0-betal

Sep 19, 2023

Contents

1 Overview of MET

1.1 Purpose and organization of the User’'s Guide
1.2 The Developmental Testbed Center (DTC) o v v v v i i it et e
1.3 MET goals and design philosophy
1.4 MET COMPONENTS . . v v v v v v v et v e et et e et e e e e e e e e e e e
1.5 Futuredevelopmentplans. e e e e e e
1.6 Code SUPPOIt v v i it e
1.7 Fortify and SonarQube
2 MET Release Information
2.1 METRelease NOtes o v v v i it e e e e e e e e e e e e e e e e e
2.1.1 MET Version 12.0.0-betal release notes (20230915)
2.2 MET Upgrade INStrucCtionsS v v v v v e
2.2.1 MET Version 12.0.0 upgrade instructions
3 Software Installation/Getting Started
3.1 IntroduCtion i i i e e e e e e e e e e e e e e e e e e
3.2 Supported Architectures i i e e e e e e e e e e e
3.3 Programming Languagesot e e e e e e e e e e e e e e
3.4 Required Compilers and Scripting Languages v v v v v it e
3.5 Required Libraries and Optional Utilities
3.6 Installation of Required Libraries e e
3.7 Installation of Optional Utilities. o o i
3.8 MET Directory StruCture v v v e
3.9 Buildingthe MET Package i i i i ittt e e e
3.9.1 Getthe MET sourcecode i i i i i i ittt et
3.9.2 Install the Required Libraries.
3.9.3 Set Environment Variables
3.9.4 Configure and ExecutetheBuild,
3.9.5 Make Targets o v v v i i e e e e e e e e e e e e e e e e e
3.10 Sample TeSt CaSES . . . v v v v v i e
4 MET Data I/0
4.1 Inputdataformats i i e e
4.1.1 Requirements for CF Compliant NetCDF,

11
11
11
12
12

13
13
13
13
14
14
15
16
17
18
18
18
19
20
22
22

25
25
26

4.1.2 Performance with NetCDF inputdata 28

4.2 Intermediate dataformats. 28
4.3 Outputdataformats o o it e e e e e e e e e 29
4.4 Data format SUMMATY o v v v v v e 30
4.5 Configuration File Details e e e e 34
Configuration File Overview 35
5.1 Runtime Environment Variables e 38
5.1.1 User-Specified Environment Variables 38
5.1.2 MET AIRNOW STATIONS e e e e e e e e 39
5.1.3 MET NDBC STATIONS o\ v ot et e e e e e e e 39
5.1.4 MET BASE . . . o . e e e e e 40
5.1.5 MET OBS ERROR TABLEt vt ottt 40
5.1.6 MET GRIB TABLES e e e e e e e e 40
5.1.7 OMP_NUM THREADS e e e e et 42
5.2 Settings common to multiple tools L. . 43
5.2.1 exit on_Warning oot e e e e e e e e e e e e 43
5.2.2 NC COMPIesSSiON v v v v vttt e e e e e e e e e e e e e e e e e 43
5.2.3 output PreciSiont ittt e e e e e e e e e e e e e e e 44
524 tmp dir e e e e e e e 44
5.2.5 message type SIOoUP IMAP . . « v v v v o v v e bt e e e e e e e e e e e e e 44
5.2.6 mMeSSage tyPe IMAP . . « « v+« v v e 44
5.2.7 model e e e e e e e 45
5.2.8 desc ... e 45
5.29 obtype e e e e e e e e e e e e 45
5.2.10 regrid e e e e e e e e e e 46
S5.2.11 fest . . o e e e e e e e e e e e e e e e e e e e 47
5.2.12 0bS . . . e e e e e e e e e e e 54
5.2.13 climo mean e e e e e e e e e e e e 57
5.2.14 climo stdev 58
5.2.15 climo_cdf e e e 58
5.2.16 climate data. L e e e e e e e e e 59
5.2.17 seeps pl thresh. e 60
5.2.18 mask missing flag 60
5.2.19 obs Window e e e e e e e e e 60
5.220 mask e e e e e e 60
5.221 cialpha 62
5.2.22 Doot . . . e e e e e 63
5223 INEIP .« . v v o e e e e e e e e e e e e e e e e e e 64
5224 land mask e e e e e e 65
5.2.25 topo mask e e e e e e e e e 66
5.226 hira.o e 66
5.2.27 output flago e e 67
5.2.28 nc pairs flago e e e 68
5.2.29 nC pairs var NAIME v v v v v v vt e e e e e e e e e e e e e e e 69
5.2.30 nc pairs var suffix L 69
5.2.31 ps plot flag e e e e e 69
5.2.32 grid weight flag L 70

ii

5.3

5.2.33 hss ec value e e e e 70
5.2.34 rank corr flag. e 70
5.2.35 duplicate flago 71
5.2.36 obs SUMMAryo e e e e e e e e e e 71
5.2.37 obs perc value e 72
5.2.38 obs quality inc 72
5.2.39 obs quality €XC e e e e e e e e e e e e 72
5.2.40 met data dir 72
5.2.41 many plots e e e e e e e e e e 72
5.2.42 output prefixo e e e e e e e 73
S.243 VEISIOM . . v v v v vt e e e e e e e e e e e e e e e 73
5.2.44 time SUMIMALY .« . v v v v v v v et e e e e e e e e e e e e e e e e e 73
Settings specific to individual tools L 75
5.3.1 GenEnsProdConfig default 75
5.3 1.1 ens ..o e e e e 75
5.3.1.2 nbrhd prob. 75
5.3.1.3 nmep smooth 76
5.3.1.4 ensemble flag e 76
5.3.2 EnsembleStatConfig default 77
5.3.2.1 fest,0bS e e e e 77
5.3.2.2 NC VAT SIT « v v vt e e e e e e e e e e e e e 78
5.3.23 obs thresh 78
5.3.2.4 skip const e 78
5.3.25 obs error e e e 79
5326 INZ . .. L e e 80
5.3.3 MODEAnalysisConfig default 80
5.3.4 MODEConfig default 85
5.34.1 quilt. . . . e 85
5.3.4.2 fest,obs e e e e e 85
5343 grid res e e 86
5.3.44 match flag e 86
5.3.4.5 max centroid dist e 87
5.3.4.6 weight e e 87
5.3.4.7 interest function 87
5.3.4.8 total interest thresh oo o 89
5.3.4.9 oprint interest thresh 89
5.3.4.10 plot valid flag 89
5.3.4.11 plot_gcarc flag e 89
5.3.4.12 ct stats flag 89
5.3.4.13 shift right e 90
5.3.5 PB2NCConfig default. 90
5.3.5.1 meSSage tyPe vt i e e e e e e e e e e e e e e e e e 91
5.3.5.2 station id e 91
5.3.5.3 elevation range L. e e e e e e e e e 92
5.3.5.4 pb report type e 92
5.3.5.5 In report typet e e e e e e e e e e e 92
5.3.5.6 instrument type e e e e e e 93
5.3.5.7 level range 93

iii

5.3.5.8 level category i e e e e e e e 93

5.3.5.9 obs bufr var 94
5.3.5.10 obs bufr map e 94
5.3.5.11 obs prepbufr map 95
5.3.5.12 quality mark thresh 95
5.3.5.13 event stack flag 95

5.3.6 SeriesAnalysisConfig default. 96
5.3.6.1 block size 96
5.3.6.2 wvld thresh e 96
5.3.6.3 OULPUL STALS . . . v vttt e e e e e e e e e e e e e e e e e 96

5.3.7 STATAnalysisConfig default 97
5.3.7.1 jobs . ..o e 97

5.3.8 WaveletStatConfig default 105
5.3.8.1 grid decomp flag 105
5.3.8.2 tile . ..o e e e 105
5.3.8.3 wavelet 106
5.3.8.4 obs raw wvlt object plots L 106

5.3.9 WWMCARegridConfig default 106
5.3.9.1 to grid 106
5.3.9.2 NetCDF output information, 107
5.3.9.3 max minutes (pixelage) 107
5.39.4 swap endianl 107
5.3.9.5 write pixel age 107

6 Tropical Cyclone Configuration Options 109
6.1 Configuration settings common to multiple tools 109
6.1.1 storm id e e e e e e e e e e 109
6.1.2 basin e e e e e e e e e 110
6.1.3 cyclone. e e e e e e e e e e e 110
6.1.4 StOrM NAME o vttt e 110
6.1.5 init begendinCeXC. i e e e e e e e e e 111
6.1.6 valid begendincexc 111
6.1.7 init hour. e e 112
6.1.8 lead req e e e e e e e e 112
6.1.9 VEISION L e e e e 112
6.2 Settings specific to individual tools L. 112
6.2.1 TCPairsConfig default 112
6.2.1.1 model e 112
6.2.1.2 init mask, valid mask L 113
6.2.1.3 check dup e 113
6.2.1.4 interpl2 e e e e e e 114
6.2.1.5 COMSENSUS . . . v v v v vt vt et et e e e e e e e e e e e e 114
6.2.1.6 lag time i e 115
6.2.1.7 besto e 115
6.2.1.8 anly track e e e e e 116
6.2.1.9 match points L 116
6.2.1.10 dland file e e e e e 116
6.2.1.11 watch warn 117

iv

6.2.1.12 basin MapP o e e e e e e e e e e e e e e e e e 117

6.2.2 TCStatConfig default 118
6.2.2.1 amodel, bmodel 118
6.2.2.2 initvalid hourleadreq L 118
6.2.2.3 init mask,valid mask L 119
6.2.2.4 line type i i e e e e e e 119
6.2.2.5 track watch warn e 119
6.2.2.6 column_thresh name and val 120
6.2.2.7 column_str name, column str val 120
6.2.2.8 column str nameval Lo e 120
6.2.2.9 init_thresh name, init thresh val 121
6.2.2.10 init_str name, init str val L. oL 121
6.2.2.11 init str exc nameand exc val 122
6.2.2.12 water only e e e e e e e e e 122
0.2.2. 13 TITW . . L o L e e e e e e e e e e e 122
6.2.2.14 landfallbegend 123
6.2.2.15 event equal e 124
6.2.2.16 event equal lead e 124
6.2.2.17 out int mask e 124
6.2.2.18 out valid mask e 124
6.2.2.19 JOD. © o i 125

6.2.3 TCGenConfig default 128
6.2.3.1 init freq e e e e 128
6.2.3.2 lead window e e 129
6.2.3.3 min duration e e e e e e 129
6.2.3.4 feSt genesiS e e e e 129
6.2.3.5 best eNnesis e e e e e e e e e 129
6.2.3.6 0Oper_genesiSt e e e e e e e e e e 130
6.2.3.7 filter. e 130
6.2.3.8 deSC e 130
6.2.3.9 model e 130
6.2.3.10 init beg,init end L. 130
6.2.3.11 valid beg,valid end 131
6.2.3.12 lead e e e e e 131
6.2.3.13 vx_ mask e e e e 131
6.2.3.14 dland thresh 131
6.2.3.15 genesis windowl 131
6.2.3.16 genesis radius e e e e e 131
6.2.3.17 ciialpha. 132
6.2.3.18 output flag e 132

7 Re-Formatting of Point Observations 133
7.1 PB2NC OOl o e e e e e e e e e 133

7.1.1 pb2ncusage e e e e e e e e e e e e e e 133
7.1.1.1 Required arguments forpb2nc 134
7.1.1.2 Optional arguments forpb2nc 134

7.1.2 pb2ncconfigurationfile o oo Lol 135

7.1.3 pb2ncoutput e e e e e e e e e 140

7.2 ASCII2NC tool o o e e e e e e e e e 141
7.2.1 ASCH2NC USAZE « . « ¢ v v v v v e e e e et e e e e e e e e e e e e e e e e e 143
7.2.1.1 Required arguments for ascii2nc 143

7.2.1.2 Optional arguments for ascii2nc 143

7.2.2 ascii2nc configurationfile L. L L 144

7.2.3 asCl2NCOULPUL v v v vt vt e it e e e e e e e e e e e e e e e e e 145

7.3 MADIS2NC tool e e e e e e e e 145
7.3.1 madiS2NCUSALE e e e e e e e e e 145
7.3.1.1 Required arguments for madis2nc 146

7.3.1.2 Optional arguments for madis2nc 146

7.3.2 madis2nc configurationfile e 147

7.3.3 madiS2NCOULPUL o v e e e e e e e e e e e e e e e e 147

7.4 LIDAR2NCtool o e 147
7.4.1 lidar2ncusage e e e 147
7.4.1.1 Required arguments for lidar2nc 148

7.4.1.2 Optional arguments for lidar2nc 148

7.4.2 lidar2ncoutput e e e e 148

7.5 TODA2NC ool e 149
7.5.1 doda2ncusage e 149
7.5.1.1 Required arguments forioda2nc 150

7.5.1.2 Optional arguments forioda2nc 150

7.5.2 ioda2nc configurationfile e 151

7.5.3 ioda2ncoutput e e e e e 152

7.6 Point2Gridtool 152
7.6.1 point2grid usage e 152
7.6.1.1 Required arguments for point2grid 153

7.6.1.2 Optional arguments for point2grid 153

7.6.2 point2grid output L e 155

7.6.3 point2grid configurationfile L 155

7.7 Point NetCDF to ASCII Python Utility 156
Re-Formatting of Gridded Fields 157
8.1 Pcp-Combine tool e e 157
8.1.1 pcp combine USAZE v v v v i e e e e e e e e e e e e e e e e 158
8.1.1.1 Required arguments for the pcp_ combine 159

8.1.1.2 Optional arguments for pcp_combine 159

8.1.1.3 Required arguments for the pcp_combine sum command 159

8.1.1.4 Optional arguments for pcp_combine sum command 160

8.1.1.5 Required arguments for the pcp_combine derive command 160

8.1.1.6 Input files for pcp_combine add, subtract, and derive commands 160

8.1.2 pcp combine OULPUL v v v v vt e e e e e e e e e e e e e e e e 162

8.2 Regrid-Data-Plane tool e e e 162
8.2.1 regrid data planeusage 163
8.2.1.1 Required arguments for regrid data plane 163

8.2.1.2 Optional arguments for regrid data plane. 163

8.2.2 Automated regridding withintools 164

8.3 Shift-Data-Plane tool e 164
8.3.1 shift data planeusage 165

vi

8.3.1.1 Required arguments for shift data plane 165

8.3.1.2 Optional arguments for shift data plane 165

8.4 MODISregrid tool e e e e e e e e 166
8.4.1 modis regrid usage e e e e e e e e e 166
8.4.1.1 Required arguments for modis regrid 167

8.4.1.2 Optional arguments for modis regrid 167

8.5 WWMCA Tool Documentation v v v v v v v v e e et e e e e e e e e e e 168
8.5.1 wwmea plot Usageo e e e e e e e e e e e e e 169
8.5.1.1 Required arguments forwwmeca plot 169

8.5.1.2 Optional arguments forwwmea plot 169

8.5.2 wwmeca regrid usage e e e e e e e 170
8.5.2.1 Required arguments for wwmeca regrid 171

8.5.2.2 Optional arguments for wwmeca regrid 171

8.5.3 wwmeca_regrid configuration file o oL 171

9 Gen-Ens-Prod Tool 173
9.1 IntroduCtion i i i it e e e e e e e e e e e e e e 173
9.2 Scientific and statistical aspects e e e e e 173
9.2.1 Ensemble forecasts derived from a set of deterministic ensemble members 173

9.2.2 Climatology datat i i i e e e e e e 174

9.3 Practical Information L e e e e e e e e 174
9.3.1 gen ens prod USAZE ittt e e e e e e e e e e e e e e e e e e 174

9.3.2 Required arguments gen_ens prod u e e i e e e 175

9.3.3 Optional arguments for gen_ens prod 175

9.3.4 gen_ens prod configurationfile 175

9.3.5 gen ens prod OULPUL L. e e e e e e e e e e 180

10 Regional Verification using Spatial Masking 181
10.1 Gen-Vx-Mask tool e e e e e e e 181
10.1.1 gen vx maskusage 181
10.1.1.1 Required arguments for gen vx mask 182

10.1.1.2 Optional arguments for gen vx mask 182

10.1.1.3 Types of masking available in gen vx mask 183

10.2 Feature-Relative Methods e e 186
11 Point-Stat Tool 187
11.1 Introduction o e e e e e e e e e e e e e e e e 187
11.2 Scientific and statistical aspects L L. e e e 187
11.2.1 Interpolation/matching methods 187
11.2.2 HiRA framework e e 191
11.2.3 SEEPS SCOTES it et e e e e e e e e e e e e e e e 192
11.2.4 Statistical measures L. e e e e e e e e e 193
11.2.4.1 Measures for categorical variables 193

11.2.4.2 Measures for continuous variables, 193

11.2.4.3 Measures for probabilistic forecasts and dichotomous outcomes 194

11.2.4.4 Measures for comparison against climatology 194

11.2.5 Statistical confidence intervals L. 194

11.3 Practical information e e e e e e e e 197

vii

11.3.1 point Stat USAZE . . . « v ¢ v v e 197

11.3.1.1 Required arguments for point stato o i i 197

11.3.1.2 Optional arguments for point stat 198

11.3.2 point_stat configurationfile o o Lo 198
11.3.3 point Stat OULPUL o . v v o it e 202

12 Grid-Stat Tool 219
12.1 IntrodUuCtion o v i e 219
12.2 Scientific and statistical aspects L. e e e 219
12.2.1 Statistical measures e e e e e e e e e e e 219
12.2.1.1 Measures for categorical variables 220

12.2.1.2 Measures for continuous variables 220

12.2.1.3 Measures for probabilistic forecasts and dichotomous outcomes 220

12.2.1.4 Use of a climatology field for comparative verification 221

12.2.1.5 Use of analysis fields for verification 221

12.2.2 Statistical confidence intervals L L. 221
12.2.3 Grid weighting 221
12.2.4 Neighborhood methods 221
12.2.5 SEEPS sCOTeS i e e e e e e e e e e e e e e e e e e 222
12.2.6 Fourier Decomposition o e e e e e e e e e e e e e e e 222
12.2.7 Gradient StatiStiCs o o i e e e e e e e e e e e e e 223
12.2.8 Distance MapS . . . v v v v v e 223
1229 Band Gg o e 226

12.3 Practical information L e e e 228
12.3.1 grid Stat USAZE v v v e 228
12.3.1.1 Required arguments for grid stat 228

12.3.1.2 Optional arguments for grid stat 229

12.3.2 grid_stat configurationfile o o o Lol 230
12.3.3 grid stat OutPUL o i e e e e e e e e e e e e e e e e e e e 235

13 Ensemble-Stat Tool 243
13.1 INtrodUuCtion o v i v e 243
13.2 Scientific and statistical aspects e e e e e e e e e 243
13.2.1 HiRA framework e e e 243
13.2.2 Ensemble StatistiCs« . . L. e e e e e e e e e e e e e e 244
13.2.3 Climatology data e 245
13.2.4 Ensemble observation error e e e e e e e e e e e 246

13.3 Practical Information e e e e e e e e 246
13.3.1 ensemble statusage e e 247
13.3.1.1 Required arguments ensemble stat, 247

13.3.1.2 Optional arguments for ensemble stat 247

13.3.2 ensemble_stat configurationfile o o o o000 248
13.3.3 ensemble statoutput e 254

14 Wavelet-Stat Tool 261
14.1 IntroducCtion o v i e 261
14.2 Scientific and statistical @spects L. e 262
14.2.1 Themethod e e e e e e 262

viii

14.2.2 The spatial domain constraints o 0oL
14.2.3 Aggregation of statistics on multiplecases

14.3 Practical information e
14.3.1 wavelet statusageo e
14.3.1.1 Required arguments for wavelet stat.

14.3.1.2 Optional arguments for wavelet stat

14.3.2 wavelet_stat configurationfile L L L
14.3.3 wavelet stat output e e

15 GSI Tools

15.1 GSID2MPR tool e e e e e e e
15.1.1 @sid2mprusage v i e e e e e e e e e e e e e e e
15.1.1.1 Required arguments for gsid2mpr

15.1.1.2 Optional arguments for gsid2mpr

15.1.2 gsid2mpr output oo e e e e e e e e e e e e e e e e e

15.2 GSIDENS20RANK tool o o e e e e e e e e e
15.2.1 gsidens2orank usage e e e
15.2.1.1 Required arguments for gsidens2orank

15.2.1.2 Optional arguments for gsidens2orank

15.2.2 gsidens2orank output. e e e e e e e e

16 Stat-Analysis Tool

16.1 IntrodUCtion o i i i i i e e e e e e e e e e e e e e e e e e
16.2 Scientific and statistical @spects e e e e e e
16.2.1 Filter STATlines i i e ettt
16.2.2 Summary statistics forcolumns o o o L oL
16.2.3 Aggregated values from multiple STAT lines
16.2.4 Aggregate STAT lines and produce aggregated statistics
16.2.5 Skill ScoreIndex e e e e
16.2.6 GOINdex o i i it e e e e e e e e e
16.2.7 CBSINdex o o i e e e e e e e e e
16.2.8 Ramp Events e e e
16.2.9 Wind Direction StatiStiCsS« v v v i i e e e e e e e e e e e e e e

16.3 Practical information L e
16.3.1 stat analysisusage i e e e e e e e e e
16.3.1.1 Required arguments for stat analysis.

16.3.1.2 Optional arguments for stat_analysis

16.3.2 stat _analysis configurationfile o L Lo
16.3.3 stat-analysis tooloutput
16.3.3.1 Job: filter e e e e

16.3.3.2 Job: SUMMATIY ¢ v v vt e e e e e e e e e e e e e e e e e

16.3.3.3 Job: aggregate e e e e e e e e e e e

16.3.3.4 Job: aggregate stat i i e i e e e e e e e e e e e

16.3.3.5 Job: ss_index, go_index,cbs index,

16.3.3.6 Job: ramp e e e e

17 Series-Analysis Tool
17.1 Introduction o e e e e e e e e e e e e e e e e e

ix

17.2 Practical Information L
17.2.1 series_analysisusage i e e e e e
17.2.1.1 Required arguments series Stat v v v v v e e e e

17.2.1.2 Optional arguments for series analysis.

17.2.2 series_analysis outputl e e e e e e e
17.2.3 series_analysis configurationfileo oo o000

18 Grid-Diag Tool

18.1 INtrodUCtion v i v e i e
18.2 Practical information L.
18.2.1 grid diagusageo e e e e e e e e

18.2.1.1 Required arguments for grid diag

18.2.1.2 Optional arguments for grid diag

18.2.2 grid diag configurationfile

18.2.3 grid diagoutputfile

19 MODE Tool

19.1 IntrodUCtion o v v v e
19.2 Scientific and statistical aspects L e
19.2.1 Resolving objects e e e e e e e e e e e
19.2.2 Attributes L e e e e e e
19.2.3 Fuzzy logic e e e e e e e e e e e e e e e e
19.2.4 Summary StatiStiCsS o Lt e e e e e e e e e e e e e e e e e
19.2.5 Multi-Variate MODE e e e e e e e

19.3 Practical information e e e e e e e e
19.3.1 mode usage o i e e e e e e e e e e e e
19.3.1.1 Required arguments formode,

19.3.1.2 Optional arguments formode

19.3.2 mode configurationfile
19.3.3 mode outpUL.

20 MODE-Analysis Tool

20.1 Introduction i e e e e e e e e e e e e e e e
20.2 Scientific and statistical aspects L e e e e e e e e e e
20.3 Practical information L e e e e e e
20.3.1 mode analysis USAZE v v vt e e e e e e e e e e e e e e e e
20.3.1.1 Required arguments for mode analysis:

20.3.1.2 Optional arguments for mode analysis

20.3.1.3 Analysis OPLiONS v v v v i e e e e e e e e e e e e e e e e e e

20.3.1.4 MODE Command Line Options

20.3.1.5 Toggles o e e e e e e e e

20.3.1.6 Multiple-set String OPLiONS+ v v v v v e i e e e e e e e .

20.3.1.7 Multiple-set integer options

20.3.1.8 Integer max/min OPHONS . . . « . v v v v v b v et e e e e e e e e e

20.3.1.9 Date/time max/min OptionS v v v v bt e e e e
20.3.1.10Floating-point max/min optionsol
20.3.1.11Miscellaneous OPtioNS . . . « ¢ v v v v v v v e e e e e e e e e e e e

20.3.2 mode analysis configurationfile L oL

20.3.3 mode_analysis OUtPUL o v v v e e e e e e e e e e e e e e e 350

21 MODE Time Domain Tool 351
21.1 IntroduCtion v i i e 351
21.1.1 MOtIiVation . « . v v v v et e 351

21.2 Scientific and statistical aspects Lo Lo e e e e e e 353
21.2.1 Attributes e e e e e e e e e e e e e e e e e 353

21.2.2 Convolution o it e e e e e e e e e e e e e e 353

21.2.3 3D Single Attributes L e e 354

21.2.4 3D Pair Attributes e e e e e e 356

21.2.5 2D Constant-Time Attributes e 357

21.2.6 Matching and Merging o v i i i i e e e e e e e e e e 358

21.3 Practical information e e e e e e e e e e 360
21.3.1 MTDINPUL . . . o o o e 360

21.3.2 MTD USAZE« v o vt e e e e e e e e e e e e 360

21.3.2.1 Required argumentsformtd 360

21.3.2.2 Optional arguments formtd 361

21.3.3 MTD configurationfile 361

21.3.4 MEd OULPUL . . . v v o o e 364

22 MET-TC Overview 369
22.1 Introduction e e e e e e e e e e e e e e 369
22.2 MET-TC COMPONENLS . + . v v v v v v v e 369
22.3 Inputdataformat e e e e e e e e e e 370
22.4 Outputdataformat e e e e e e e e 372

23 TC-DLand Tool 373
23.1 IntrodUuCtion i i i e e e e e e e e e e e e e e e e 373
23.2 Input/output format e e e e e e e e e e e e e e e 373
23.3 Practical information e e e e e e 374
23.3.1 tedlandusage e e e e e e e e e 374

23.3.1.1 Required arguments fortc dland, 374

23.3.1.2 Optional arguments fortc dland 374

24 TC-Pairs Tool 375
24.1 IntrodUucCtion i i e e e e e e e e e e e e e e e 375
24.2 Scientific and statistical aspects L oL Lo e e e e e 375
24.2.1 TCDIagnostiCs v o v v it et e e e e e e e e e e e 375

24.3 Practical information L e e e e e e e e e 377
24.3.1 tC PAIrS USAZE . « « v v v v v e v e 377

24.3.1.1 Required arguments for tc_pairs 377

24.3.1.2 Optional arguments for tc pairso v v vt 378

24.3.2 tc _pairs configurationfile 379

24.3.3 tC PAIrS OULPUL . « . v v v v et e 385

25 TC-Diag Tool 389
25.1 Introduction e e e e e e e e e e e e e e e 389
25.2 Practical information e e e e e e 390

xi

25.2.1 tc diagusage o o i e e e e e e e e e e e e e e e e e e
25.2.1.1 Required arguments fortc diag.
25.2.1.2 Optional arguments fortc diag

25.2.2 tc diag configurationfile
25.2.2.1 Configuring input tracks and time
25.2.2.2 Configuring domain information
25.2.2.3 Configuring data censoring and conversion options
25.2.2.4 Configuring fields, levels, and domains
25.2.2.5 Configuring regridding options
25.2.2.6 Configuring vortex removaloption
25.2.2.7 Configuring data input and output options
25.2.2.8 Configuring MET version, output prefix, and temp directory

25.2.3 tc diagoutpult o Lt e e e e e e e e e e e e e e

26 TC-Stat Tool

26.1 Introduction e e e e e e e e e e e e e e e e e e
26.2 Statistical aspectso e
26.2.1 Filter TCSTLines o o o i e e e e e e e e e
26.2.2 Summary statistics forcolumns oL e
26.2.2.1 Frequency of Superior Performance

26.2.2.2 Time-Series Independence

26.2.3 Rapid Intensification/Weakening
26.2.4 Probability of Rapid Intensification

26.3 Practical information e e e e e e
26.3.1 € StALUSAZE . .+« v v o v e
26.3.1.1 Required arguments fortc stat

26.3.1.2 Optional arguments fortc stat v v vt

26.3.1.3 tc_stat configurationfile Lo oL

26.3.2 € SALOULPUL v v v v et e

27 TC-Gen Tool

27.1 IntrodUuction i e e e e e e e e e e e e e e
27.2 Statistical @SPECES e
27.3 Practical information L e e e e e e e
27.3.1 tC BN USAZE . . .« v i it e

27.3.1.1 Required arguments fortc gen

27.3.1.2 Optional arguments fortc genttt

27.3.1.3 Scoring Logic L. e e e e

27.3.2 tc_gen configurationfile L

27.3.3 tC BN OULPUL . « .« v v v v v et e

28 TC-RMW Tool
28.1 Introduction L e
28.2 Practical information e
28.2.1 tCIMW USAZE .« .« . v v v et e
28.2.1.1 Required arguments fortc_ rmw
28.2.1.2 Optional arguments fortc rmw oo
28.2.2 tc_rmw configurationfile Lo o o

xii

28.2.3 tc rmwoutputfile 432

29 RMW-Analysis Tool 433
29.1 IntrodUuCtion i i i e e e e e e e e e e e e e e e e e e e 433
29.2 Practical information L e e e e e e e 433
290.2.1 rmw _analySiS USage v v v i e e e e e e e e e e e e e e e e 433
29.2.1.1 Required arguments for rmw _analysis 434
29.2.1.2 Optional arguments for rmw _analysis 434
29.2.2 rmw_analysis configurationfile L L L. 434
29.2.3 rmw analysisoutputfile 435
30 Plotting and Graphics Support 437
30.1 Plotting Utilities o e e e e e e e e e e 437
30.1.1 plot point obsusage e 437
30.1.1.1 Required arguments for plot point obs 438
30.1.1.2 Optional arguments for plot_ point obs 438

30.1.2 plot_point obs configurationfile 439

30.1.3 plot data_planeusage i it e 442
30.1.3.1 Required arguments for plot data plane. 442
30.1.3.2 Optional arguments for plot data plane 442

30.1.4 plot mode fieldusage 443
30.1.4.1 Required arguments for plot mode field. 443
30.1.4.2 Optional arguments for plot mode field 443

30.2 Examples of plotting MET output o v v vttt it e e e e e e e e e e e e e e 445

30.2.1 Grid-Stattoolexamples. 445

30.2.2 MODE tool examples e e e 445

30.2.3 TC-Stattoolexample e e e e e 448

31 References 451

32 Appendix A FAQs & HowdoI... ? 459
32.1 Frequently Asked QUESLIONS o v v v i i i e e e e e e e e e e 459

32.1.1 File-IO . . . o o e e 459
32.1.1.1 Q. How do I improve the speed of MET tools using Gen-Vx-Mask? 459
32.1.1.2 Q.HowdoIusemap data? tunnneee.. 459
32.1.1.3 Q. How can I understand the number of matched pairs? 460
32.1.1.4 Q. What types of NetCDF filescan MET read? 461
32.1.1.5 Q. How do I choose a time slice in a NetCDF file? 462
32.1.1.6 Q. How do I use the UNIX time conversion? 462
32.1.1.7 Q. Does MET use a fixed-width output format for its ASCII output files? . . . 463
32.1.1.8 Q. Do the ASCII output files created by MET use scientific notation? 463

32.1.2 Gen-Vx-Mask e 463
32.1.2.1 Q. I have a list of stations to use for verification. I also have a poly region

defined. If I specify both of these should the result be a union of them? . . . 463
32.1.2.2 Q. How do I define a masking region with a GFS file? 464

32.1.3 Grid-Stat o e e e e e 465
32.1.3.1 Q. How do I define a complex masking region? 465
32.1.3.2 Q. How do I use neighborhood methods to compute fraction skill score? . . . 466

xiii

32.1.3.3 Q. Is an example of verifying forecast probabilities? 466
32.1.3.4 Q. What is an example of using Grid-Stat with regridding and masking turned

ON? . v i e e e e e e e e e e 467
32.1.3.5 Q. How do I use one mask for the forecast field and a different mask for the
observation field? 468
32.1.4 Pcp-Combine e 469
32.1.4.1 Q. How do I add and subtract with Pcp-Combine? 469
32.1.4.2 Q. How do I combine 12-hour accumulated precipitation from two different
initialization times? e e e 470
32.1.4.3 Q. How do I correct a precipitation time range? 471
32.1.4.4 Q. How do I use Pcp-Combine as a pass-through to simply reformat from
GRIB to NetCDF or to change output variable name? 472
32.1.4.5 Q. How do I use “-pcprx” to run a project faster? 472
32.1.4.6 Q. How do I enter the time format correctly? 473
32.1.4.7 Q. How do I use Pcp-Combine when my GRIB data doesn’t have the appro-
priate accumulation interval time range indicator? 473
32.1.4.8 Q. How do I use “-sum”, “-add”, and “-subtract“ to achieve the same accumu-
lationinterval? L e e 474
32.1.4.9 Q. What is the difference between “-sum” vs. “-add”? 475
32.1.4.10Q. How do I select a specific GRIBrecord? 476
32.1.5 Plot-Data-Plane e e e e e e e e 476
32.1.5.1 Q. How do I inspect Gen-Vx-Maskoutput? 476
32.1.5.2 Q. How do I specify the GRIB version? 476
32.1.5.3 Q. How do I test the variable naming convention? (Record number example.) 477
32.1.5.4 Q. How do I compute and verify wind speed? 477
32.1.6 Stat-Analysis. e e e e e e 478
32.1.6.1 Q. How does ‘-aggregate stat’ work? 478
32.1.6.2 Q. What is the best way to average the FSS scores within several days or even
several months using Aggregate to Average Scores™? 479
32.1.6.3 Q. How do I use ‘-by’ to capture unique entries? 479
32.1.6.4 Q. How do I use ‘filter’ to refine my output? 480
32.1.6.5 Q. How do I use the “-by” flag to stratify results? 480
32.1.6.6 Q. HowdoIspeed upruntimes? v v v v v v v v v v .. 481
32.1.7 TC-Stat o e 481
32.1.7.1 Q. How do I use the “-by” flag to stratify results? 481
32.1.7.2 Q. How do I use rapid intensification verification? 482
32.1.8 Utilities ot e e e e e e e e e e e e e e 482
32.1.8.1 Q. What would be an example of scripting to call MET? 482
32.1.8.2 Q. How do I convert TRMM datafiles? 483
32.1.8.3 Q. How do I convert a PostScripttopng? 484
32.1.8.4 Q. How does pairwise differences using plot_tcmpr.R work? 484
32.1.9 Miscellaneous i i e e e e e e e e e e e 485
32.1.9.1 Q. Regrid-Data-Plane - How do I define a LatLon grid? 485
32.1.9.2 Q. Pre-processing - How do I use wgrib2, pcp_combine regrid and reformat
to format NetCDF files? i e 485
32.1.9.3 Q. TC-Pairs - How do I get rid of WARNING: TrackInfo Using Specify Model
Suffix? . . . e e 486
32.1.9.4 Q. Why is the grid upsidedown? 487

Xiv

32.1.9.5 Q. Why was the MET written largely in C++ instead of FORTRAN? 488
32.1.9.6 Q. How does MET differ from the previously mentioned existing verification

packages? L e 488
32.1.9.7 Q. Will the MET work on data in native model coordinates? 488
32.1.9.8 Q. How do I get help if my questions are not answered in the User’s Guide? . 488
32.1.9.9 Q. What graphical features does MET provide? 489
32.1.9.10Q. How do I find the version of the tool I am using? 489

32.1.9.11Q. What are MET’s conventions for latitude, longitude, azimuth and bearing
angles? L e e e e e e e 489
32.2 Troubleshooting i e e e e e e e 489
32.2.1 METwon'tcompile e e e e 490
32.2.2 BUFRLIB Errors during MET installation 490
32.2.3 Command line doublequotes 490
32.2.4 Environment variable settings 491
32.2.5 NetCDFinstalliSSUES o v i i e et e e e e e e e e e e e e 491
32.2.6 Error while loading shared libraries 492
32.2.7 General troubleshooting 492
32.3 Wheretogethelp e e e 492
32.4 Howtocontributecode e e e e e e 492
33 Appendix B Map Projections, Grids, and Polylines 493
33.1 Map Projections v v v i i e 493
33.2 Grid Specification Strings e e e e e e e e e e 493
33.3 Grids e e e e e 495
33.4 Polylines for NCEP Regions i i it i ittt ittt ettt e e e e e e 495
34 Appendix C Verification Measures 497
34.1 Which statistics are the same, but with different names? 497
34.2 MET verification measures for categorical (dichotomous) variables 498
34.2.1 TOTAL o o e 499
34.2.2 BaseTate . . . v v v it e 499
34.2.3 Mean forecast v v vt i e e e e e e e e e e e e e e e e e e e 499
34.2.4 ACCUTACY . + . v v v v e 499
34.2.5 Frequency Bias e 499
34.2.6 H RATE e e e e e e 500
34.2.7 Probability of Detection (POD) o i it e 500
34.2.8 Probability of False Detection (POFD) it i .. 500
34.2.9 Probability of Detection of the non-event (PODn) 500
34.2.10False Alarm Ratio (FAR) o i e e e e e 501
34.2.11 Critical Success Index (CSI) o v i v v v et e e e e e e e e 501
34.2.12 Gilbert Skill Score (GSS) e e e 501
34.2.13 Hanssen-Kuipers Discriminant (HK) 501
34.2.14Heidke Skill Score (HSS) o i e e e 502
34.2.15 Heidke Skill Score - Expected Correct (HSS EC) 502
34.2.160dds Ratio (OR) i i it e e e e e e e e e e 502
34.2.17 Logarithm of the Odds Ratio (LODDS)t i v it e . 503
34.2.18 Odds Ratio Skill Score (ORSS) o i i e e e 503
34.2.19 Extreme Dependency Score (EDS) e 503

34.3

34.4

34.2.20 Extreme Dependency Index (EDI) i i ittt 503

34.2.21 Symmetric Extreme Dependency Score (SEDS) 504
34.2.22 Symmetric Extremal Dependency Index (SEDI) 504
34.2.23 Bias-Adjusted Gilbert Skill Score (BAGSS) 504
34.2.24 Economic Cost Loss Relative Value (ECLV) v i v v .. 504
34.2.25 Stable Equitable Error in Probability Space (SEEPS) 505
MET verification measures for continuous variables 505
34.3.1 Mean forecast ot it e e e e e e e e e e e e e 506
34.3.2 Mean observation i i i e e e e e e e e e e e e e e 506
34.3.3 Forecast standard deviation e e e e 506
34.3.4 Observation standard deviation, 506
34.3.5 Pearson Correlation Coefficient e 506
34.3.6 Spearman rank correlation coefficient (ps) L. 507
34.3.7 Kendall’s Tau statistic (7) v v i v i e e e e e e e e e e e 507
34.3.8 Mean Error (ME) e e e e e 508
34.3.9 Mean Error Squared (ME2) i i e e e 508
34.3.10 Multiplicative Bias e 508
34.3.11 Mean-squared error (MSE) o . e e e e 508
34.3.12Root-mean-squared error (RMSE) e e 508
34.3.13Scatter Index (SI) o e e e e e e e e e 509
34.3.14 Standard deviation of the error e 509
34.3.15Bias-Corrected MSE e e e e e e e 509
34.3.16 Mean Absolute Error (MAE) o i e e e e 509
34.3.17 InterQuartile Range of the Errors (IQR) 509
34.3.18 Median Absolute Deviation (MAD) v i v i i e e e e e 510
34.3.19 Mean Squared Error Skill Score L o oL 510
34.3.20 Root-mean-squared Forecast Anomaly 510
34.3.21 Root-mean-squared Observation Anomaly 510
34.3.22Percentiles of the errors e e e e e 510
34.3.23 Anomaly Correlation Coefficient 511
34.3.24 Partial Sums lines (SL1L2, SAL1L2, VL1L2, VALIL2) o ... 511
34.3.25Scalar L1 and L2 values e e e 512
34.3.26 Scalar anomaly L1 and L2 values, 512
34.3.27Vector Ll and L2 values i i e e e e e 513
34.3.28 Vector anomaly L1 and L2 values 513
34.3.29Gradient values e e e e e e e e 514
MET verification measures for probabilistic forecasts 515
34.4.1 Reliability e e e e e 516
34.4.2 ResOIUtION o i it e e e e e e e 516
34.4.3 Uncertainty o v v it e e e e e e e e e e e e e e e e e e 516
34.4.4 BIi€r SCOTE o v v i i e 516
34.4.5 Brier Skill Score (BSS) e e e e e e 517
34.4.6 OY_TP - Observed Yes Total Proportion 517
34.4.7 ON_TP - Observed No Total Proportion 517
34.4.8 Calibration i i e e e e e e e e e e 518
34.4.9 Refinement i i it e e e e e e e e e 518
34.4.10Likelihood e e e e e e e 518
34.4.11Base Rate o i e e e e e e e e e e e 519

Xvi

34.5

34.6

34.7

34.8

34.4.12Reliability diagram
34.4.13 Receiver operating characteristic oo
34.4.14 Area Under the ROC curve (AUC) & v i v v i e e e e e e e e e e e
MET verification measures for ensemble forecasts
34.5.1 RPS . . . e e e e e e e e e e e e
34.5.2 CRPS e e e e e e e e e
34.5.3 Ensemble Mean Absolute Difference.
34.5.4 CRPS SKIll Score it i i e e e e e e e e e
34.5.5 BiasRatio e e e e e e e e e e e
34.5.6 IGN o e e e e e e e e
34.5.7 PIT . . o e e e e e e e e e e e e e e e e e
34.5.8 RANK . . . L e e e e e e e e e e e e
34.5.9 SPREAD e e e e e e e e e e e e e e e e e
MET verification measures for neighborhood methods
34.6.1 Fractions Brier Score e e e e e e e e e e e e
34.6.2 Fractions SKill Score e
34.6.3 Asymptotic Fractions Skill Score
34.6.4 Uniform Fractions Skill Score
34.6.5 Forecast Rate i i i i it e e e e e e e e
34.6.6 Observation Rate i i i i e e e e
MET verification measures for distance map methods
34.7.1 Baddeley’s A Metric and Hausdorff Distance
34.7.2 Mean-error DiStance i i i e e e e e e e e e e e e e e e e e e e
34.7.3 Pratt’s Figure of Merit e
34.7.4 ZhWsSMeasure v i v v it e e e e e e e e e e e e e e e e e e e
3475 Gand Gg e
Calculating Percentiles 0 i i e e e e e e e e

35 Appendix D Confidence Intervals

36 Appendix E WWMCA Tools

37 Appendix F Python Embedding

37.1
37.2
37.3
37.4

Introduction e e e e e
Compiling MET for Python Embedding
Controlling Which Python MET Uses When Running
Data Structures Supported by Python Embedding
37.4.1 Python Embedding for 2D Gridded Dataplanes
37.4.1.1 Python Script Requirements for 2D Gridded Dataplanes
37.4.1.2 Attributes for 2D Gridded Dataplanes
37.4.1.3 Running Python Embedding for 2D Gridded Dataplanes
37.4.1.4 Special Case for Ensemble-Stat, Series-Analysis, and MTD
37.4.1.5 Examples of Python Embedding for 2D Gridded Dataplanes
37.4.2 Python Embedding for Point Observations
37.4.2.1 Python Script Requirements for Point Observations
37.4.2.2 Running Python Embedding for Point Observations
37.4.2.3 Examples of Python Embedding for Point Observations
37.4.3 Python Embedding for MPRData

533

537

541
541
541
542
543
543
544
544
548
549
550
551
551
552
553
553

xvii

37.4.3.1 Python Script Requirements for MPRData
37.4.3.2 Running Python Embedding for MPRData.

37.5 MET Python Package e e e e

38 Appendix G Vectors and Vector Statistics

xviii

MET User’s Guide, version 12.0.0-betal

Foreword: A note to MET users

This User’s guide is provided as an aid to users of the Model Evaluation Tools (MET). MET is a set of
verification tools developed by the Developmental Testbed Center (DTC) for use by the numerical weather
prediction community to help them assess and evaluate the performance of numerical weather predictions.
It is also the core component of the unified METplus verification framework. More details about METplus
can be found on the METplus website.

It is important to note here that MET is an evolving software package. This documentation describes the
12.0.0-betal release dated 2023-09-15. Previous releases of MET have occurred each year since 2008.
Intermediate releases may include bug fixes. MET is also able to accept new modules contributed by the
community. If you have code you would like to contribute, we will gladly consider your contribution. Please
create a post in the METplus GitHub Discussions Forum. We will then determine the maturity of the new
verification method and coordinate the inclusion of the new module in a future version.

Model Evaluation Tools (MET) TERMS OF USE - IMPORTANT!

Copyright 2023, UCAR/NCAR, NOAA, CSU/CIRA, and CU/CIRES Licensed under the Apache License, Ver-
sion 2.0 (the “License”); You may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

Citations
The citation for this User’s Guide should be:

Prestopnik, J., H. Soh, L. Goodrich, B. Brown, R. Bullock, J. Halley Gotway, K. Newman, J. Opatz, T. Jensen,
2023: The MET Version 12.0.0-betal User’s Guide. Developmental Testbed Center. Available at: https:
//github.com/dtcenter/MET/releases

Acknowledgments

We thank the National Science Foundation (NSF) along with three organizations within the National Oceanic
and Atmospheric Administration (NOAA): 1) Office of Atmospheric Research (OAR); 2) Next Generation
Global Prediction System project (NGGPS); and 3) United State Weather Research Program (USWRP), the
United States Air Force (USAF), and the United States Department of Energy (DOE) for their support of this
work. Funding for the development of MET-TC is from the NOAAs Hurricane Forecast Improvement Project
(HFIP) through the Developmental Testbed Center (DTC). Funding for the expansion of capability to address
many methods pertinent to global and climate simulations was provided by NOAAs Next Generation Global
Prediction System (NGGPS) and NSF Earth System Model 2 (EaSM2) projects. We would like to thank
James Franklin at the National Hurricane Center (NHC) for his insight into the original development of the
existing NHC verification software. Thanks also go to the staff at the Developmental Testbed Center for their
help, advice, and many types of support. We released METv1.0 in January 2008 and would not have made
a decade of cutting-edge verification support without those who participated in the original MET planning
workshops and the now dis-banded verification advisory group (Mike Baldwin, Matthew Sittel, Elizabeth
Ebert, Geoff DiMego, Chris Davis, and Jason Knievel).

Contents 1

http://dtcenter.org/community-code/metplus
https://github.com/dtcenter/METplus/discussions
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/dtcenter/MET/releases
https://github.com/dtcenter/MET/releases

MET User’s Guide, version 12.0.0-betal

The National Center for Atmospheric Research (NCAR) is sponsored by NSF. The DTC is sponsored by the
National Oceanic and Atmospheric Administration (NOAA), the United States Air Force, and the National
Science Foundation (NSF). NCAR is sponsored by the National Science Foundation (NSF).

2 Contents

Chapter 1

Overview of MET

1.1 Purpose and organization of the User’s Guide

The goal of this User’s Guide is to provide basic information for users of the Model Evaluation Tools (MET)
to enable them to apply MET to their datasets and evaluation studies. MET was originally designed for
application to the post-processed output of the Weather Research and Forecasting (WRF) model. However,
MET may also be used for the evaluation of forecasts from other models or applications, including the
Unified Forecast System (UFS), and the System for Integrated Modeling of the Atmosphere (SIMA) if certain
file format definitions (described in this document) are followed.

The MET User’s Guide is organized as follows. Section 1 provides an overview of MET and its components.
Section 3 contains basic information about how to get started with MET - including system requirements,
required software (and how to obtain it), how to download MET, and information about compilers, libraries,
and how to build the code. Section 4 - Section 10 focuses on the data needed to run MET, including formats
for forecasts, observations, and output. These sections also document the reformatting and masking tools
available in MET. Section 11 - Section 15 focuses on the main statistics modules contained in MET, including
the Point-Stat, Grid-Stat, Ensemble-Stat, Wavelet-Stat and GSI Diagnostic Tools. These sections include
an introduction to the statistical verification methodologies utilized by the tools, followed by a section
containing practical information, such as how to set up configuration files and the format of the output.
Section 16 and Section 17 focus on the analysis modules, Stat-Analysis and Series-Analysis, which aggregate
the output statistics from the other tools across multiple cases. Section 19 - Section 21 describes a suite of
object-based tools, including MODE, MODE-Analysis, and MODE-TD. Section 22 - Section 29 describes tools
focused on tropical cyclones, including MET-TC Overview, TC-DLand, TC-Diag, TC-Pairs, TC-Stat, TC-Gen,
TC-RMW and RMW-Analysis. Finally, Section 30 includes plotting tools included in the MET release for
checking and visualizing data, as well as some additional tools and information for plotting MET results.
The appendices provide further useful information, including answers to some typical questions (Appendix
A, Section 32) and links and information about map projections, grids, and polylines (Appendix B, Section
33). Appendix C, Section 34 and Appendix D, Section 35 provide more information about the verification
measures and confidence intervals that are provided by MET. Sample code that can be used to perform
analyses on the output of MET and create particular types of plots of verification results is posted on the
MET website). Note that the MET development group also accepts contributed analysis and plotting scripts
which may be posted on the MET website for use by the community. It should be noted there are References
(Section 31) in this User’s Guide as well.

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://www.ufscommunity.org
https://wiki.ucar.edu/display/SIMA/
https://dtcenter.org/community-code/model-evaluation-tools-met

MET User’s Guide, version 12.0.0-betal

The remainder of this section includes information about the context for MET development, as well as
information on the design principles used in developing MET. In addition, this section includes an overview
of the MET package and its specific modules.

1.2 The Developmental Testbed Center (DTC)

MET has been developed, and will be maintained and enhanced, by the Developmental Testbed Center
(DTC). The main goal of the DTC is to serve as a bridge between operations and research, to facilitate the
activities of these two important components of the numerical weather prediction (NWP) community. The
DTC provides an environment that is functionally equivalent to the operational environment in which the re-
search community can test model enhancements; the operational community benefits from DTC testing and
evaluation of models before new models are implemented operationally. MET serves both the research and
operational communities in this way - offering capabilities for researchers to test their own enhancements
to models and providing a capability for the DTC to evaluate the strengths and weaknesses of advances in
NWP prior to operational implementation.

The MET package is available to DTC staff, visitors, and collaborators, as well as both the US and Inter-
national modeling community, for testing and evaluation of new model capabilities, applications in new
environments, and so on. It is also the core component of the unified METplus verification framework.
METplus details can be found on the METplus webpage.

1.3 MET goals and design philosophy

The primary goal of MET development is to provide a state-of-the-art verification package to the NWP com-
munity. By “state-of-the-art” we mean that MET will incorporate newly developed and advanced verification
methodologies, including new methods for diagnostic and spatial verification and new techniques provided
by the verification and modeling communities. MET also utilizes and replicates the capabilities of existing
systems for verification of NWP forecasts. For example, the MET package replicates existing National Center
for Environmental Prediction (NCEP) operational verification capabilities (e.g., I/O, methods, statistics, data
types). MET development will take into account the needs of the NWP community - including operational
centers and the research and development community. Some of the MET capabilities include traditional
verification approaches for standard surface and upper air variables (e.g., Equitable Threat Score, Mean
Squared Error), confidence intervals for verification measures, and spatial forecast verification methods. In
the future, MET will include additional state-of-the-art and new methodologies.

The MET package has been designed to be modular and adaptable. For example, individual modules can
be applied without running the entire set of tools. New tools can easily be added to the MET package
due to this modular design. In addition, the tools can readily be incorporated into a larger “system” that
may include a database as well as more sophisticated input/output and user interfaces. Currently, the MET
package is a set of tools that can easily be applied by any user on their own computer platform. A suite of
Python scripts for low-level automation of verification workflows and plotting has been developed to assist
users with setting up their MET-based verification. It is called METplus and may be obtained on the METplus
GitHub repository.

The MET code and documentation is maintained by the DTC in Boulder, Colorado. The MET package is freely
available to the modeling, verification, and operational communities, including universities, governments,

4 Chapter 1. Overview of MET

http://www.dtcenter.org/
http://www.dtcenter.org/
http://dtcenter.org/community-code/metplus
https://github.com/dtcenter/METplus
https://github.com/dtcenter/METplus

MET User’s Guide, version 12.0.0-betal

the private sector, and operational modeling and prediction centers.

1.4 MET components

The major components of the MET package are represented in Figure 1.1. The main stages represented are
input, reformatting, plotting, intermediate output, statistical analyses, and output and aggregation/analysis.
Each of these stages is described further in later sections. For example, the input and output formats are
discussed in Section 4 as well as in the sections associated with each of the statistics modules. MET input
files are represented on the far left.

The reformatting stage of MET consists of several tools which perform a variety of functions. The ASCII2NC,
PB2NC, MADIS2NC, LIDAR2NC, and IODA2NC tools read a variety of point observation input file formats
and, optionally, derive time summaries for each observing location. They all write to a common NetCDF
point observation file format which can be read by the other MET tools. The Point2Grid tool reads that com-
mon NetCDF point observation file format or observations provided via Python and interpolates the point
data onto a user-specified grid. The Regrid-Data-Plane, Shift-Data-Plane, MODIS-Regrid, and WWMCA-
Regrid tools read a variety of gridded input file formats and interpolate user-requested input fields to a
user-defined output grid. While the MET statistics tools can interpolate many input file formats in-memory
and on-the-fly, manually regridding upstream is sometimes useful. The Pcp-Combine tool adds, subtracts,
or derives fields across multiple time steps. It is often run to accumulate precipitation amounts into a
user-specified time interval - if a user would like to verify over a different time interval than is included in
their forecast or observational dataset. The Gen-Vx-Mask tool provides a variety of methods for creating
bitmapped masking areas. Those masks can then be used to efficiently limit verification to the interior of a
user-specified region in the downstream statistics tools. The Gen-Ens-Prod tool derives basic ensemble prod-
ucts (mean, spread, probabilities) from multiple gridded input ensemble members. The GSI tools reformat
binary GSI diagnostic data to be read by the Stat-Analysis tool.

1.4. MET components 5

MET User’s Guide, version 12.0.0-betal

MET Overview v11.1.0
*..-
E5p (o) (B

NetCDF

egend

:

v

|| NetCDF

L~ File

| 4| NetCDF

ASCII Plot
—| NetCDF m‘ I

¥

000 00000000
i

o

Data ™ Data

:

n MODE
|| NetCDF
a » > WWMCA pS Analysis
ASCIL/Py| L L ¥ I
'[‘)D'g — STAT
a ASCII
- —
L~ NetCDF
BUFR
Paint _,._ G
STAT alysis
Data PS
4 Ntst(c::gF
STAT

Point

Stat
Analysis

STAT
ASCIT [
NetCDF

MADIS
Point _,-
Data Obs
F L F
HDF L Plot
LIDAR |— . Point
Data ._ Obs
I 4
TODA
Point | .
Data
F

STAT
ASCIT [

GSI] STAT
Diag |, STAT L . asci ||
Data NetCDF
| L F F L F
ASCII
'I'Dm:: —b-._—p pﬁggp > | 5| NetCDF _., NetCDF
3
N [I L~

ASCII DLand
STAT
Land > NetCDF TCST |, ST
EE ._. Data
— — s .

Figure 1.1: Basic representation of current MET structure and modules. Gray areas represent input and
output files. Dark green areas represent reformatting and pre-processing tools. Light green areas represent
plotting utilities. Blue areas represent statistical tools. Yellow areas represent aggregation and analysis tools.

Several optional plotting utilities are provided to assist users in checking their output from the data prepro-
cessing step. Plot-Point-Obs creates a postscript plot showing the locations of point observations. This can be
quite useful for assessing whether the latitude and longitude of observation stations was specified correctly.
Plot-Data-Plane produces a similar plot for gridded data. For users of the MODE object based verification
methods, the Plot-MODE-Field utility will create graphics of the MODE object output. Finally, WWMCA-Plot
produces a plot of the raw WWMCA data file.

The main statistical analysis components of the current version of MET are: Point-Stat, Grid-Stat, Series-
Analysis, Ensemble-Stat, MODE, MODE-TD (MTD), Grid-Diag, and Wavelet-Stat. The Point-Stat tool is
used for grid-to-point verification, or verification of a gridded forecast field against point observations (i.e.,
surface observing stations, ACARS, rawinsondes, and other observation types that could be described as
a point observation). The point observations are read from the common NetCDF point observation file
format or are supplied via Python. In addition to providing traditional forecast verification scores for both
continuous and categorical variables, confidence intervals are also produced using parametric and non-

6 Chapter 1. Overview of MET

MET User’s Guide, version 12.0.0-betal

parametric methods. Confidence intervals take into account the uncertainty associated with verification
statistics due to sampling variability and limitations in sample size. These intervals provide more meaningful
information about forecast performance. For example, confidence intervals allow credible comparisons of
performance between two models when a limited number of model runs is available.

Sometimes it may be useful to verify a forecast against gridded fields (e.g., Stage IV precipitation analyses).
The Grid-Stat tool produces traditional verification statistics when a gridded field is used as the observational
dataset. Like the Point-Stat tool, the Grid-Stat tool also produces confidence intervals. The Grid-Stat tool
also includes “neighborhood” spatial methods, such as the Fractional Skill Score (Roberts and Lean, 2008
(page 456)). These methods are discussed in Ebert (2008) (page 453). The Grid-Stat tool accumulates
statistics over the entire domain.

Users wishing to accumulate statistics over a time, height, or other series separately for each grid location
should use the Series-Analysis tool. Series-Analysis can read any gridded matched pair data produced by the
other MET tools and accumulate them, keeping each spatial location separate. Maps of these statistics can
be useful for diagnosing spatial differences in forecast quality.

Ensemble-Stat compares ensemble member data to gridded analyses and/or point observations and com-
putes measures of ensemble characteristics. The ensemble characteristics include ensemble mean and spread
information, computation of rank and probability integral transform (PIT) histograms, the points for the re-
ceiver operator characteristic (ROC) and reliability diagrams, and ranked probabilities scores (RPS) and
the continuous version (CRPS). When categorical thresholds are specified, Ensemble-Stat derives ensemble
relative frequencies and verifies them as probability forecasts against the gridded analyses and/or point
observations provided. Note that the ensemble post-processing provided in prior versions of this tool has
moved to Gen-Ens-Prod.

The MODE (Method for Object-based Diagnostic Evaluation) tool also uses gridded fields as observational
datasets. However, unlike the Grid-Stat tool, which applies traditional forecast verification techniques,
MODE applies the object-based spatial verification technique described in Davis et al. (2006a,b) (page 452)
and Brown et al. (2007) (page 452). This technique was developed in response to the “double penalty”
problem in forecast verification. A forecast missed by even a small distance is effectively penalized twice by
standard categorical verification scores: once for missing the event and a second time for producing a false
alarm of the event elsewhere. As an alternative, MODE defines objects in both the forecast and observation
fields. The objects in the forecast and observation fields are then matched and compared to one another. Ap-
plying this technique also provides diagnostic verification information that is difficult or even impossible to
obtain using traditional verification measures. For example, the MODE tool can provide information about
errors in location, size, and intensity.

The MODE-TD tool extends object-based analysis from two-dimensional forecasts and observations to in-
clude the time dimension. In addition to the two dimensional information provided by MODE, MODE-TD
can be used to examine even more features including displacement in time, and duration and speed of
moving areas of interest.

The Grid-Diag tool produces multivariate probability density functions (PDFs) that may be used either for
exploring the relationship between two fields, or for the computation of percentiles generated from the
sample for use with percentile thresholding. The output from this tool requires post-processing by METplus
or user-provided utilities.

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations according to the Intensity-
Scale verification technique described by Casati et al. (2004) (page 452). There are many types of spa-
tial verification approaches and the Intensity-Scale technique belongs to the scale-decomposition (or scale-

1.4. MET components 7

MET User’s Guide, version 12.0.0-betal

separation) verification approaches. The spatial scale components are obtained by applying a wavelet trans-
formation to the forecast and observation fields. The resulting scale-decomposition measures error, bias and
skill of the forecast on each spatial scale. Information is provided on the scale dependency of the error and
skill, on the no-skill to skill transition scale, and on the ability of the forecast to reproduce the observed scale
structure. The Wavelet-Stat tool is primarily used for precipitation fields. However, the tool can be applied
to other variables, such as cloud fraction.

Results from the statistical analysis stage are output in ASCII, NetCDF and Postscript formats. The Point-Stat,
Grid-Stat, Wavelet-Stat, and Ensemble-Stat tools create STAT (statistics) files which are tabular ASCII files
ending with a “.stat” suffix. The STAT output files consist of multiple line types, each containing a different
set of related statistics. The columns preceeding the LINE_TYPE column are common to all lines. However,
the number and contents of the remaining columns vary by line type.

The Stat-Analysis and MODE-Analysis tools aggregate the output statistics from the previous steps across
multiple cases. The Stat-Analysis tool reads the STAT output of Point-Stat, Grid-Stat, Ensemble-Stat, and
Wavelet-Stat and can be used to filter the STAT data and produce aggregated continuous and categorical
statistics. Stat-Analysis also reads matched pair data (i.e. MPR line type) via python embedding. The MODE-
Analysis tool reads the ASCII output of the MODE tool and can be used to produce summary information
about object location, size, and intensity (as well as other object characteristics) across one or more cases.

Tropical cyclone forecasts and observations are quite different than numerical model forecasts, and thus
they have their own set of tools. These consist of TC-DLand, TC-Diag, TC-Pairs, TC-Stat, TC-Gen, TC-RMW,
and RMW-Analysis. The TC-DLand module calculates the distance to land from all locations on a specified
grid. This information can be used in later modules to eliminate tropical cyclones that are over land from
being included in the statistics. TC-Diag converts gridded model output into cylindrical coordinates for each
storm location, calls Python scripts to compute storm-relative diagnostics, and writes ASCII output to be
read by TC-Pairs. TC-Pairs matches up tropical cyclone forecasts and observations and writes all output to
a file. In TC-Stat, these forecast / observation pairs are analyzed according to user preference to produce
statistics. TC-Gen evaluates the performance of Tropical Cyclone genesis forecast using contingency table
counts and statistics. TC-RMW performs a coordinate transformation for gridded model or analysis fields
centered on the current storm location. RMW-Analysis filters and aggregates the output of TC-RMW across
multiple cases.

The following sections of this MET User’s Guide contain usage statements for each tool, which may be viewed
if you type the name of the tool. Alternatively, the user can also type the name of the tool followed by -help
to obtain the usage statement. Each tool also has a -version command line option associated with it so that
the user can determine what version of the tool they are using.

1.5 Future development plans

MET is an evolving verification software package. New capabilities are planned in controlled, successive
version releases. Bug fixes and user-identified problems will be addressed as they are found and posted to
the known issues section of the MET User Support web page. Plans are also in place to incorporate many
new capabilities and options in future releases of MET. Please refer to the issues listed in the MET GitHub
repository to see our development priorities for upcoming releases.

8 Chapter 1. Overview of MET

https://dtcenter.org/community-code/model-evaluation-tools-met/user-support
https://github.com/dtcenter/MET/issues
https://github.com/dtcenter/MET/issues

MET User’s Guide, version 12.0.0-betal

1.6 Code support

MET support is provided through the METplus GitHub Discussions Forum. We will endeavor to respond to
requests for help in a timely fashion. In addition, information about MET and tools that can be used with
MET are provided on the MET web page.

We welcome comments and suggestions for improvements to MET, especially information regarding errors.
Comments may be submitted using the MET Feedback form available on the MET website. In addition,
comments on this document would be greatly appreciated. While we cannot promise to incorporate all
suggested changes, we will certainly take all suggestions into consideration.

-help and -version command line options are available for all of the MET tools. Typing the name of the tool
with no command line options also produces the usage statement.

The MET package is a “living” set of tools. Our goal is to continually enhance it and add to its capabilities.
Because our time, resources, and talents are limited, we welcome contributed code for future versions of
MET. These contributions may represent new verification methodologies, new analysis tools, or new plotting
functions. For more information on contributing code to MET, please create a post in the METplus GitHub
Discussions Forum.

1.7 Fortify and SonarQube

Requirements from various government agencies that use MET have resulted in our code being analyzed
by both the Fortify and SonarQube static source code analysis tools. Fortify and SonarQube analyze source
code to identify for security risks, memory leaks, uninitialized variables, and other such weaknesses and bad
coding practices. They categorize issue as low priority, high priority, or critical, and report these issues back
to the developers for them to address. The goal is to drive the counts of both high priority and critical issues
down to zero.

The MET developers are pleased to report that Fortify reports zero critical issues in the MET code. Users
of the MET tools who work in high security environments can rest assured about the possibility of security
risks when using MET, since the quality of the code has now been vetted by unbiased third-party experts.
The MET developers continue using Fortify routinely to ensure that the critical counts remain at zero and to
further reduce the counts for lower priority issues.

1.6. Code support 9

https://github.com/dtcenter/METplus/discussions
https://dtcenter.org/community-code/model-evaluation-tools-met
https://github.com/dtcenter/METplus/discussions
https://github.com/dtcenter/METplus/discussions

MET User’s Guide, version 12.0.0-betal

10 Chapter 1. Overview of MET

Chapter 2

MET Release Information

2.1 MET Release Notes

When applicable, release notes are followed by the GitHub issue number which describes the bugfix, en-
hancement, or new feature (MET GitHub issues). Important issues are listed in bold for emphasis.

2.1.1 MET Version 12.0.0-betal release notes (20230915)

Repository, build, and test

Refine the METbaseimage to compile dependent libraries from a single tar file (METbaseim-
age#9).

Update METbaseimage to complete the transition to the Debian 12 (bookworm) base image
(METbaseimage#12).

Update the install_met_env.generic configuration file (#2643).
Switch SonarQube server (mandan to needham) (#2650).

Update GitHub issue and pull request templates to reflect the current development workflow
details (#2659).

Update the unit test diff logic to handle SEEPS, SEEPS MPR, and MODE CTS line type
updates (#2665).

11

https://github.com/dtcenter/MET/issues
https://github.com/dtcenter/METbaseimage/issues/9
https://github.com/dtcenter/METbaseimage/issues/9
https://github.com/dtcenter/METbaseimage/issues/12
https://github.com/dtcenter/MET/issues/2643
https://github.com/dtcenter/MET/issues/2650
https://github.com/dtcenter/MET/issues/2659
https://github.com/dtcenter/MET/issues/2665

MET User’s Guide, version 12.0.0-betal

Bugfixes

* Bugfix: Refine support for coordinate dimensions in CF-compliant NetCDF files (#2638).

* Bugfix: Fix logic for computing the 100-th percentile (#2644).

Enhancements

* Refine TC-Diag logic for handling missing data (#2609).
* Update ioda2nc to support version 3 IODA files (#2640).

* Enhance MODE CTS output file to include missing categorical statistics, including SEDI
(#2648).

* Enhance MET to compile and link against the Proj library (#2669).

* Change the default setting for the model string from “WRF” to “FCST” in the default MET
configuration files (#2682).

2.2 MET Upgrade Instructions

2.2.1 MET Version 12.0.0 upgrade instructions

* MET Version 12.0.0 introduces three new required dependencies:
— The Proj library dependency was added in the betal development cycle (#2669).
— The Atlas library dependency will be added in the beta2 development cycle (#2574).
— The ecKit library dependency will be added in the beta2 development cycle (#2574).

12 Chapter 2. MET Release Information

https://github.com/dtcenter/MET/issues/2638
https://github.com/dtcenter/MET/issues/2644
https://github.com/dtcenter/MET/issues/2609
https://github.com/dtcenter/MET/issues/2640
https://github.com/dtcenter/MET/issues/2648
https://github.com/dtcenter/MET/issues/2669
https://github.com/dtcenter/MET/issues/2682
https://proj.org/
https://github.com/dtcenter/MET/issues/2669
https://sites.ecmwf.int/docs/atlas/
https://github.com/dtcenter/MET/issues/2574
https://github.com/ecmwf/eckit
https://github.com/dtcenter/MET/issues/2574

Chapter 3

Software Installation/Getting Started

3.1 Introduction

This section describes how to install the MET package. MET has been developed and tested on Linux
operating systems. Support for additional platforms and compilers may be added in future releases. The
MET package requires many external libraries to be available on the user’s computer prior to installation.
Required and recommended libraries, how to install MET, the MET directory structure, and sample cases are
described in the following sections.

3.2 Supported Architectures

The MET package was developed on Debian Linux using the GNU compilers and the Portland Group (PGI)
compilers. The MET package has also been built on several other Linux distributions using the GNU, PGI,
and Intel compilers. Past versions of MET have also been ported to IBM machines using the IBM compilers,
but we are currently unable to support this option as the development team lacks access to an IBM machine
for testing. Other machines may be added to this list in future releases as they are tested. In particular, the
goal is to support those architectures supported by the WRF model itself.

The MET tools run on a single processor. Therefore, none of the utilities necessary for running WRF on
multiple processors are necessary for running MET. Individual calls to the MET tools have relatively low
computing and memory requirements. However users will likely be making many calls to the tools and
passing those individual calls to several processors will accomplish the verification task more efficiently.

3.3 Programming Languages

The MET package, including MET-TC, is written primarily in C/C++ in order to be compatible with an
extensive verification code base in C/C++ already in existence. In addition, the object-based MODE and
MODE-TD verification tools rely heavily on the object-oriented aspects of C++. Knowledge of C/C+ + is not
necessary to use the MET package. The MET package has been designed to be highly configurable through
the use of ASCII configuration files, enabling a great deal of flexibility without the need for source code
modifications.

13

MET User’s Guide, version 12.0.0-betal

With the release of MET-11.1.0, C++11 is now the minimum required version of the C++ programming
language standard.

NCEP’s BUFRLIB is written entirely in Fortran. The portion of MET that handles the interface to the BUFRLIB
for reading PrepBUFR point observation files is also written in Fortran.

The MET package is intended to be a tool for the modeling community to use and adapt. As users make
upgrades and improvements to the tools, they are encouraged to offer those upgrades to the broader com-
munity by offering feedback to the developers.

3.4 Required Compilers and Scripting Languages

The MET package was developed and tested using the GNU g+ +/gfortran compilers and the Intel icc/ifort
compilers. As additional compilers are successfully tested, they will be added to the list of supported plat-
forms/compilers.

The GNU make utility is used in building all executables and is therefore required.

The MET package consists of a group of command line utilities that are compiled separately. The user may
choose to run any subset of these utilities to employ the type of verification methods desired. New tools
developed and added to the toolkit will be included as command line utilities.

In order to control the desired flow through MET, users are encouraged to run the tools via a script or
consider using the METplus package. Some sample scripts are provided in the distribution; these examples
are written in the Bourne shell. However, users are free to adapt these sample scripts to any scripting
language desired.

3.5 Required Libraries and Optional Utilities

Three external libraries are required for compiling/building MET and should be downloaded and installed
before attempting to install MET. Additional external libraries required for building advanced features in
MET are discussed in Section 3.6 :

1. NCEP’s BUFRLIB is used by MET to decode point-based observation datasets in PrepBUFR format.
BUFRLIB is distributed and supported by NCEP and is freely available for download from NCEP’s
BUFRLIB website. BUFRLIB requires C and Fortran-90 compilers that should be from the same family
of compilers used when building MET.

2. Several tools within MET use Unidata’s NetCDF libraries for writing output NetCDF files. NetCDF
libraries are distributed and supported by Unidata and are freely available for download from Unidata’s
NetCDF website. The same family of compilers used to build NetCDF should be used when building
MET. MET is now compatible with the enhanced data model provided in NetCDF version 4. The
support for NetCDF version 4 requires NetCDF-C, NetCDF-CXX, and HDF5, which is freely available for
download on the HDF5 webpage.

3. The GNU Scientific Library (GSL) is used by MET when computing confidence intervals. GSL is dis-
tributed and supported by the GNU Software Foundation and is freely available for download from the
GNU website.

14 Chapter 3. Software Installation/Getting Started

https://dtcenter.org/community-code/metplus
https://emc.ncep.noaa.gov/emc/pages/infrastructure/bufrlib.php
https://emc.ncep.noaa.gov/emc/pages/infrastructure/bufrlib.php
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
https://support.hdfgroup.org/HDF5/
http://www.gnu.org/software/gsl

MET User’s Guide, version 12.0.0-betal

4. The Zlib is used by MET for compression when writing postscript image files from tools (e.g. MODE,
Wavelet-Stat, Plot-Data-Plane, and Plot-Point-Obs). Zlib is distributed, supported and is freely available
for download from the Zlib website.

Two additional utilities are strongly recommended for use with MET:

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the model forecasts with MET. The Unified Post-Processor is freely available for download.
MET can read data on a standard, de-staggered grid and on pressure or regular levels in the vertical.
The Unified Post-Processor outputs model data in this format from both WRF cores, the NMM and
the ARW. However, the Unified Post-Processor is not strictly required as long as the user can produce
gridded model output on a standard de-staggered grid on pressure or regular levels in the vertical.
Two-dimensional fields (e.g., precipitation amount) are also accepted for some modules.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB version
1 format to a common verification grid. The copygb utility is distributed as part of the Unified Post-
Processor and is available from other sources as well. While earlier versions of MET required that all
gridded data be placed on a common grid, MET version 5.1 added support for automated re-gridding
on the fly. After version 5.1, users have the option of running copygb to regrid their GRIB1 data ahead
of time or leveraging the automated regridding capability within MET.

3.6 Installation of Required Libraries

As described in Section 3.5, some external libraries are required for building the MET:

1. NCEP’s BUFRLIB is used by the MET to decode point-based observation datasets in PrepBUFR for-
mat. Once you have downloaded and unpacked the BUFRLIB tarball, refer to the README_BUFRLIB file.
When compiling the library using the GNU C and Fortran compilers, users are strongly encouraged to use
the -DUNDERSCORE and -fno-second-underscore options. Compiling the BUFRLIB version 11.3.0 (recom-
mended version) using the GNU compilers consists of the following three steps:

gcc -c -DUNDERSCORE " ./getdefflags_C.sh™ *.c >> make.log

gfortran -c -fno-second-underscore -fallow-argument-mismatch ~./getdefflags_F.sh™ modvx.F_
—moda*.F \

“1s -1 *.F x.f | grep -v "mod[av]_"" >> make.log

ar crv libbufr.a *.o

Compiling the BUFRLIB using the PGI C and Fortran-90 compilers consists of the following three steps:

pgcc -c¢ -DUNDERSCORE " ./getdefflags_C.sh™ *.c >> make.log

pgf9@ -c -Mnosecond_underscore ~./getdefflags_F.sh™ modv*.F modax.F \
“1s -1 *.F *.f | grep -v "mod[av]_"" >> make.log

ar crv libbufr.a *.o

Compiling the BUFRLIB using the Intel icc and ifort compilers consists of the following three steps:

icc -c -DUNDERSCORE -~ ./getdefflags_C.sh™ *.c >> make.log
ifort -c ~./getdefflags_F.sh™ modv*.F modax.F \

(continues on next page)

3.6. Installation of Required Libraries 15

http://www.zlib.net
https://epic.noaa.gov/unified-post-processor/

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

n-~

“1s -1 *.F x.f | grep -v "mod[av]_
ar crv libbufr.a *.o

>> make.log

In the directions above, the static library file that is created will be named libbufr.a. MET will check for the
library file named libbufr.a, however in some cases (e.g. where the BUFRLIB is already available on a system)
the library file may be named differently (e.g. libbufr v11.3.0 4 64.a). If the library is named anything
other than libbufr.a, users will need to tell MET what library to link with by passing the BUFRLIB_ NAME
option to MET when running configure (e.g. BUFRLIB_ NAME=-lbufr v11.3.0_4 64).

2. Unidata’s NetCDF libraries are used by several tools within MET for writing output NetCDF files. Both
NetCDF-C and NetCDF-CXX are required. The same family of compilers used to build NetCDF should
be used when building MET. Users may also find some utilities built for NetCDF such as ncdump and
ncview useful for viewing the contents of NetCDF files. Support for NetCDF version 4 requires HDF5.

3. The GNU Scientific Library (GSL) is used by MET for random sampling and normal and binomial
distribution computations when estimating confidence intervals. Precompiled binary packages are
available for most GNU/Linux distributions and may be installed with root access. When installing
GSL from a precompiled package on Debian Linux, the developer’s version of GSL must be used;
otherwise, use the GSL version available from the GNU GSL website. MET requires access to the GSL
source headers and library archive file at build time.

4. For users wishing to compile MET with GRIB2 file support, NCEP’s GRIB2 Library in C (g2clib) must
be installed, along with jasperlib, libpng, and zlib. Please note that compiling the GRIB2C library
with the -D__64BIT__ option requires that MET also be configured with CFLAGS="-D__64BIT__”.
Compiling MET and the GRIB2C library inconsistently may result in a segmentation fault or an
“out of memory” error when reading GRIB2 files. MET looks for the GRIB2C library to be named
libgrib2c.a, which may be set in the GRIB2C makefile as LIB=libgrib2c.a. However in some cases,
the library file may be named differently (e.g. libg2c_v1.6.0.a). If the library is named anything other
than libgrib2c.a, users will need to tell MET what library to link with by passing the GRIB2CLIB_NAME
option to MET when running configure (e.g. GRIB2CLIB. NAME=-Ig2c v1.6.0).

5. Users wishing to compile MODIS-regrid and/or lidar2nc will need to install both the HDF4 and HDF-
EOS2 libraries available from the HDF group websites linked here.

6. The MODE-Graphics utility requires Cairo and FreeType. Thus, users who wish to compile this utility
must install both libraries. In addition, users will need to download the Ghostscript font data required
at runtime.

3.7 Installation of Optional Utilities

As described in the introduction to this section, two additional utilities are strongly recommended for use
with MET.

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the data with MET. The Unified Post-Processor may be used on WRF output from both the
ARW and NMM cores.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB format to

16 Chapter 3. Software Installation/Getting Started

https://www.unidata.ucar.edu/downloads/netcdf/
https://portal.hdfgroup.org/display/HDF5/HDF5
http://www.gnu.org/software/gsl/
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2
https://portal.hdfgroup.org/display/HDF4/HDF4
http://hdfeos.org/
http://hdfeos.org/
http://cairographics.org/releases
http://www.freetype.org/download.html
http://sourceforge.net/projects/gs-fonts
https://epic.noaa.gov/unified-post-processor/

MET User’s Guide, version 12.0.0-betal

a common verification grid. The copygb utility is distributed as part of the Unified Post-Processor and
is available from other sources as well. Please refer to the “Unified Post-processor” utility mentioned
above for information on availability and installation.

3.8 MET Directory Structure

The top-level MET directory consists of Makefiles, configuration files, and several subdirectories. The top-
level Makefile and configuration files control how the entire toolkit is built. Instructions for using these files
to build MET can be found in Section 3.9.

When MET has been successfully built and installed, the installation directory contains two subdirectories.
The bin/ directory contains executables for each module of MET as well as several plotting utilities. The
share/met/ directory contains many subdirectories with data required at runtime and a subdirectory of sam-
ple R scripts utilities. The colortables/, map/, and ps/ subdirectories contain data used in creating PostScript
plots for several MET tools. The poly/ subdirectory contains predefined lat/lon polyline regions for use in se-
lecting regions over which to verify. The polylines defined correspond to verification regions used by NCEP
as described in Appendix B, Section 33. The config/ directory contains default configuration files for the
MET tools. The python/ subdirectory contains python scripts. The python/examples subdirectory contains
sample scripts used in Python embedding (Appendix F, Section 37). The python/pyembed/ subdirectory con-
tains code used in Python embedding (Appendix F, Section 37). The table_files/ and tc_data/ subdirectories
contain GRIB table definitions and tropical cyclone data, respectively. The Rscripts/ subdirectory contains a
handful of plotting graphic utilities for MET-TC. These are the same Rscripts that reside under the top-level
MET scripts/Rscripts directory, other than it is the installed location.

The data/ directory contains several configuration and static data files used by MET. The sample_fcst/ and
sample_obs/ subdirectories contain sample data used by the test scripts provided in the scripts/ directory.

The docs/ directory contains the Sphinx documentation for MET.
The out/ directory will be populated with sample output from the test cases described in the next section.
The src/ directory contains the source code for each of the tools in MET.

The scripts/ directory contains test scripts that are run by make test after MET has been successfully built,
and a directory of sample configuration files used in those tests located in the scripts/config/ subdirectory.
The output from the test scripts in this directory will be written to the out/ directory. Users are encouraged
to copy sample configuration files to another location and modify them for their own use.

The share/met/Rscripts directory contains a handful of sample R scripts, including plot_tcmpr.R, which pro-
vides graphic utilities for MET-TC. For more information on the graphics capabilities, see Section 30.2.3 of
this User’s Guide.

3.8. MET Directory Structure 17

MET User’s Guide, version 12.0.0-betal

3.9 Building the MET Package

Building the MET package consists of three main steps: (1) install the required libraries, (2) configure the
environment variables, and (3) configure and execute the build. Users can follow the instructions below or
use a sample installation script. Users can find the script and its instructions under on the Downloads page
of the MET website.

3.9.1 Get the MET source code

The MET source code is available for download from the public MET GitHub repository.
* Open a web browser and go to the latest stable MET release.

* Click on the Source code link (either the zip or tar.gz) under Assets and when prompted, save it to your
machine.

* (Optional) Verify the checksum of the source code download

— Download the checksum file that corresponds to the source code download link that was used
(checksum_zip.txt for the zip file and checksum_tar.txt for the tar.gz file). Put the checksum file
into the same directory as the source code file.

— Run the sha256sum command with the —check argument to verify that the source code download
file was not corrupted.

Zip File:

sha256sum --check checksum_zip.txt

Tar File:

sha256sum --check checksum_tar.txt

Note: If the source code is downloaded using wget, then the filenames will not match the filenames listed
in the checksum files. If the source code is downloaded using curl, the -LJO flags should be added to the
command to preserve the expected filenames found in the checksum files.

* Uncompress the source code (on Linux/Unix: gungip for zip file or tar xvfz for the tar.gz file)

3.9.2 Install the Required Libraries

* Please refer to Section 3.6 and Section 3.7 on how to install the required and optional libraries.

* If installing the required and optional libraries in a non-standard location, the user may need to tell
MET where to find them. This can be done by setting or adding to the LD LIBRARY PATH to include
the path to the library files.

18 Chapter 3. Software Installation/Getting Started

https://dtcenter.org/community-code/model-evaluation-tools-met/download
https://github.com/dtcenter/MET
https://github.com/dtcenter/MET/releases/latest

MET User’s Guide, version 12.0.0-betal

3.9.3 Set Environment Variables

The MET build uses environment variables to specify the locations of the needed external libraries.
For each library, there is a set of three environment variables to describe the locations: $MET <lib>,
$MET_<lib>INC and $MET_<lib>LIB.

The $MET <lib> environment variable can be used if the external library is installed such that there is
a main directory which has a subdirectory called “lib” containing the library files and another subdirec-
tory called “include” containing the include files. For example, if the NetCDF library files are installed in
/opt/netcdf/lib and the include files are in /opt/netcdf/include, you can just define the $MET NETCDF envi-
ronment variable to be “/opt/netcdf”.

The $MET <lib>INC and $MET_<Ilib>LIB environment variables are used if the library and include files
for an external library are installed in separate locations. In this case, both environment variables must
be specified and the associated $MET <Ilib> variable will be ignored. For example, if the NetCDF include
files are installed in /opt/include/netcdf and the library files are in /opt/lib/netcdf, then you would set
$MET NETCDFINC to “/opt/include/netcdf” and $MET NETCDFLIB to “/opt/lib/netcdf”.

The following environment variables should also be set:

* Set $MET PROJ to point to the main Proj directory, or set $MET PROJINC to point to the directory
with the Proj include files and set SMET PROJLIB to point to the directory with the Proj library files.

* Set $SMET NETCDF to point to the main NetCDF directory, or set $MET NETCDFINC to point to the
directory with the NetCDF include files and set $MET NETCDFLIB to point to the directory with the
NetCDF library files. Note that the files for both NetCDF-C and NetCDF-CXX must be installed in the
same include and library directories.

* Set SMET HDF5 to point to the main HDF5 directory.

* Set SMET BUFR to point to the main BUFR directory, or set SMET BUFRLIB to point to the directory
with the BUFR library files. Because we don’t use any BUFR library include files, you don’t need to
specify SMET BUFRINC.

* Set $SMET GSL to point to the main GSL directory, or set SMET GSLINC to point to the directory with
the GSL include files and set $SMET GSLLIB to point to the directory with the GSL library files.

* If compiling support for GRIB2, set SMET GRIB2CINC and $MET GRIB2CLIB to point to the main
GRIB2C directory which contains both the include and library files. These are used instead of
$MET GRIB2C since the main GRIB2C directory does not contain include and lib subdirectories.

* If compiling support for PYTHON, set SMET PYTHON BIN EXE to specify the desired python exe-
cutable to be used. Also set SMET PYTHON CC, and $MET PYTHON LD to specify the compiler (-I)
and linker (-L) flags required for python. Set $SMET PYTHON_CC for the directory containing the
“Python.h” header file. Set SMET PYTHON LD for the directory containing the python library file and
indicate the name of that file. For example:

MET_PYTHON_BIN_EXE='/usr/bin/python3.6'
MET_PYTHON_CC="'-I/usr/include/python3.6'
MET_PYTHON_LD="-L/usr/lib/python3.6/config-x86_64-1inux-gnu -1lpython3.6m'

Note that this version of Python must include support for a minimum set of required packages. For
more information about Python support in MET, including the list of required packages, please refer

3.9. Building the MET Package 19

MET User’s Guide, version 12.0.0-betal

to Appendix F, Section 37.

If compiling MODIS-Regrid and/or lidar2nc, set SMET HDF to point to the main HDF4 directory, or set
$MET HDFINC to point to the directory with the HDF4 include files and set SMET HDFLIB to point
to the directory with the HDF4 library files. Also, set $SMET HDFEOS to point to the main HDF EOS
directory, or set SMET HDFEOSINC to point to the directory with the HDF EOS include files and set
$MET HDFEOSLIB to point to the directory with the HDF EOS library files.

If compiling MODE Graphics, set $MET CAIRO to point to the main Cairo directory, or
set$MET CAIROINC to point to the directory with the Cairo include files and set $SMET CAIROLIB
to point to the directory with the Cairo library files. Also, set $MET FREETYPE to point to the main
FreeType directory, or set $MET FREETYPEINC to point to the directory with the FreeType include

files and set SMET FREETYPELIB to point to the directory with the FreeType library files.

* When running MODE Graphics, set SMET FONT DIR to the directory containing font data required at
runtime. A link to the tarball containing this font data can be found on the MET website.

For ease of use, you should define these in your .cshrc or equivalent file.

3.9.4 Configure and Execute the Build

Example: To configure MET to install all of the available tools in the “bin” subdirectory of your current
directory, you would use the following commands:

1.

w N

./configure
. Type 'make i
. Type 'tail -

When make is

--prefix="pwd~ --enable-grib2 --enable-python \
--enable-modis --enable-mode_graphics --enable-lidar2nc
nstall >& make_install.log &'

f make_install.log' to view the execution of the make.
finished, type 'CTRL-C' to quit the tail.

If all tools are enabled and the build is successful, the “<prefix>/bin” directory (where <prefix> is the prefix
you specified on your configure command line) will contain the following executables:

ascii2nc
ensemble_stat
gen_ens_prod
gen_vx_mask
grid_stat
gis_dump_dbf
gis_dump_shp
gis_dump_shx
grid_diag
gsid2mpr
gsidens2orank
lidar2nc
madis2nc

mode
mode_analysis
modis_regrid

(continues on next page)

20

Chapter 3. Software Installation/Getting Started

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

- mtd

- pb2nc

- pcp_combine

- plot_data_plane
- plot_mode_field
- plot_point_obs
- point2grid

- point_stat

- rmw_analysis

- regrid_data_plane
- series_analysis
- shift_data_plane
- stat_analysis

- tc_dland

- tc_gen

- tc_pairs

- tc_rmw

- tc_stat

- wavelet_stat

- wwmca_plot

- wwmca_regrid

NOTE: Several compilation warnings may occur which are expected. If any errors occur, please refer to
Appendix A, Section 32.2 on troubleshooting for common problem:s.

-help and -version command line options are available for all of the MET tools. Typing the name of the tool
with no command line options also produces the usage statement.

The configure script has command line options to specify where to install MET and which MET utilities to
install. Include any of the following options that apply to your system:

—--prefix=PREFIX

By default, MET will install all the files in “/usr/local/bin”. You can specify an installation prefix other than
“/usr/local” using “—prefix”, for instance “—prefix=$HOME” or “—prefix="pwd"”.

--enable-grib2

Enable compilation of utilities using GRIB2. Requires $MET GRIB2C.

--enable-python

Enable compilation of python interface. Requires $MET PYTHON_ CC and $MET PYTHON_LD.

--enable-lidar2nc

Enable compilation of utilities using the LIDAR2NC tool.

3.9. Building the MET Package 21

MET User’s Guide, version 12.0.0-betal

--enable-modis

Enable compilation of the Modis-Regrid tool. Requires $MET HDF, $MET HDFEOSINC, and
$MET HDFEOSLIB.

--enable-mode_graphics

Enable compilation of the MODE-Graphics tool. Requires $MET CAIRO and $MET FREETYPE.

--disable-block4

Disable use of BLOCK4 in the compilation. Use this if you have trouble using PrepBUFR files.

--disable-openmp

Disable compilation of OpenMP directives within the code which allows some code regions to benefit from
thread-parallel execution. Runtime environment variable OMP_NUM_THREADS controls the number of threads.

Run the configure script with the -help argument to see the full list of configuration options.

3.9.5 Make Targets
The autoconf utility provides some standard make targets for the users. In MET, the following standard
targets have been implemented and tested:

1. all - compile all of the components in the package, but don’t install them.

2. install - install the components (where is described below). Will also compile if “make all” hasn’t been
done yet.

3. clean - remove all of the temporary files created during the compilation.
4. uninstall - remove the installed files. For us, these are the executables and the files in $SMET BASE.
MET also has the following non-standard targets:

5. test - runs the scripts/test_all.sh script. You must run “make install” before using this target.

3.10 Sample Test Cases

Once the MET package has been built successfully, the user is encouraged to run the sample test scripts
provided. They are run using make test in the top-level directory. Execute the following commands:

1. Type ‘make test >& make_test.log & to run all of the test scripts in the directory. These test scripts use
test data supplied with the tarball. For instructions on running your own data, please refer to the MET
User’s Guide.

2. Type ‘tail -f make_test.log’ to view the execution of the test script.

3. When the test script is finished, type ‘CTRL-C’ to quit the tail. Look in “out” to find the output files for
these tests. Each tool has a separate, appropriately named subdirectory for its output files.

22 Chapter 3. Software Installation/Getting Started

MET User’s Guide, version 12.0.0-betal

4. In particular, check that the PB2NC tool ran without error. If there was an error, run “make clean” then
rerun your configure command adding —disable-block4 to your configure command line and rebuild
MET.

3.10. Sample Test Cases 23

MET User’s Guide, version 12.0.0-betal

24 Chapter 3. Software Installation/Getting Started

Chapter 4

MET Data I/0

Data must often be preprocessed prior to using it for verification. Several MET tools exist for this purpose.
In addition to preprocessing observations, some plotting utilities for data checking are also provided and
described at the end of this section. Both the input and output file formats are described in this section.
Section 4.1 and Section 4.2 are primarily concerned with re-formatting input files into the intermediate
files required by some MET modules. These steps are represented by the first three columns in the MET
flowchart depicted in Figure 1.1. Output data formats are described in Section 4.3. Common configuration
files options are described in Section 4.5. Description of software modules used to reformat the data may
now be found in Section 7 and Section 8.

4.1 Input data formats

The MET package can handle multiple gridded input data formats: GRIB version 1, GRIB version 2, and
NetCDF files following the Climate and Forecast (CF) conventions, containing WRF output post-processed
using wrf interp, or produced by the MET tools themselves. MET supports standard NCEP, USAF, UKMet
Office and ECMWEF GRIB tables along with custom, user-defined GRIB tables and the extended PDS including
ensemble member metadata. See Section 4.5 for more information. Point observation files may be supplied
in either PrepBUFR, ASCII, or MADIS format. Note that MET does not require the Unified Post-Processor to
be used, but does require that the input GRIB data be on a standard, de-staggered grid on pressure or regular
levels in the vertical. While the Grid-Stat, Wavelet-Stat, MODE, and MTD tools can be run on a gridded field
at virtually any level, the Point-Stat tool can only be used to verify forecasts at the surface or on pressure or
height levels. MET does not interpolate between native model vertical levels.

When comparing two gridded fields with the Grid-Stat, Wavelet-Stat, Ensemble-Stat, MODE, MTD, or Series-
Analysis tools, the input model and observation datasets must be on the same grid. MET will regrid files
according to user specified options. Alternatively, outside of MET, the copygb and wgrib2 utilities are recom-
mended for re-gridding GRIB1 and GRIB2 files, respectively. To preserve characteristics of the observations,
it is generally preferred to re-grid the model data to the observation grid, rather than vice versa.

Input point observation files in PrepBUFR format are available through NCEP. The PrepBUFR observation
files contain a wide variety of point-based observation types in a single file in a standard format. However,
some users may wish to use observations not included in the standard PrepBUFR files. For this reason, prior
to performing the verification step in the Point-Stat tool, the PrepBUFR file is reformatted with the PB2NC
tool. In this step, the user can select various ways of stratifying the observation data spatially, temporally,

25

MET User’s Guide, version 12.0.0-betal

and by type. The remaining observations are reformatted into an intermediate NetCDF file. The ASCII2NC
tool may be used to convert ASCII point observations that are not available in the PrepBUFR files into this
common NetCDF point observation format. Several other MET tools, described below, are also provided to
reformat point observations into this common NetCDF point observation format prior to passing them as
input to the Point-Stat or Ensemble-Stat verification tools.

Tropical cyclone forecasts and observations are typically provided in a specific ATCF (Automated Tropical
Cyclone Forecasting) ASCII format, in A-deck, B-deck, and E-deck files.

4.1.1 Requirements for CF Compliant NetCDF

The MET tools use following attributes and variables for input CF Compliant NetCDF data.
1. The global attribute “Conventions”.

2. The “standard name” and “units” attributes for coordinate variables. The “axis” attribute (“T” or
“time”) must exist as the time variable if the “standard name” attribute does not exist.

3. The “coordinates” attribute for the data variables. It contains the coordinate variable names.

4. The “grid mapping” attribute for the data variables for projections and the matching grid mapping
variable (optional for the latitude longitude projection).

5. The gridded data should be evenly spaced horizontally and vertically.
6. (Optional) the “forecast_reference time” variable for init_time.

MET processes the CF-Compliant gridded NetCDF files with the projection information. The CF-
Compliant NetCDF is defined by the global attribute “Conventions” whose value begins with “CF-” (“CF-
<Version_number>"). The global attribute “Conventions” is mandatory. MET accepts the variation of this
attribute (“conventions” and “CONVENTIONS”). The value should be started with “CF-" and followed by
the version number. MET accepts the attribute value that begins with “CF ” (“CF” and a space instead of a
hyphen) or “COARDS”.

The grid mapping variable contains the projection information. The grid mapping variable can be found
by looking at the variable attribute “grid mapping” from the data variables. The “standard name” attribute
is used to filter out the coordinate variables like time, latitude, and longitude variables. The value of the
“grid_mapping” attribute is the name of the grid mapping variable. Four projections are supported with grid
mapping variables: latitude longitude, lambert conformal conic, polar stereographic, and geostationary.
In case of the latitude longitude projection, the latitude and longitude variable names should be the same
as the dimension names and the “units” attribute should be valid.

Here are examples for the grid mapping variable (“edr” is the data variable):

Example 1: grid mapping for latitude_longitude projection

float edr(time, z, lat, lon) ;
edr:units = "m*(2/3) s*-1" ;
edr:long_name = "Median eddy dissipation rate” ;
edr:coordinates = "lat lon" ;
edr:_FillValue = -9999.f ;
edr:grid_mapping = "grid_mapping” ;

(continues on next page)

26 Chapter 4. MET Data I/0

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#standard-name
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#units
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#time-axis-ex
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#coordinate-types
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#appendix-grid-mappings
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#scalar-coordinate-variables

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

int grid_mapping ;
grid_mapping:grid_mapping_name = "latitude_longitude"” ;
grid_mapping:semi_major_axis = 6371000. ;
grid_mapping:inverse_flattening = 0 ;

Example 2: grid mapping for lambert_conformal_conic projection

float edr(time, z, y, x) ;
edr:units = "m*(2/3) s*-1" ;
edr:long_name = "Eddy dissipation rate” ;
edr:coordinates = "lat lon" ;
edr:_Fillvalue = -9999.f ;
edr:grid_mapping = "grid_mapping” ;
int grid_mapping ;
grid_mapping:grid_mapping_name = "lambert_conformal_conic” ;

grid_mapping:standard_parallel = 25. ;
grid_mapping:longitude_of_central_meridian = -95. ;
grid_mapping:latitude_of_projection_origin = 25. ;

grid_mapping:false_easting = 0 ;
grid_mapping:false_northing = 0 ;
grid_mapping:GRIB_earth_shape = "spherical” ;
grid_mapping:GRIB_earth_shape_code = 0 ;

When the grid mapping variable is not available, MET detects the latitude longitude projection in following
order:

1. the lat/lon projection from the dimensions
2. the lat/lon projection from the “coordinates” attribute from the data variable
3. the lat/lon projection from the latitude and longitude variables by the “standard name” attribute

MET is looking for variables with the same name as the dimension and checking the “units” attribute to find
the latitude and longitude variables. The valid “units” strings are listed in the table below. MET accepts the
variable “tlat” and “tlon” if the dimension names are “nlat” and “nlon”.

If there are no latitude and longitude variables from dimensions, MET gets coordinate variable names from
the “coordinates” attribute. The matching coordinate variables should have the proper “units” attribute.

MET gets the time, latitude, and longitude variables by looking at the standard name: “time”, “latitude”,
and “longitude” as the last option.

MET gets the valid time from the time variable and the “forecast _reference time” variable for the init_time.
If the time variable does not exist, it can come from the file name. MET supports only two cases:

1. TRMM 3B42 3hourly filename (3B42.<yyyymmdd>.<hh>.7.G3.nc)
2. TRMM_3B42_daily filename (3B42_daily. <yyyy>.<mm>.<dd>.7.G3.nc)

4.1. Input data formats 27

MET User’s Guide, version 12.0.0-betal

Table 4.1: Valid strings for the “units” attribute.

time latitude longitude
“seconds since YYYY-MM-DD HH:MM:SS”, “minutes since YYYY- | “de- “degrees_east”,
MM-DD HH:MM:SS”, “hours since YYYY-MM-DD HH:MM:SS”, | grees north”, “degree east”,
“days since YYYY-MM-DD HH:MM:SS”, “months since YYYY-MM- | “degree north”, | “degree E”,
DD HH:MM:SS”, “years since YYYY-MM-DD HH:MM:SS”, Accepts | “degree N”, “degrees E”,
“Y7, “YY”, “YYY”, “M”, “D”, “HH”, and “HH:MM”. “HH:MM:SS” is | “degrees N”, “degreeE”, “de-
optional “degreeN”, “de- | greesE”
greesN”

4.1.2 Performance with NetCDF input data

There is no limitation on the NetCDF file size. The size of the data variables matters more than the file
size. The NetCDF API loads the metadata first upon opening the NetCDF file. It’s similar for accessing
data variables. There are two API calls: getting the metadata and getting the actual data. The memory is
allocated and consumed at the second API call (getting the actual data).

The dimensions of the data variables matter. MET requests the NetCDF data needs based on: 1) loading
and processing a data plane, and 2) loading and processing the next data plane. This means an extra step
for slicing with one more dimension in the NetCDF input data. The performance is quite different if the
compression is enabled with high resolution data. NetCDF does compression per variable. The variables can
have different compression levels (0 to 9). A value of 0 means no compression, and 9 is the highest level of
compression possible. The number for decompression is the same between one more and one less dimension
NetCDF input files (combined VS separated). The difference is the amount of data to be decompressed
which requires more memory. For example, let’s assume the time dimension is 30. NetCDF data with one
less dimension (no time dimension) does decompression 30 times for nx by ny dataset. NetCDF with one
more dimension does compression 30 times for 30 by nx by ny dataset and slicing for target time offset. So
it’s better to have multiple NetCDF files with one less dimension than a big file with bigger variable data if
compressed. If the compression is not enabled, the file size will be much bigger requiring more disk space.

4.2 Intermediate data formats

MET uses NetCDF as an intermediate file format. The MET tools which write gridded output files write to a
common gridded NetCDF file format. The MET tools which write point output files write to a common point
observation NetCDF file format.

28 Chapter 4. MET Data I/0

MET User’s Guide, version 12.0.0-betal

4.3 Output data formats

The MET package currently produces output in the following basic file formats: STAT files, ASCII files,
NetCDF files, PostScript plots, and png plots from the Plot-Mode-Field utility.

The STAT format consists of tabular ASCII data that can be easily read by many analysis tools and software
packages. MET produces STAT output for the Grid-Stat, Point-Stat, Ensemble-Stat, Wavelet-Stat, and TC-Gen
tools. STAT is a specialized ASCII format containing one record on each line. However, a single STAT file will
typically contain multiple line types. Several header columns at the beginning of each line remain the same
for each line type. However, the remaining columns after the header change for each line type. STAT files
can be difficult for a human to read as the quantities represented for many columns of data change from
line to line.

For this reason, ASCII output is also available as an alternative for these tools. The ASCII files contain exactly
the same output as the STAT files but each STAT line type is grouped into a single ASCII file with a column
header row making the output more human-readable. The configuration files control which line types are
output and whether or not the optional ASCII files are generated.

The MODE tool creates two ASCII output files as well (although they are not in a STAT format). It generates
an ASCII file containing contingency table counts and statistics comparing the model and observation fields
being compared. The MODE tool also generates a second ASCII file containing all of the attributes for the
single objects and pairs of objects. Each line in this file contains the same number of columns, and those
columns not applicable to a given line type contain fill data. Similarly, the MTD tool writes one ASCII output
file for 2D objects attributes and four ASCII output files for 3D object attributes.

The TC-Pairs and TC-Stat utilities produce ASCII output, similar in style to the STAT files, but with TC
relevant fields.

Many of the tools generate gridded NetCDF output. Generally, this output acts as input to other MET tools
or plotting programs. The point observation preprocessing tools produce NetCDF output as input to the
statistics tools. Full details of the contents of the NetCDF files is found in Section 4.4 below.

The MODE, Wavelet-Stat and plotting tools produce PostScript plots summarizing the spatial approach used
in the verification. The PostScript plots are generated using internal libraries and do not depend on an
external plotting package. The MODE plots contain several summary pages at the beginning, but the total
number of pages will depend on the merging options chosen. Additional pages will be created if merging
is performed using the double thresholding or fuzzy engine merging techniques for the forecast and obser-
vation fields. The number of pages in the Wavelet-Stat plots depend on the number of masking tiles used
and the dimension of those tiles. The first summary page is followed by plots for the wavelet decomposition
of the forecast and observation fields. The generation of these PostScript output files can be disabled using
command line options.

Users can use the optional plotting utilities Plot-Data-Plane, Plot-Point-Obs, and Plot-Mode-Field to produce
graphics showing forecast, observation, and MODE object files.

4.3. Output data formats 29

MET User’s Guide, version 12.0.0-betal

4.4 Data format summary

The following is a summary of the input and output formats for each of the tools currently in MET. The
output listed is the maximum number of possible output files. Generally, the type of output files generated
can be controlled by the configuration files and/or the command line options:

1. PB2NC Tool

* Input: PrepBUFR point observation file(s) and one configuration file.

* Output: One NetCDF file containing the observations that have been retained.
2. ASCII2NC Tool

* Input: ASCII point observation file(s) that has (have) been formatted as expected, and optional
configuration file.

* Qutput: One NetCDF file containing the reformatted observations.
3. MADIS2NC Tool

* Input: MADIS point observation file(s) in NetCDF format.

* Output: One NetCDF file containing the reformatted observations.
4. LIDAR2NC Tool

* Input: One CALIPSO satellite HDF file.

* Output: One NetCDF file containing the reformatted observations.
5. IODA2NC Tool

* Input: IODA observation file(s) in NetCDF format.

* Output: One NetCDF file containing the reformatted observations.
6. Point2Grid Tool

* Input: One NetCDF file in the common point observation format.

* Output: One NetCDF file containing a gridded representation of the point observations.
7. Pcp-Combine Tool

* Input: Two or more gridded model or observation files (in GRIB format for “sum” command, or
any gridded file for “add”, “subtract”, and “derive” commands) containing data (often accumu-
lated precipitation) to be combined.

* Output: One NetCDF file containing output for the requested operation(s).
8. Regrid-Data-Plane Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification
if desired.

* Output: One NetCDF file containing the regridded data field(s).
9. Shift-Data-Plane Tool

30 Chapter 4. MET Data I/0

MET User’s Guide, version 12.0.0-betal

10.

11.

12.

13.

14.

15.

16.

17.

* Input: One gridded model or observation field.
* Output: One NetCDF file containing the shifted data field.
MODIS-Regrid Tool
* Input: One gridded model or observation field and one gridded field to provide grid specification.
* Qutput: One NetCDF file containing the regridded data field.
Gen-VX-Mask Tool

* Input: One gridded model or observation file and one file defining the masking region (varies
based on masking type).

* Output: One NetCDF file containing a bitmap for the resulting masking region.
Point-Stat Tool

* Input: One gridded model file, at least one NetCDF file in the common point observation format,
and one configuration file.

* Qutput: One STAT file containing all of the requested line types and several ASCII files for each
line type requested.

Grid-Stat Tool
* Input: One gridded model file, one gridded observation file, and one configuration file.

* Output: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one NetCDF file containing the matched pair data and difference field for
each verification region and variable type/level being verified.

Ensemble Stat Tool

* Input: An arbitrary number of gridded model files, one or more gridded and/or point observation
files, and one configuration file. Point and gridded observations are both accepted.

* Qutput: One NetCDF file containing requested ensemble forecast information. If observations
are provided, one STAT file containing all requested line types, several ASCII files for each line
type requested, and one NetCDF file containing gridded observation ranks.

Wavelet-Stat Tool
* Input: One gridded model file, one gridded observation file, and one configuration file.

* Output: One STAT file containing the “ISC” line type, one ASCII file containing intensity-scale
information and statistics, one NetCDF file containing information about the wavelet decomposi-
tion of forecast and observed fields and their differences, and one PostScript file containing plots
and summaries of the intensity-scale verification.

GSID2MPR Tool
* Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.
* Output: One ASCII file in matched pair (MPR) format.

GSID20ORANK Tool

* Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

4.4. Data format summary 31

MET User’s Guide, version 12.0.0-betal

18.

19.

20.

21.

22.

23.

24,

* Qutput: One ASCII file in observation rank (ORANK) format.
Stat-Analysis Tool

* Input: One or more STAT files output from the Point-Stat, Grid-Stat, Ensemble Stat, Wavelet-Stat,
or TC-Gen tools and, optionally, one configuration file containing specifications for the analysis
job(s) to be run on the STAT data.

* Output: ASCII output of the analysis jobs is printed to the screen unless redirected to a file using
the “-out” option or redirected to a STAT output file using the “-out_stat” option.

Series-Analysis Tool

e Input: An arbitrary number of gridded model files and gridded observation files and one config-
uration file.

* Output: One NetCDF file containing requested output statistics on the same grid as the input
files.

Grid-Diag Tool

* Input: An arbitrary number of gridded data files and one configuration file.

* Output: One NetCDF file containing individual and joint histograms of the requested data.
MODE Tool

* Input: One gridded model file, one gridded observation file, and one or two configuration files.

* Output: One ASCII file containing contingency table counts and statistics, one ASCII file con-
taining single and pair object attribute values, one NetCDF file containing object indices for the
gridded simple and cluster object fields, and one PostScript plot containing a summary of the
features-based verification performed.

MODE-Analysis Tool

* Input: One or more MODE object statistics files from the MODE tool and, optionally, one config-
uration file containing specification for the analysis job(s) to be run on the object data.

* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-out” option.

MODE-TD Tool

* Input: Two or more gridded model files, two or more gridded observation files, and one configu-
ration file.

* Output: One ASCII file containing 2D object attributes, four ASCII files containing 3D object
attributes, and one NetCDF file containing object indices for the gridded simple and cluster object
fields.

TC-DLand Tool

* Input: One or more files containing the longitude (Degrees East) and latitude (Degrees North) of
all the coastlines and islands considered to be a significant landmass.

* Qutput: One NetCDF format file containing a gridded field representing the distance to the
nearest coastline or island, as specified in the input file.

32

Chapter 4. MET Data I/0

MET User’s Guide, version 12.0.0-betal

25.

26.

27.

28.

290.

30.

31.

32.

33.

TC-Pairs Tool

* Input: At least one A-deck or E-deck file and one B-deck ATCF format file containing output from
a tropical cyclone tracker and one configuration file. The A-deck files contain forecast tracks, the
E-deck files contain forecast probabilities, and the B-deck files are typically the NHC Best Track
Analysis but could also be any ATCF format reference.

* Qutput: ASCII output with the suffix .tcst.
TC-Stat Tool

* Input: One or more TCSTAT output files output from the TC-Pairs tool and, optionally, one con-
figuration file containing specifications for the analysis job(s) to be run on the TCSTAT data.

* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-out” option.

TC-Gen Tool

* Input: One or more Tropical Cyclone genesis format files, one or more verifying operational and
BEST track files in ATCF format, and one configuration file.

* Output: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one gridded NetCDF file containing counts of track points.

TC-RMW Tool

* Input: One or more gridded data files, one ATCF track file defining the storm location, and one
configuration file.

* Output: One gridded NetCDF file containing the requested model fields transformed into cylin-
drical coordinates.

RMW-Analysis Tool
* Input: One or more NetCDF output files from the TC-RMW tool and one configuration file.
* Output: One NetCDF file for results aggregated across the filtered set of input files.
Plot-Point-Obs Tool

* Input: One NetCDF file containing point observation from the ASCII2NC, PB2NC, MADIS2NC, or
LIDAR2NC tool.

* Output: One postscript file containing a plot of the requested field.
Plot-Data-Plane Tool
* Input: One gridded data file to be plotted.
* Output: One postscript file containing a plot of the requested field.
Plot-MODE-Field Tool
* Input: One or more MODE output files to be used for plotting and one configuration file.

* Output: One PNG file with the requested MODE objects plotted. Options for objects include raw,
simple or cluster and forecast or observed objects.

GIS-Util Tools

4.4. Data format summary 33

MET User’s Guide, version 12.0.0-betal

* Input: ESRI shape files ending in .dbf, .shp, or .shx.

* Qutput: ASCII description of their contents printed to the screen.

4.5 Configuration File Details

Part of the strength of MET is the leveraging of capability across tools. There are several configuration
options that are common to many of the tools.

Many of the MET tools use a configuration file to set parameters. This prevents the command line from
becoming too long and cumbersome and makes the output easier to duplicate.

The configuration file details are described in Configuration File Overview (page 35) and Tropical Cyclone
Configuration Options (page 109).

34 Chapter 4. MET Data I/0

Chapter 5

Configuration File Overview

The configuration files that control many of the MET tools contain formatted ASCII text. This format has
been updated for MET version 12.0.0-betal and continues to be used in subsequent releases.

Settings common to multiple tools are described in the top part of this file and settings specific to individual
tools are described beneath the common settings. Please refer to the MET User’s Guide for more details
about the settings if necessary.

A configuration file entry is an entry name, followed by an equal sign (=), followed by an entry value, and
is terminated by a semicolon (;). The configuration file itself is one large dictionary consisting of entries,
some of which are dictionaries themselves.

The configuration file language supports the following data types:
* Dictionary:
— Grouping of one or more entries enclosed by curly braces {}.
* Array:
— List of one or more entries enclosed by square braces [].
— Array elements are separated by commas.
* String:
— A character string enclosed by double quotation marks “”.

¢ Integer:

— A numeric integer value.

Float:

— A numeric float value.
* Boolean:

— A boolean value (TRUE or FALSE).
Threshold:

— A threshold type (<, <=, ==, |-, >=, or >) followed by a numeric value.

35

MET User’s Guide, version 12.0.0-betal

— The threshold type may also be specified using two letter abbreviations (lt, le, eq, ne, ge, gt).

— Multiple thresholds may be combined by specifying the logic type of AND (&&) or OR (| |). For
example, “>=5&&<=10" defines the numbers between 5 and 10 and “==1||==2" defines
numbers exactly equal to 1 or 2.

e Percentile Thresholds:

- A threshold type (<, <=, ==, !=, >=, or >), followed by a percentile type description (SFP,
SOP, SCP, USP, CDP, or FBIAS), followed by a numeric value, typically between 0 and 100.

— Note that the two letter threshold type abbreviations (It, le, eq, ne, ge, gt) are not supported for
percentile thresholds.

— Thresholds may be defined as percentiles of the data being processed in several places:

o
x*

o+
*

In Point-Stat and Grid-Stat when setting “cat_thresh”, “wind_thresh” and “cnt_thresh”.

In Wavelet-Stat when setting “cat_thresh”.

+ In MODE when setting “conv_thresh” and “merge thresh”.

* In Ensemble-Stat when setting “obs_thresh”.

* When using the “censor_thresh” config option.

*

In the Stat-Analysis “-out_fecst_thresh” and “-out_obs_thresh” job command options.

In the Gen-Vx-Mask “-thresh” command line option.

— The following percentile threshold types are supported:

*

“SFP” for a percentile of the sample forecast values. e.g. “>SFP33.3” means greater than the
33.3-rd forecast percentile.

“SOP” for a percentile of the sample observation values. e.g. “>SOP75” means greater than
the 75-th observation percentile.

* “SCP” for a percentile of the sample climatology values. e.g. “>SCP90” means greater than

the 90-th climatology percentile.

x “USP” for a user-specified percentile threshold. e.g. “<USP90(2.5)” means less than the

90-th percentile values which the user has already determined to be 2.5 outside of MET.

* “==FBIAS” for a user-specified frequency bias value. e.g. “==FBIAS1” to automatically

de-bias the data, “==FBIAS0.9” to select a low-bias threshold, or “==FBIAS1.1” to select a
high-bias threshold. This option must be used in conjunction with a simple threshold in the
other field. For example, when “obs.cat_thresh = >5.0” and “fcst.cat_thresh = ==FBIAS1;”,
MET applies the >5.0 threshold to the observations and then chooses a forecast threshold
which results in a frequency bias of 1. The frequency bias can be any float value > 0.0.

* “CDP” for climatological distribution percentile thresholds. These thresholds require that

the climatological mean and standard deviation be defined using the climo mean and
climo_stdev config file options, respectively. The categorical (cat thresh), conditional
(cnt_thresh), or wind speed (wind_thresh) thresholds are defined relative to the climatolog-
ical distribution at each point. Therefore, the actual numeric threshold applied can change

36

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

for each point. e.g. “>CDP50” means greater than the 50-th percentile of the climatological
distribution for each point.

— When percentile thresholds of type SFP, SOP, SCP, or CDP are requested for continuous fil-
tering thresholds (cnt_thresh), wind speed thresholds (wind thresh), or observation filtering
thresholds (obs thresh in ensemble stat), the following special logic is applied. Percentile
thresholds of type equality are automatically converted to percentile bins which span the val-
ues from O to 100. For example, “==CDP25” is automatically expanded to 4 percentile bins:
>=CDP0&&<CDP25,>=CDP25&& <CDP50,>=CDP50&&<CDP75,>=CDP75&&<=CDP100

— When sample percentile thresholds of type SFP, SOP, SCP, or FBIAS are requested, MET recom-
putes the actual percentile that the threshold represents. If the requested percentile and actual
percentile differ by more than 5%, a warning message is printed. This may occur when the sample
size is small or the data values are not truly continuous.

— When percentile thresholds of type SFP, SOP, SCP, or USP are used, the actual threshold value
is appended to the FCST THRESH and OBS_THRESH output columns. For example, if the 90-th
percentile of the current set of forecast values is 3.5, then the requested threshold “<=SFP90” is
written to the output as “<=SFP90(3.5)”.

— When parsing FCST_THRESH and OBS_THRESH columns, the Stat-Analysis tool ignores the ac-
tual percentile values listed in parentheses.

* Piecewise-Linear Function (currently used only by MODE):
— Alist of (%, y) points enclosed in parenthesis ().
- The (x, y) points are NOT separated by commas.
» User-defined function of a single variable:
— Left side is a function name followed by variable name in parenthesis.

— Right side is an equation which includes basic math functions (+,-,*,/), built-in functions (listed
below), or other user-defined functions.

— Built-in functions include: sin, cos, tan, sind, cosd, tand, asin, acos, atan, asind, acosd, atand,
atan2, atan2d, arg, argd, log, exp, log10, exp10, sqrt, abs, min, max, mod, floor, ceil, step, nint,
sign

The context of a configuration entry matters. If an entry cannot be found in the expected dictionary, the MET
tools recursively search for that entry in the parent dictionaries, all the way up to the top-level configuration
file dictionary. If you'd like to apply the same setting across all cases, you can simply specify it once at the
top-level. Alternatively, you can specify a setting at the appropriate dictionary level to have finer control
over the behavior.

In order to make the configuration files more readable, several descriptive integer types have been defined
in the ConfigConstants file. These integer names may be used on the right-hand side for many configuration
file entries.

Each of the configurable MET tools expects a certain set of configuration entries. Examples of the MET
configuration files can be found in data/config and scripts/config.

When you pass a configuration file to a MET tool, the tool actually parses up to four different configuration
files in the following order:

37

MET User’s Guide, version 12.0.0-betal

1. Reads share/met/config/ConfigConstants to define constants.

2. If the tool produces PostScript output, it reads share/met/config/ConfigMapData to define the map data
to be plotted.

3. Reads the default configuration file for the tool from share/met/config.
4. Reads the user-specified configuration file from the command line.

Many of the entries from step (3) are overwritten by the user-specified entries from step (4). Therefore, the
configuration file you pass in on the command line really only needs to contain entries that differ from the
defaults.

Any of the configuration entries may be overwritten by the user-specified configuration file. For example,
the map data to be plotted may be included in the user-specified configuration file and override the default
settings defined in the share/met/config/ConfigMapData file.

The configuration file language supports the use of environment variables. They are specified as
${ENV_VAR}, where ENV_VAR is the name of the environment variable. When scripting up many calls to
the MET tools, you may find it convenient to use them. For example, when applying the same configuration
to the output from multiple models, consider defining the model name as an environment variable which
the controlling script sets prior to verifying the output of each model. Setting MODEL to that environment
variable enables you to use one configuration file rather than maintaining many very similar ones.

An error in the syntax of a configuration file will result in an error from the MET tool stating the location of
the parsing error.

5.1 Runtime Environment Variables

5.1.1 User-Specified Environment Variables

When editing configuration files, environment variables may be used for setting the configurable parameters
if convenient. The configuration file parser expands environment variables to their full value before pro-
ceeding. Within the configuration file, environment variables must be specified in the form ${VAR_NAME}.

For example, using an environment variable to set the message type (see below) parameter to use ADPUPA
and ADPSFC message types might consist of the following.

Setting the environment variable in a Bash Shell:

export MSG_TYP=""ADPUPA", "ADPSFC"'

Referencing that environment variable inside a MET configuration file:

message_type = [${MSG_TYP} 1;

In addition to supporting user-specified environment variables within configuration files, the environment
variables listed below have special meaning if set at runtime.

38 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.1.2 MET_AIRNOW_STATIONS

The MET AIRNOW_STATIONS environment variable can be used to specify a file that will override the
default file. If set, it should be the full path to the file. The default table can be found in the installed
share/met/table_files/airnow_monitoring site locations v2.dat. This file contains ascii column data that al-
lows lookups of latitude, longitude, and elevation for all AirNow stations based on stationld and/or AqSid.

Additional information and updated site locations can be found at the EPA AirNow website. While
some monitoring stations are permanent, others are temporary, and theirs locations can change. When
running the ascii2nc tool with the -format airnowhourly option, users should download the Monitor-
ing Site_Locations_V2.dat data file data file corresponding to the date being processed and set the
MET AIRNOW_STATIONS envrionment variable to define its location.

5.1.3 MET_NDBC_STATIONS

The MET NDBC_STATIONS environment variable can be used to specify a file that will override the de-
fault file. If set it should be a full path to the file. The default table can be found in the installed
share/met/table_files/ndbc_stations.xml. This file contains XML content for all stations that allows lookups
of latitude, longitude, and, in some cases, elevation for all stations based on stationId.

This set of stations comes from 2 online sources: the active stations website and the complete stations
website.

As these lists can change as a function of time, a script can be run to pull down the contents of both websites
and merge any changes with the existing stations file content, creating an updated stations file locally. The
MET NDBC_STATIONS environment variable can be then set to refer to this newer stations file. Also, the
MET development team will periodically run this script and update share/met/table_files/ndbc_stations.xml.

To run this utility:

build_ndbc_stations_from_web.py <-d> <-p> <-0 OUTPUT_FILE> <-e EXISTING_FILE>

Usage: build_ndbc_stations_from_web.py [options]

Options:

-h, --help show this help message and exit

-d, --diagnostic Rerun using downlaoded files, skipping download step (optional,.
—default: False)

-p, —-prune Prune files that are no longer online (optional, default: False)

-0 OUT_FILE, --out=0UT_FILE
Save the text into the named file (optional, default: merged.txt)
-e EXISTING_FILE, --existing=EXISTING_FILE
Save the text into the named file (optional, default: ../../../data/
—table_files/ndbc_stations.xml)

NOTE: The downloaded files are written to a subdirectory ndbc_temp_data which can be deleted once the
final output file is created.

5.1. Runtime Environment Variables 39

https://www.airnow.gov
https://test.airnowtech.org/
https://www.ndbc.noaa.gov/activestations.xml
https://www.airnow.gov
https://www.airnow.gov

MET User’s Guide, version 12.0.0-betal

5.1.4 MET_BASE

The MET BASE variable is defined in the code at compilation time as the path to the MET shared data.
These are things like the default configuration files, common polygons and color scales. MET BASE may
be used in the MET configuration files when specifying paths and the appropriate path will be substituted
in. If MET BASE is defined as an environment variable, its value will be used instead of the one defined at
compilation time.

5.1.5 MET OBS_ERROR_TABLE

The MET OBS ERROR _TABLE environment variable can be set to specify the location of an ASCII
file defining observation error information. The default table can be found in the installed
share/met/table_files/obs_error_table.txt. This observation error logic is applied in Ensemble-Stat to perturb
ensemble member values and/or define observation bias corrections.

When processing point and gridded observations, Ensemble-Stat searches the table to find the entry defining
the observation error information. The table consists of 15 columns and includes a header row defining each
column. The special string “ALL” is interpreted as a wildcard in these files. The first 6 columns (OBS VAR,
MESSAGE_TYPE, PB_ REPORT TYPE, IN REPORT TYPE, INSTRUMENT TYPE, and STATION ID) may be
set to a comma-separated list of strings to be matched. In addition, the strings in the OBS_VAR column are
interpreted as regular expressions when searching for a match. For example, setting the OBS VAR column to
‘APCP_[0-9]+ would match observations for both APCP_03 and APCP_24. The HGT RANGE, VAL RANGE,
and PRS RANGE columns should either be set to “ALL” or “BEG,END” where BEG and END specify the
range of values to be used. The INST BIAS SCALE and INST BIAS OFFSET columns define instrument bias
adjustments which are applied to the observation values. The DIST TYPE and DIST PARM columns define
the distribution from which random perturbations should be drawn and applied to the ensemble member
values. See the obs_error description below for details on the supported error distributions. The last two
columns, MIN and MAX, define the bounds for the valid range of the bias-corrected observation values and
randomly perturbed ensemble member values. Values less than MIN are reset to the mimimum value and
values greater than MAX are reset to the maximum value. A value of NA indicates that the variable is
unbounded.

5.1.6 MET_GRIB_TABLES

The MET GRIB_TABLES environment variable can be set to specify the location of custom GRIB tables. It
can either be set to a specific file name or to a directory containing custom GRIB tables files. These file
names must begin with a “grib1” or “grib2” prefix and end with a “.txt” suffix. Their format must match the
format used by the default MET GRIB table files, described below. The custom GRIB tables are read prior to
the default tables and their settings take precedence.

At runtime, the MET tools read default GRIB tables from the installed share/met/table_files directory, and
their file formats are described below:

GRIB1 table files begin with “grib1” prefix and end with a “.txt” suffix. The first line of the file must contain
“GRIB1”. The following lines consist of 4 integers followed by 3 strings:

Column 1: GRIB code (e.g. 11 for temperature)

40 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

Column 2: parameter table version number

Column 3: center id (e.g. 07 for US Weather Service- National Met. Center)
Column 4: subcenter id

Column 5: variable name

Column 6: variable description

Column 7: units

References:

Office Note 388 GRIB1
A Guide to the Code Form FM 92-IX Ext. GRIB Edition 1

GRIB2 table files begin with “grib2” prefix and end with a “.txt” suffix. The first line of the file must contain
“GRIB2”. The following lines consist of 8 integers followed by 3 strings.

Column 1: Section 0 Discipline

Column 2: Section 1 Master Tables Version Number

Column 3: Section 1 Master Tables Version Number, low range of tables
Column 4: Section 1 Master Table Version Number, high range of tables
Column 5: Section 1 originating center

Column 6: Local Tables Version Number

Column 7: Section 4 Template 4.0 Parameter category

Column 8: Section 4 Template 4.0 Parameter number

Column 9: variable name

Column 10: variable description

Column 11: units

References:

NCEP WMO GRIB2 Documentation

5.1. Runtime Environment Variables 41

http://www.nco.ncep.noaa.gov/pmb/docs/on388
http://www.wmo.int/pages/prog/www/WMOCodes/Guides/GRIB/GRIB1-Contents.html
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc

MET User’s Guide, version 12.0.0-betal

5.1.7 OMP_NUM_THREADS

Introduction

There are a number of different ways of parallelizing code. OpenMP offers parallelism within a single
shared-memory workstation or supercomputer node. The programmer writes OpenMP directives into the
code to parallelize particular code regions.

When a parallelized code region is reached, which we shall hereafter call a parallel region, a number of
threads are spawned and work is shared among them. Running on different cores, this reduces the execution
time. At the end of the parallel region, the code returns to single-thread execution.

A limited number of code regions are parallelized in MET. As a consequence, there are limits to the overall
speed gains acheivable. Only the parallel regions of code will get faster with more threads, leaving the
remaining serial portions to dominate the runtime.

Not all top-level executables use parallelized code. If OpenMP is available, a log message will appear inviting
the user to increase the number of threads for faster runtimes.

Setting the number of threads

The number of threads is controlled by the environment variable OMP_NUM _THREADS . For example, on a
quad core machine, the user might choose to run on 4 threads:

export OMP_NUM_THREADS=4

Alternatively, the variable may be specified as a prefix to the executable itself. For example:

OMP_NUM_THREADS=4 <exec>

The case where this variable remains unset is handled inside the code, which defaults to a single thread.

There are choices when deciding how many threads to use. To perform a single run as fast as possible, it
would likely be appropriate to use as many threads as there are (physical) cores available on the specific
system. However, it is not a cast-iron guarantee that more threads will always translate into more speed.
In theory, there is a chance that running across multiple non-uniform memory access (NUMA) regions may
carry negative performance impacts. This has not been observed in practice, however.

A lower thread count is appropriate when time-to-solution is not so critical, because cores remain idle when
the code is not inside a parallel region. Fewer threads typically means better resource utilization.

Which code is parallelized?

Regions of parallelized code are:
* fractional_coverage (data_plane_util.cc)

Only the following top-level executables can presently benefit from OpenMP parallelization:
e grid_stat
* ensemble_stat

* grid_ens_prod

42 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

Thread Binding

It is normally beneficial to bind threads to particular cores, sometimes called affinitization. There are a few
reasons for this, but at the very least it guarantees that threads remain evenly distributed across the available
cores. Otherwise, the operating system may migrate threads between cores during a run.

OpenMP provides some environment variables to handle this: OMP_PLACES and OMP_PROC_BIND. We anticipate
that the effect of setting only OMP_PROC_BIND=true would be neutral-to-positive.

However, there are sometimes compiler-specific environment variables. Instead, thread affinitization is
sometimes handled by MPI launchers, since OpenMP is often used in MPI codes to reduce intra-node com-
munications.

Where code is running in a production context, it is worth being familiar with the binding / affinitization
method on the particular system and building it into any relevant scripting.

5.2 Settings common to multiple tools

5.2.1 exit_on_warning

The “exit_on_warning” entry in ConfigConstants may be set to true or false. If set to true and a MET tool
encounters a warning, it will immediately exit with bad status after writing the warning message.

exit_on_warning = FALSE;

5.2.2 nc_compression

The “nc_compression” entry in ConfigConstants defines the compression level for the NetCDF variables.
Setting this option in the config file of one of the tools overrides the default value set in ConfigConstants.
The environment variable MET NC_COMPRESS overrides the compression level from configuration file. The
command line argument “-compress n” for some tools overrides it. The range is 0 to 9.

* 0 is to disable the compression.
* 1to 9: Lower number is faster, higher number for smaller files.

WARNING: Selecting a high compression level may slow down the reading and writing of NetCDF files
within MET significantly.

nc_compression = 0;

5.2. Settings common to multiple tools 43

MET User’s Guide, version 12.0.0-betal

5.2.3 output_precision

The “output_precision” entry in ConfigConstants defines the precision (number of significant decimal places)
to be written to the ASCII output files. Setting this option in the config file of one of the tools will override
the default value set in ConfigConstants.

output_precision = 5;

5.2.4 tmp_dir

The “tmp_dir” entry in ConfigConstants defines the directory for the temporary files. The directory must
exist and be writable. The environment variable MET TMP_DIR overrides the default value at the config-
uration file. Some tools override the temporary directory by the command line argument “-tmp_dir <dire-
tory name>".

tmp_dir = "/tmp";

5.2.5 message_type group_map

The “message type group map” entry is an array of dictionaries, each containing a “key” string and “val”
string. This defines a mapping of message type group names to a comma-separated list of values. This map is
defined in the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify this map to define sets of message
types that should be processed together as a group. The “SURFACE” entry defines message types for which
surface verification logic should be applied. If not defined, the default values listed below are used.

mesage_type_group_map = [

{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; 3,
{ key = "ANYAIR”; val = "AIRCAR,AIRCFT"; y,
{ key = "ANYSFC”; val = "ADPSFC, SFCSHP,ADPUPA,PROFLR,MSONET"; 3,
{ key = "ONLYSF"; val = "ADPSFC,SFCSHP";)

5.2.6 message_type _map

The “message type map” entry is an array of dictionaries, each containing a “key” string and “val” string.
This defines a mapping of input strings to output message types. This mapping is applied in ASCII2NC when
converting input little r report types to output message types. This mapping is also supported in PBN2NC
as a way of renaming input PREPBUFR message types.

message_type_map = [
{ key = "FM-12 SYNOP”; val = "ADPSFC"; 1},
{ key = "FM-13 SHIP”; val = "SFCSHP"; 1},
{ key = "FM-15 METAR"; val = "ADPSFC”; },
{ key = "FM-18 BUOY”; val = "SFCSHP"; 1},

(continues on next page)

44 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

{ key = "FM-281 QSCAT"; val = "ASCATW"; 1},
{ key = "FM-32 PILOT"; val = "ADPUPA"; 1},
{ key = "FM-35 TEMP”; val = "ADPUPA"; },
{ key = "FM-88 SATOB”; val = "SATWND"; },
{ key = "FM-97 ACARS”; val = "AIRCFT"; }

5.2.7 model

The “model” entry specifies a name for the model being verified. This name is written to the MODEL column
of the ASCII output generated. If you're verifying multiple models, you should choose descriptive model
names (no whitespace) to distinguish between their output. e.g. model = “GFS”;

model = "FCST";

5.2.8 desc

The “desc” entry specifies a user-specified description for each verification task. This string is written to the
DESC column of the ASCII output generated. It may be set separately in each “obs.field” verification task
entry or simply once at the top level of the configuration file. If you're verifying the same field multiple times
with different quality control flags, you should choose description strings (no whitespace) to distinguish
between their output. e.g. desc = “QC_9”;

desc = "NA";

5.2.9 obtype

The “obtype” entry specifies a name to describe the type of verifying gridded observation used. This name
is written to the OBTYPE column in the ASCII output generated. If you're using multiple types of verifying
observations, you should choose a descriptive name (no whitespace) to distinguish between their output.
When verifying against point observations the point observation message type value is written to the OBTYPE
column. Otherwise, the configuration file obtype value is written.

obtype = "ANALYS";

5.2. Settings common to multiple tools 45

MET User’s Guide, version 12.0.0-betal

5.2.10 regrid

The “regrid” entry is a dictionary containing information about how to handle input gridded data files. The
“regrid” entry specifies regridding logic using the following entries:

* The “to_grid” entry may be set to NONE, FCST, OBS, a named grid, the path to a gridded data file
defining the grid, or an explicit grid specification string.

to_grid = NONE; To disable regridding.

to_grid = FCST; To regrid observations to the forecast grid.
to_grid = OBS; To regrid forecasts to the observation grid.
to_grid = “G218”; To regrid both to a named grid.

to_grid = “path”; To regrid both to a grid defined by a file.

to_grid = “spec”; To define a grid specification string, as described in Appendix B Map Projections,

Grids, and Polylines (page 493).

* The “vld_thresh” entry specifies a proportion between 0 and 1 to define the required ratio of valid
data points. When regridding, compute a ratio of the number of valid data points to the total number
of points in the neighborhood. If that ratio is less than this threshold, write bad data for the current

point.

* The “method” entry defines the regridding method to be used.

— Valid regridding methods:

oS

« MIN for the minimum value

* MAX for the maximum value

* MEDIAN for the median value

*

UW_MEAN for the unweighted average value

DW_MEAN for the distance-weighted average value (weight = distance ™ -2)

* AW_MEAN for an area-weighted mean when regridding from high to low resolution grids

(width = 1)

« LS _FIT for a least-squares fit

BILIN for bilinear interpolation (width = 2)

* NEAREST for the nearest grid point (width = 1)

* BUDGET for the mass-conserving budget interpolation

FORCE to compare gridded data directly with no interpolation as long as the grid x and y
dimensions match.

* UPPER_LEFT for the upper left grid point (width = 1)

UPPER_RIGHT for the upper right grid point (width = 1)
LOWER_RIGHT for the lower right grid point (width = 1)

46

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

* LOWER_LEFT for the lower left grid point (width = 1)

* MAXGAUSS to compute the maximum value in the neighborhood and apply a Gaussian
smoother to the result

The BEST, GEOG_MATCH, and HIRA options are not valid for regridding.

* The “width” entry specifies a regridding width, when applicable. - width = 4; To regrid using a 4x4
box or circle with diameter 4.

* The “shape” entry defines the shape of the neighborhood. Valid values are “SQUARE” or “CIRCLE”

* The “gaussian_dx” entry specifies a delta distance for Gaussian smoothing. The default is 81.271.
Ignored if not Gaussian method.

* The “gaussian_radius” entry defines the radius of influence for Gaussian smoothing. The default is
120. Ignored if not Gaussian method.

* The “gaussian_dx” and “gaussian_radius” settings must be in the same units, such as kilometers or
degress. Their ratio (sigma = gaussian_radius / gaussian_dx) determines the Guassian weighting
function.

7«

* The “convert”, “censor_thresh”, and “censor val” entries are described below. When specified, these
operations are applied to the output of the regridding step. The conversion operation is applied first,
followed by the censoring operation. Note that these operations are limited in scope. They are only
applied if defined within the regrid dictionary itself. Settings defined at higher levels of config file
context are not applied.

regrid = {
to_grid = NONE;
method = NEAREST;
width =1;
vld_thresh = 0.5;
shape = SQUARE;
gaussian_dx = 81.271;
gaussian_radius = 120;
convert(x) = X;
censor_thresh = [];
censor_val = [1;

}

5.2.11 fest

The “fcst” entry is a dictionary containing information about the field(s) to be verified. This dictionary may
include the following entries:

* The “field” entry is an array of dictionaries, each specifying a verification task. Each of these dictionar-
ies may include:

— The “name” entry specifies a name for the field.

— The “level” entry specifies level information for the field.

5.2. Settings common to multiple tools 47

MET User’s Guide, version 12.0.0-betal

— Setting “name” and “level” is file-format specific. See below.

— The “prob” entry in the forecast dictionary defines probability information. It may either be set

as a boolean (i.e. TRUE or FALSE) or as a dictionary defining probabilistic field information.

When set as a boolean to TRUE, it indicates that the “fcst.field” data should be treated as proba-
bilities. For example, when verifying the probabilistic NetCDF output of Ensemble-Stat, one could
configure the Grid-Stat or Point-Stat tools as follows:

fecst =
field = [{ name = "APCP_24_A24_ENS_FREQ_gt0.0";
level = "(x,%)";
prob = TRUE; } 1;
3

Setting “prob = TRUE” indicates that the “APCP_24 A24 ENS FREQ gt0.0” data should be pro-
cessed as probabilities.

When set as a dictionary, it defines the probabilistic field to be used. For example, when verifying
GRIB files containing probabilistic data, one could configure the Grid-Stat or Point-Stat tools as
follows:

fest = {
field = [{ name = "PROB"; level = "A24";
prob = { name = "APCP"; thresh_lo = 2.54; } },
{ name = "PROB"; level = "P850";
prob = { name = "TMP"; thresh_hi = 273; } } 1;
}

The example above selects two probabilistic fields. In both, “name” is set to “PROB”, the GRIB
abbreviation for probabilities. The “level” entry defines the level information (i.e. “A24” for a
24-hour accumulation and “P850” for 850mb). The “prob” dictionary defines the event for which
the probability is defined. The “thresh lo” (i.e. APCP > 2.54) and/or “thresh_hi” (i.e. TMP <
273) entries are used to define the event threshold(s).

Probability fields should contain values in the range [0, 1] or [0, 100]. However, when MET
encounters a probability field with a range [0, 100], it will automatically rescale it to be [0, 1]
before applying the probabilistic verification methods.

Set “prob_as scalar = TRUE” to override the processing of probability data. When the “prob”
entry is set as a dictionary to define the field of interest, setting “prob_as_scalar = TRUE” indicates
that this data should be processed as regular scalars rather than probabilities. For example, this
option can be used to compute traditional 2x2 contingency tables and neighborhood verification
statistics for probability data. It can also be used to compare two probability fields directly. When
this flag is set, probability values are automatically rescaled from the range [0, 100] to [0, 1].

The “convert” entry is a user-defined function of a single variable for processing input data values.
Any input values that are not bad data are replaced by the value of this function. The convert
function is applied prior to regridding or thresholding. This function may include any of the
built-in math functions (e.g. sqrt, log10) described above. Several standard unit conversion func-
tions are already defined in data/config/ConfigConstants. Examples of user-defined conversion

48

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

functions include:

convert(x) = 2%x;

convert(x) = x*2;

convert(a) = loglo(a);

convert(a) = a*10;

convert(t) = max(1, sqrt(abs(t)));

convert(x) = K_to_C(x); where K_to_C(x) is defined in
ConfigConstants

— The “censor_thresh” entry is an array of thresholds to be applied to the input data. The “cen-
sor_val” entry is an array of numbers and must be the same length as “censor_thresh”. These
arguments must appear together in the correct format (threshold and number). For each censor
threshold, any input values meeting the threshold criteria will be reset to the corresponding cen-
sor value. An empty list indicates that no censoring should be performed. The censoring logic
is applied prior to any regridding but after the convert function. All statistics are computed on
the censored data. These entries may be used to apply quality control logic by resetting data
outside of an expected range to the bad data value of -9999. These entries are not indicated in
the metadata of any output files, but the user can set the “desc” entry accordingly.

Examples of user-defined data censoring operations include:

censor_thresh [>12000 71;
censor_val = [12000 7J;

— Several configuration options are provided to override and correct the metadata read from the
input file. The supported options are listed below:

// Data attributes

set_attr_name = "string"”;
set_attr_level = "string”;
set_attr_units = "string";
set_attr_long_name = "string”;

// Time attributes

set_attr_init = "YYYYMMDD[_HH[MMSS]1]";
set_attr_valid = "YYYYMMDD[_HH[MMSS]11";
set_attr_lead = "HH[MMSS]";

set_attr_accum = "HH[MMSS]";

// Grid definition (must match the actual data dimensions)
set_attr_grid = "named grid or grid specification string";

// Flags

is_precipitation boolean;
is_specific_humidity = boolean;
is_u_wind boolean;
is_v_wind boolean;

(continues on next page)

5.2. Settings common to multiple tools 49

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

is_grid_relative = boolean;
is_wind_speed = boolean;
is_wind_direction = boolean;
is_prob = boolean;

— The “mpr_column” and “mpr_thresh” entries are arrays of strings and thresholds to specify which

matched pairs should be included in the statistics. These options apply to the Point-Stat and
Grid-Stat tools. They are parsed seperately for each “obs.field” array entry. The “mpr_column”
strings specify MPR column names (“FCST”, “OBS”, “CLIMO_MEAN”, “CLIMO_STDEV”, or
“CLIMO_CDF”), differences of columns (“FCST-OBS”), or the absolute value of those differ-
ences (“ABS(FCST-OBS)”). The number of “mpr_thresh” thresholds must match the number of
“mpr_column” entries, and the n-th threshold is applied to the n-th column. Any matched pairs
which do not meet any of the specified thresholds are excluded from the analysis. For example,
the following settings exclude matched pairs where the observation value differs from the forecast
or climatological mean values by more than 10:

mpr_column = ["ABS(OBS-FCST)”, "ABS(OBS-CLIMO_MEAN)" 1;
mpr_thresh = [<=10, <=10 1;

The “cat_thresh” entry is an array of thresholds to be used when computing categorical statistics.

The “cnt_thresh” entry is an array of thresholds for filtering data prior to computing continuous
statistics and partial sums.

The “cnt_logic” entry may be set to UNION, INTERSECTION, or SYMDIFF and controls the logic
for how the forecast and observed cnt_thresh settings are combined when filtering matched pairs

of forecast and observed values.

* The “file_type” entry specifies the input gridded data file type rather than letting the code deter-
mine it. MET determines the file type by checking for known suffixes and examining the file con-
tents. Use this option to override the code’s choice. The valid file type values are listed the
“data/config/ConfigConstants” file and are described below. This entry should be defined within the
“fcst” and/or “obs” dictionaries. For example:

fest = {

file_type = GRIB1; GRIB version 1

file_type = GRIB2; GRIB version 2

file_type = NETCDF_MET; NetCDF created by another MET tool

file_type = NETCDF_PINT; NetCDF created by running the p_interp
or wrf_interp utility on WRF output.
May be used to read unstaggered raw WRF
NetCDF output at the surface or a
single model level.

file_type = NETCDF_NCCF; NetCDF following the Climate Forecast
(CF) convention.

file_type = PYTHON_NUMPY; Run a Python script to load data into
a NumPy array.

file_type = PYTHON_XARRAY; Run a Python script to load data into

(continues on next page)

50

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

an xarray object.

3

The “wind_thresh” entry is an array of thresholds used to filter wind speed values when computing
VL1L2 vector partial sums. Only those U/V pairs that meet this wind speed criteria will be included in
the sums. Setting this threshold to NA will result in all U/V pairs being used.

The “wind_logic” entry may be set to UNION, INTERSECTION, or SYMDIFF and controls the logic
for how the forecast and observed wind_thresh settings are combined when filtering matched pairs of
forecast and observed wind speeds.

The “eclv_points” entry specifies the economic cost/loss ratio points to be evaluated. For each cost/loss
ratio specified, the relative value will be computed and written to the ECLV output line. This entry may
either be specified as an array of numbers between 0 and 1 or as a single number. For an array, each
array entry will be evaluated. For a single number, all evenly spaced points between 0 and 1 will be
evaluated, where eclv_points defines the spacing. Cost/loss values are omitted for ratios of 0.0 and
1.0 since they are undefined.

The “init_time” entry specifies the initialization time in YYYYMMDD[HH[MMSS]] format. This entry
can be included in the “fcst” entry as shown below or included in the “field” entry if the user would
like to use different initialization times for different fields.

The “valid_time” entry specifies the valid time in YYYYMMDD[HH[MMSS]] format. This entry can
be included in the “fcst” entry as shown below or included in the “field” entry if the user would like to
use different valid times for different fields.

The “lead_time” entry specifies the lead time in HH[MMSS] format. This entry can be included in the
“fest” entry as shown below or included in the “field” entry if the user would like to use different lead
times for different fields.

7 [13

It is only necessary to use the “init_time”, “valid_time”, and/or “lead_time” settings when verifying a file
containing data for multiple output times. For example, to verify a GRIB file containing data for many lead
times, you could use “lead_time” to specify the record to be verified.

File-format specific settings for the “field” entry:

¢ GRIB1 and GRIB2:

- For custom GRIB tables, see note about MET _GRIB_TABLES.
— The “name” entry specifies a GRIB code number or abbreviation.
* GRIB1 Product Definition Section
* GRIB2 Product Definition Section
— The “level” entry specifies a level type and value:
* ANNN for accumulation interval NNN
* ZNNN for vertical level NNN
* ZNNN-NNN for a range of vertical levels
* PNNN for pressure level NNN in hPa

5.2.

Settings common to multiple tools 51

http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc

MET User’s Guide, version 12.0.0-betal

* PNNN-NNN for a range of pressure levels in hPa
* LNNN for a generic level type
* RNNN for a specific GRIB record number
— The “GRIB_Ivl typ” entry is an integer specifying the level type.

— The “GRIB_lvl vall” and “GRIB_Ivl val2” entries are floats specifying the first and second level
values.

— The “GRIB_ens” entry is a string specifying NCEP’s usage of the extended PDS for ensembles. Set
to “hi_res _ctl”, “low_res_ctl”, “+n”, or “-n”, for the n-th ensemble member.

— The “GRIB1_ptv” entry is an integer specifying the GRIB1 parameter table version number.
— The “GRIB1_code” entry is an integer specifying the GRIB1 code (wgrib kpds5 value).

— The “GRIB1_center” is an integer specifying the originating center.

— The “GRIB1_subcenter” is an integer specifying the originating subcenter.

— The “GRIB1 _tri” is an integer specifying the time range indicator.

— The “GRIB2_mtab” is an integer specifying the master table number.

- The “GRIB2_ltab” is an integer specifying the local table number.

— The “GRIB2_disc” is an integer specifying the GRIB2 discipline code.

- The “GRIB2_parm_cat” is an integer specifying the parameter category code.

- The “GRIB2_parm” is an integer specifying the parameter code.

— The “GRIB2_pdt” is an integer specifying the product definition template (Table 4.0).

— The “GRIB2_process” is an integer specifying the generating process (Table 4.3).

— The “GRIB2_cntr” is an integer specifying the originating center.

- The “GRIB2_ens_type” is an integer specifying the ensemble type (Table 4.6).

— The “GRIB2_der_type” is an integer specifying the derived product type (Table 4.7).

- The “GRIB2_stat_type” is an integer specifying the statistical processing type (Table 4.10).

— The “GRIB2 perc val” is an integer specifying the requested percentile value (0 to 100) to be
used. This applies only to GRIB2 product definition templates 4.6 and 4.10.

— The “GRIB2_ipdtmpl _index” and “GRIB2_ipdtmpl val” entries are arrays of integers which specify
the product description template values to be used. The indices are 0-based. For example, use the
following to request a GRIB2 record whose 9-th and 27-th product description template values
are 1 and 2, respectively:

GRIB2 ipdtmpl index=[8, 26]; GRIB2 ipdtmpl val=[1, 2];
* NetCDF (from MET tools, CF-compliant, p_interp, and wrf interp):
— The “name” entry specifies the NetCDF variable name.

— The “level” entry specifies the dimensions to be used:

52 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

* (i,...,),%,*) for a single field, where i,.. . ,j specifies fixed dimension values and, specifies the
two dimensions for the gridded field. @ specifies the vertical level value or time value instead
of offset, (i,...,@NNN,*,*). For example:

field = [

{
name = "QVAPOR";
level = "(0,5,%,%)"

3,

{
name = "TMP_P850_ENS_MEAN";
level = ["(x,%x)" 1;

}

1;
field = [

{
name = "QVAPOR";
level = "(@20220601_1200,@850,*,%)";

3,

{
name = "TMP_P850_ENS_MEAN";
level = ["(x,%x)" 1;

}

1;

* Python (using PYTHON NUMPY or PYTHON XARRAY):
— The Python interface for MET is described in Appendix F of the MET User’s Guide.

— Two methods for specifying the Python command and input file name are supported. For tools
which read a single gridded forecast and/or observation file, both options work. However, only
the second option is supported for tools which read multiple gridded data files, such as Ensemble-
Stat, Series-Analysis, and MTD.

Option 1:

— On the command line, replace the path to the input gridded data file with the constant string
PYTHON_NUMPY or PYTHON_XARRAY.

— Specify the configuration “name” entry as the Python command to be executed to read the data.
— The “level” entry is not required for Python.

For example:

field = [
{ name = "read_ascii_numpy.py data/python/fcst.txt FCST"; }
1

Option 2:

5.2.

Settings common to multiple tools 53

MET User’s Guide, version 12.0.0-betal

— On the command line, leave the path to the input gridded data as is.
— Set the configuration “file_type” entry to the constant PYTHON NUMPY or PYTHON XARRAY.

— Specify the configuration “name” entry as the Python command to be executed to read the data,
but replace the input gridded data file with the constant MET PYTHON_ INPUT ARG.

— The “level” entry is not required for Python.

For example:

file_type = PYTHON_NUMPY;
field = [
{ name = "read_ascii_numpy.py MET_PYTHON_INPUT_ARG FCST"; }
5
fest = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NA J;
cnt_logic = UNION;
wind_thresh = [NA J;
wind_logic = UNION;
eclv_points = 0.05;
message_type = ["ADPSFC" 1;
init_time = "20120619_12";
valid_time = "20120620_00";
lead_time = "12";
field = [
{
name = "APCP";
level = ["A03" 7;
cat_thresh = [>0.0, >=5.0 J;
}
1;
}
5.2.12 obs

The “obs” entry specifies the same type of information as “fcst”, but for the observation data. It will often
be set to the same things as “fcst”, as shown in the example below. However, when comparing forecast and
observation files of different format types, this entry will need to be set in a non-trivial way. The length of
the “obs.field” array must match the length of the “fcst.field” array. For example:

obs = fcst;

or

54 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

fest = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NA J;
cnt_logic = UNION;
wind_thresh = [NA J;
wind_logic = UNION;
field = [
{
name = "PWAT";
level = ["Lo" 1;
cat_thresh = [>2.5];
}
1;
}
obs = {
censor_thresh = [];
censor_val = [1;
mpr_column = [1;
mpr_thresh = [1;
cnt_thresh = [NA J;
cnt_logic = UNION;
wind_thresh = [NA J;
wind_logic = UNION;
field = [
{
name = "IWV";
level = ["Lo" T;
cat_thresh = [>25.0 1];
}
1;
}

* The “message_type” entry is an array of point observation message types to be used. This only applies
to the tools that verify against point observations. This may be specified once at the top-level “obs”
dictionary or separately for each “field” array element. In the example shown above, this is specified
in the “fcst” dictionary and copied to “obs”.

* Simplified vertical level matching logic is applied for surface message types. Observations for
the following message types are assumed to be at the surface, as defined by the default mes-
sage type group map: ADPSFC, SFCSHP, MSONET

* The “message type” would be placed in the “field” array element if more than one “message type”
entry is desired within the config file. For example:

5.2. Settings common to multiple tools 55

MET User’s Guide, version 12.0.0-betal

fest = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NA 1;
cnt_logic = UNION;
wind_thresh = [NA 1;
wind_logic = UNION;
field = [
{
message_type = ["ADPUPA" T;
sid_inc = [1;
sid_exc = [1;
name = "TMP";
level = ["P250", "P500", "P700", "P850", "P1000" 1;
cat_thresh = [<=273.0 1;
1
{
message_type = ["ADPSFC" T;
sid_inc = [1;
sid_exc = ["KDEN”, "KDET" 1;
name = "TMP";
level = ["z2" 1;
cat_thresh = [<=273.0 1;
}
5
}

The “sid_inc” entry is an array of station ID groups indicating which station ID’s should be included in
the verification task. If specified, only those station ID’s appearing in the list will be included. Note
that filtering by station ID may also be accomplished using the “mask.sid” option. However, when
using the “sid_inc” option, statistics are reported separately for each masking region.

The “sid_exc” entry is an array of station ID groups indicating which station ID’s should be excluded
from the verification task.

Each element in the “sid_inc” and “sid_exc” arrays is either the name of a single station ID or the full
path to a station ID group file name. A station ID group file consists of a name for the group followed
by a list of station ID’s. All of the station ID’s indicated will be concatenated into one long list of station
ID’s to be included or excluded.

As with “message_type” above, the “sid_inc” and “sid_exc” settings can be placed in the in the “field”
array element to control which station ID’s are included or excluded for each verification task.

obs

= fcst;

56

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.2.13 climo_mean

The “climo_mean” dictionary specifies climatology mean data to be read by the Grid-Stat, Point-Stat,
Ensemble-Stat, and Series-Analysis tools. It consists of several entires defining the climatology file names
and fields to be used.

The “file_names” entry specifies one or more file names containing the gridded climatology data to be
used.

The “field” entry is an array of dictionaries, specified the same way as those in the “fcst” and “obs”
dictionaries. If the array has length zero, not climatology data will be read and all climatology statistics
will be written as missing data. Otherwise, the array length must match the length of “field” in the
“fcst” and “obs” dictionaries.

The “regrid” dictionary defines how the climatology data should be regridded to the verification do-
main.

The “time_interp_method” entry specifies how the climatology data should be interpolated in time to
the forecast valid time:

NEAREST for data closest in time
UW_MEAN for average of data before and after
DW_MEAN for linear interpolation in time of data before and after

The “day_interval” entry is an integer specifying the spacing in days of the climatology data. Use 31 for
monthly data or 1 for daily data. Use “NA” if the timing of the climatology data should not be checked.

The “hour_interval” entry is an integer specifying the spacing in hours of the climatology data for each
day. This should be set between 0 and 24, with 6 and 12 being common choices. Use “NA” if the timing
of the climatology data should not be checked.

The “day interval” and “hour interval” entries replace the deprecated entries “match month”,
“match_day”, and “time_step”.

climo_mean = {

file_name = ["/path/to/climatological/mean/files"” 1;

field = [1;
regrid = {
method = NEAREST;
width =1;
vld_thresh = 0.5;
}
time_interp_method = DW_MEAN;
day_interval = 31;
hour_interval = 6;

5.2. Settings common to multiple tools 57

MET User’s Guide, version 12.0.0-betal

5.2.14 climo_stdev

The “climo_stdev” dictionary specifies climatology standard deviation data to be read by the Grid-Stat, Point-
Stat, Ensemble-Stat, and Series-Analysis tools. The “climo_mean” and “climo_stdev” data define the clima-
tological distribution for each grid point, assuming normality. These climatological distributions are used in
two ways:

(1) To define climatological distribution percentile (CDP) thresholds which can be used as categorical
(cat_thresh), continuous (cnt_thresh), or wind speed (wind_thresh) thresholds.

(2) To subset matched pairs into climatological bins based on where the observation value falls within the
climatological distribution. See the “climo_cdf” dictionary.

This dictionary is identical to the “climo_mean” dictionary described above but points to files containing
climatological standard deviation values rather than means. In the example below, this dictionary is set by
copying over the “climo_mean” setting and then updating the “file name” entry.

climo_stdev = climo_mean;
climo_stdev = {
file_name = ["/path/to/climatological/standard/deviation/files” 1;

5.2.15 climo_cdf

The “climo_cdf” dictionary specifies how the the climatological mean (“climo_mean”) and standard devia-
tion (“climo_stdev”) data are used to evaluate model performance relative to where the observation value
falls within the climatological distribution. This dictionary consists of the following entries:

(1) The “cdf bins” entry defines the climatological bins either as an integer or an array of floats between
0 and 1.

(2) The “center bins” entry may be set to TRUE or FALSE.
(3) The “write_bins” entry may be set to TRUE or FALSE.
(4) The “direct_prob” entry may be set to TRUE or FALSE.

MET uses the climatological mean and standard deviation to construct a normal PDF at each observation
location. The total area under the PDF is 1, and the climatological CDF value is computed as the area of the
PDF to the left of the observation value. Since the CDF is a value between 0 and 1, the CDF bins must span
that same range.

When “cdf bins” is set to an array of floats, they explicitly define the climatological bins. The array must
begin with 0.0 and end with 1.0. For example:

cdf_bins = [0.0, 0.10, 0.25, 0.75, 0.90, 1.0 1;

When “cdf bins” is set to an integer, it defines the number of bins to be used. The “center bins” flag indicates
whether or not the bins should be centered on 0.5. An odd number of bins can be centered or uncentered
while an even number of bins can only be uncentered. For example:

58 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

4 uncentered bins (cdf_bins = 4; center_bins
0.0, 0.25, 0.50, 0.75, 1.0

5 uncentered bins (cdf_bins = 5; center_bins = FALSE;) yields:
0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0

5 centered bins (cdf_bins = 5; center_bins
0.0, 0.125, 0.375, 0.625, 0.875, 1.0

FALSE;) yields:

TRUE;) yields:

When multiple climatological bins are used for Point-Stat and Grid-Stat, statistics are computed separately
for each bin, and the average of the statistics across those bins is written to the output. When “write_bins”
is true, the statistics for each bin are also written to the output. The bin number is appended to the contents
of the VX MASK output column.

Setting the number of bins to 1 effectively disables this logic by grouping all pairs into a single climatological
bin.

climo_cdf = {
cdf_bins = 11; or an array of floats
center_bins = TRUE; or FALSE
write_bins FALSE; or TRUE
direct_prob = FALSE; or TRUE

5.2.16 climate_data

When specifying climatology data for probability forecasts, either supply a probabilistic “climo_mean” field
or non-probabilistic “climo_mean” and “climo_stdev” fields from which a normal approximation of the cli-
matological probabilities should be derived.

When “climo_mean” is set to a probability field with a range of [0, 1] and “climo_stdev” is unset, the MET
tools use the “climo_mean” probability values directly to compute Brier Skill Score (BSS).

When “climo_mean” and “climo_stdev” are both set to non-probability fields, the MET tools use the mean,
standard deviation, and observation event threshold to derive a normal approximation of the climatological
probabilities.

The “direct_prob” option controls the derivation logic. When “direct prob” is true, the climatological prob-
ability is computed directly from the climatological distribution at each point as the area to the left of the
event threshold value. For greater-than or greater-than-or-equal-to thresholds, 1.0 minus the area is used.
When “direct_prob” is false, the “cdf bins” values are sampled from climatological distribution. The prob-
ability is computed as the proportion of those samples which meet the threshold criteria. In this way, the
number of bins impacts the resolution of the climatological probabilities. These derived probability values
are used to compute the climatological Brier Score and Brier Skill Score.

5.2. Settings common to multiple tools 59

MET User’s Guide, version 12.0.0-betal

5.2.17 seeps_p1l_thresh

The “seeps pl thresh” option controls the threshold of pl (probability of being dry) values. The default
setting is >=0.1&&<=0.85.

seeps_pl_thresh = >=0.188<=0.85;

5.2.18 mask_missing_flag
The “mask missing flag” entry specifies how missing data should be handled in the Wavelet-Stat and MODE
tools:

* “NONE” to perform no masking of missing data

* “FCST” to mask the forecast field with missing observation data

* “OBS” to mask the observation field with missing forecast data

* “BOTH” to mask both fields with missing data from the other

mask_missing_flag = BOTH;

5.2.19 obs_window

The “obs_window” entry is a dictionary specifying a beginning (“beg” entry) and ending (“end” entry) time
offset values in seconds. It defines the time window over which observations are retained for scoring. These
time offsets are defined relative to a reference time t, as [t+beg, t+end]. In PB2NC, the reference time is
the PREPBUFR files center time. In Point-Stat and Ensemble-Stat, the reference time is the forecast valid
time.

obs_window = {

beg = -5400;
end = 5400;
)
5.2.20 mask

The “mask” entry is a dictionary that specifies the verification masking regions to be used when computing
statistics. Each mask defines a geographic extent, and any matched pairs falling inside that area will be used
in the computation of statistics. Masking regions may be specified in the following ways:

* The “grid” entry is an array of named grids. It contains a comma-separated list of pre-defined NCEP
grids over which to perform verification. An empty list indicates that no masking grids should be
used. The standard NCEP grids are named “GNNN” where NNN indicates the three digit grid number.
Supplying a value of “FULL” indicates that the verification should be performed over the entire grid
on which the data resides. See: ON388 - TABLE B, GRID IDENTIFICATION (PDS Octet 7), MASTER
LIST OF NCEP STORAGE GRIDS, GRIB Edition 1 (FM92). The “grid” entry can be the gridded data
file defining grid.

60 Chapter 5. Configuration File Overview

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html

MET User’s Guide, version 12.0.0-betal

* The “poly” entry contains a comma-separated list of files that define verification masking regions.
These masking regions may be specified in two ways: in an ASCII file containing lat/lon points defining
the mask polygon, or using a gridded data file such as the NetCDF output of the Gen-Vx-Mask tool.
Some details for each of these options are described below:

— If providing an ASCII file containing the lat/lon points defining the mask polygon, the file must
contain a name for the region followed by the latitude (degrees north) and longitude (degrees
east) for each vertex of the polygon. The values are separated by whitespace (e.g. spaces or
newlines), and the first and last polygon points are connected. The general form is “poly name
latl lon1 lat2 lon2... latn lonn”. Here is an example of a rectangle consisting of 4 points:

Listing 5.1: ASCII Rectangle Polygon Mask

RECTANGLE
25 -120
55 -120
55 -70
25 -70

Several masking polygons used by NCEP are predefined in the installed share/met/poly directory.
Creating a new polygon is as simple as creating a text file with a name for the polygon followed
by the lat/lon points which define its boundary. Adding a new masking polygon requires no
code changes and no recompiling. Internally, the lat/lon polygon points are converted into x/y
values in the grid. The lat/lon values for the observation points are also converted into x/y grid
coordinates. The computations performed to check whether the observation point falls within the
polygon defined is done in x/y grid space.

- The NetCDF output of the gen_vx_mask tool. Please see Section 10 for more details.

— Any gridded data file that MET can read may be used to define a verification masking region.
Users must specify a description of the field to be used from the input file and, optionally, may
specify a threshold to be applied to that field. Once this threshold is applied, any grid point where
the resulting field is 0, the mask is turned off. Any grid point where it is non-zero, the mask is
turned on. For example, “sample.grib {name = "TMP"; level = "Z2";} >273”

* The “sid” entry is an array of strings which define groups of observation station ID’s over which to
compute statistics. Each entry in the array is either a filename of a comma-separated list.

- For a filename, the strings are whitespace-separated. The first string is the mask “name” and the
remaining strings are the station ID’s to be used.

— For a comma-separated list, optionally use a colon to specify a name. For “MY_LIST:SID1,SID2”,
name = MY LIST and values = SID1 and SID2.

— For a comma-separated list of length one with no name specified, the mask “name” and value are
both set to the single station ID string. For “SID1”, name = SID1 and value = SID1.

— For a comma-separated list of length greater than one with no name specified, the name is set to
MASK _SID and the values are the station ID’s to be used. For “SID1,SID2”, name = MASK SID
and values = SID1 and SID2.

- The “name” of the station ID mask is written to the VX_MASK column of the MET output files.

5.2. Settings common to multiple tools 61

MET User’s Guide, version 12.0.0-betal

* The “llpnt” entry is either a single dictionary or an array of dictionaries. Each dictionary contains
three entries, the “name” for the masking region, “lat_thresh”, and “lon_thresh”. The latitude and
longitude thresholds are applied directly to the point observation latitude and longitude values. Only
observations whose latitude and longitude values meet this threshold criteria are used. A threshold set
to “NA” always evaluates to true.

The masking logic for processing point observations in Point-Stat and Ensemble-Stat fall into two cateogries.
The “sid” and “llpnt” options apply directly to the point observations. Only those observations for the
specified station id’s are included in the “sid” masks. Only those observations meeting the latitude and
longitude threshold criteria are included in the “llpnt” masks.

The “grid” and “poly” mask options are applied to the grid points of the verification domain. Each grid point
is determined to be inside or outside the masking region. When processing point observations, their latitude
and longitude values are rounded to the nearest grid point of the verification domain. If the nearest grid
point is inside the mask, that point observation is included in the mask.

mask = {
grid = ["FULL" 1;
poly = ["MET_BASE/poly/LMV.poly",
"MET_BASE/out/gen_vx_mask/CONUS_poly.nc",
"MET_BASE/sample_fcst/2005080700/wrfprs_ruc13_12.tm@0@_G212 \
{name = \"TMP\"; level = \"Z2\";} >273"
1;
sid = ["CONUS.stations" 1;
llpnt = [{ name = "LAT30T040";
lat_thresh = >=3088<=40;
lon_thresh = NA; 3,
{ name = "BOX";
lat_thresh = >=2088<=40;
lon_thresh = >=-11088&<=-90; } 1;
}

5.2.21 ci_alpha

The “ci_alpha” entry is an array of floats specifying the values for alpha to be used when computing confi-
dence intervals. Values of alpha must be between 0 and 1. The confidence interval computed is 1 minus the
alpha value. Therefore, an alpha value of 0.05 corresponds to a 95% confidence interval.

ci_alpha = [90.05, 0.10 1;

62 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.2.22 boot

The “boot” entry defines the parameters to be used in calculation of bootstrap confidence intervals. The
interval variable indicates what method should be used for computing bootstrap confidence intervals:

The “interval” entry specifies the confidence interval method:

— “BCA’ for the BCa (bias-corrected percentile) interval method is highly accurate but computation-
ally intensive.

— “PCTILE” uses the percentile method which is somewhat less accurate but more efficient.

The “rep _prop” entry specifies a proportion between 0 and 1 to define the replicate sample size to
be used when computing percentile intervals. The replicate sample size is set to boot _rep prop * n,
where n is the number of raw data points.

When computing bootstrap confidence intervals over n sets of matched pairs, the size of the subsample,
m, may be chosen less than or equal to the size of the sample, n. This variable defines the size of m as
a proportion relative to the size of n. A value of 1 indicates that the size of the subsample, m, should
be equal to the size of the sample, n.

The “n_rep” entry defines the number of subsamples that should be taken when computing bootstrap
confidence intervals. This variable should be set large enough so that when confidence intervals are
computed multiple times for the same set of data, the intervals do not change much. Setting this
variable to zero disables the computation of bootstrap confidence intervals, which may be necessary
to run MET in realtime or near-realtime over large domains since bootstrapping is computationally ex-
pensive. Setting this variable to 1000 indicates that bootstrap confidence interval should be computed
over 1000 subsamples of the matched pairs.

The “rng” entry defines the random number generator to be used in the computation of bootstrap
confidence intervals. Subsamples are chosen at random from the full set of matched pairs. The ran-
domness is determined by the random number generator specified. Users should refer to detailed
documentation of the GNU Scientific Library for a listing of the random number generators available
for use.

The “seed” entry may be set to a specific value to make the computation of bootstrap confidence
intervals fully repeatable. When left empty the random number generator seed is chosen automatically
which will lead to slightly different bootstrap confidence intervals being computed each time the data
is run. Specifying a value here ensures that the bootstrap confidence intervals will be reproducable
over multiple runs on the same computing platform.

boot = {
interval = PCTILE;
rep_prop = 1.0;
n_rep = 0;
rng = "mt19937";
seed =",

5.2. Settings common to multiple tools 63

https://www.gnu.org/software/gsl/doc/html/rng.html

MET User’s Guide, version 12.0.0-betal

5.2.23 interp

The “interp” entry is a dictionary that specifies what interpolation or smoothing (for the Grid-Stat tool)
methods should be applied. This dictionary may include the following entries:

* The “field” entry specifies to which field(s) the interpolation method should be applied. This does not
apply when doing point verification with the Point-Stat or Ensemble-Stat tools:

— “FCST” to interpolate/smooth the forecast field.
— “OBS” to interpolate/smooth the observation field.
- “BOTH?” to interpolate/smooth both the forecast and the observation.

* The “vld_thresh” entry specifies a number between 0 and 1. When performing interpolation over some
neighborhood of points the ratio of the number of valid data points to the total number of points in
the neighborhood is computed. If that ratio is less than this threshold, the matched pair is discarded.
Setting this threshold to 1, which is the default, requires that the entire neighborhood must contain
valid data. This variable will typically come into play only along the boundaries of the verification
region chosen.

* The “shape” entry may be set to SQUARE or CIRCLE to specify the shape of the smoothing area.

* The “type” entry is an array of dictionaries, each specifying one or more interpolation methods and
widths. Interpolation is performed over an N by N box centered on each point, where N is the width
specified. Each of these dictionaries must include:

— The “width” entry is an array of integers to specify the size of the interpolation area. The area
is either a square or circle containing the observation point. The width value specifies the width
of the square or diameter of the circle. A width value of 1 is interpreted as the nearest neighbor
model grid point to the observation point. For squares, a width of 2 defines a 2 x 2 box of grid
points around the observation point (the 4 closest model grid points), while a width of 3 defines
a 3 x 3 box of grid points around the observation point, and so on. For odd widths in grid-to-point
comparisons (i.e. Point-Stat), the interpolation area is centered on the model grid point closest
to the observation point. For grid-to-grid comparisons (i.e. Grid-Stat), the width must be odd.

— The “method” entry is an array of interpolation procedures to be applied to the points in the box:
* MIN for the minimum value
* MAX for the maximum value
* MEDIAN for the median value
* UW_MEAN for the unweighted average value
+ DW_MEAN for the distance-weighted average value where weight = distance ™ -2
« LS_FIT for a least-squares fit
* BILIN for bilinear interpolation (width = 2)
* NEAREST for the nearest grid point (width = 1)
* BEST for the value closest to the observation

« UPPER_LEFT for the upper left grid point (width = 1)

64 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

* UPPER_RIGHT for the upper right grid point (width = 1)

* LOWER _RIGHT for the lower right grid point (width = 1)

* LOWER_LEFT for the lower left grid point (width = 1)

* GAUSSIAN for the Gaussian kernel

* MAXGAUSS for the maximum value followed by a Gaussian smoother

* GEOG_MATCH for the nearest grid point where the land/sea mask and geography criteria
are satisfied

* HIRA for all neighborhood points to define a spatial ensemble (only in Ensemble-Stat)

The BUDGET, FORCE, GAUSSIAN, and MAXGAUSS methods are not valid for interpolating to
point locations. For grid-to-grid comparisons, the only valid smoothing methods are MIN, MAX,
MEDIAN, UW_MEAN, and GAUSSIAN, and MAXGAUSS.

— If multiple “method” and “width” options are specified, all possible permutations of their values
are applied.

interp = {
field = BOTH;
vld_thresh = 1.0;
shape = SQUARE;
type = [
{
method = [NEAREST 1;
width = [1 J;
}
1;
}

5.2.24 land_mask

The “land_mask” dictionary defines the land/sea mask field used when verifying at the surface. The “flag”
entry enables/disables this logic. When enabled, the “message type group map” dictionary must contain
entries for “LANDSF” and “WATERSF”. For point observations whose message type appears in the “LANDSF”
entry, only use forecast grid points where land = TRUE. For point observations whose message type appears
in the “WATERSF” entry, only use forecast grid points where land = FALSE. If the “file_ name” entry is left
empty, the land/sea is assumed to exist in the input forecast file. Otherwise, the specified file(s) are searched
for the data specified in the “field” entry. The “regrid” settings specify how this field should be regridded to
the verification domain. Lastly, the “thresh” entry is the threshold which defines land (threshold is true) and
water (threshold is false).

The “land_mask.flag” entry may be set separately in each “obs.field” entry.

land_mask = {
flag = FALSE;

(continues on next page)

5.2. Settings common to multiple tools 65

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

file_name = [];

field = { name = "LAND"; level = "L0@"; }
regrid = { method = NEAREST; width = 1; }
thresh = eql;

5.2.25 topo_mask

The “topo_mask” dictionary defines the model topography field used when verifying at the surface. The
flag entry enables/disables this logic. When enabled, the “message_type group map” dictionary must con-
tain an entry for “SURFACE”. This logic is applied to point observations whose message type appears in
the “SURFACE” entry. Only use point observations where the topo minus station elevation difference meets
the “use_obs_thresh” threshold entry. For the observations kept, when interpolating forecast data to the
observation location, only use forecast grid points where the topo minus station difference meets the “in-
terp_fest_thresh” threshold entry. If the “file_name” is left empty, the topography data is assumed to exist in
the input forecast file. Otherwise, the specified file(s) are searched for the data specified in the “field” entry.
The “regrid” settings specify how this field should be regridded to the verification domain.

The “topo_mask.flag” entry may be set separately in each “obs.field” entry.

topo_mask = {

flag = FALSE;

file_name = [1;

field = { name = "TOPO"; level = "L0"; }
regrid = { method = BILIN; width = 2; }

use_obs_thresh
interp_fcst_thresh

ge-1008&1e100;
ge-508&1e50;

5.2.26 hira

The “hira” entry is a dictionary that is very similar to the “interp” and “nbrhd” entries. It specifies informa-
tion for applying the High Resolution Assessment (HiRA) verification logic in Point-Stat. HiRA is analogous
to neighborhood verification but for point observations. The HiRA logic interprets the forecast values sur-
rounding each point observation as an ensemble forecast. These ensemble values are processed in two
ways. First, the ensemble continuous statistics (ECNT) and ranked probability score (RPS) line types are
computed directly from the ensemble values. Second, for each categorical threshold specified, a fractional
coverage value is computed as the ratio of the nearby forecast values that meet the threshold criteria. Point-
Stat evaluates those fractional coverage values as if they were a probability forecast. When applying HiRA,
users should enable the matched pair (MPR), probabilistic (PCT, PSTD, PJC, or PRC), or ensemble statistics
(ECNT or PRS) line types in the output flag dictionary. The number of probabilistic HiRA output lines is
determined by the number of categorical forecast thresholds and HiRA neighborhood widths chosen. This
dictionary may include the following entries:

* The “flag” entry is a boolean which toggles “hira” on (TRUE) and off (FALSE).

66 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

* The “width” entry specifies the neighborhood size. Since HiRA applies to point observations, the width
may be even or odd.

* The “vld_thresh” entry is as described above.

* The “cov_thresh” entry is an array of probabilistic thresholds used to populate the Nx2 probabilistic
contingency table written to the PCT output line and used for computing probabilistic statistics.

* The “shape” entry defines the shape of the neighborhood. Valid values are “SQUARE” or “CIRCLE”

* The “prob_cat_thresh” entry defines the thresholds which define ensemble probabilities from which
to compute the ranked probability score output. If left empty but climatology data is provided, the
climo_cdf thresholds will be used instead. If left empty but no climatology data is provided, the
obs.cat_thresh thresholds will be used instead.

hira = {
flag = FALSE;
width =[2, 3, 4,5 17;
vld_thresh =1.0;
cov_thresh = [==0.25 1;
shape = SQUARE;
prob_cat_thresh = [];

5.2.27 output_flag
The “output _flag” entry is a dictionary that specifies what verification methods should be applied to the
input data. Options exist for each output line type from the MET tools. Each line type may be set to one of:
* “NONE” to skip the corresponding verification method
* “STAT” to write the verification output only to the “.stat” output file

* “BOTH” to write to the “.stat” output file as well the optional “ type.txt” file, a more readable ASCII

file sorted by line type.
output_flag = {
fho = NONE; Forecast, Hit, Observation Rates
ctc = NONE; Contingency Table Counts
cts = NONE; Contingency Table Statistics
mctc = NONE; Multi-category Contingency Table Counts
mcts = NONE; Multi-category Contingency Table Statistics
cnt = NONE; Continuous Statistics

s1112 = NONE; Scalar L1L2 Partial Sums

sal1l2 = NONE; Scalar Anomaly L1L2 Partial Sums when climatological data
is supplied

vl112 = NONE; Vector L1L2 Partial Sums

val1l2 = NONE; Vector Anomaly L1L2 Partial Sums when climatological data
is supplied

pct = NONE; Contingency Table Counts for Probabilistic Forecasts

(continues on next page)

5.2. Settings common to multiple tools 67

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

pstd = NONE;
pjc = NONE;
prc = NONE,;
eclv = NONE;
mpr = NONE;

nbrctc = NONE;
nbrcts = NONE;
nbrcnt = NONE;

isc = NONE;
ecnt = NONE;
rps = NONE,;

rhist = NONE;
phist = NONE;
orank = NONE;
ssvar = NONE;
grad = NONE;

Contingency Table Statistics for Probabilistic Forecasts
with Dichotomous outcomes

Joint and Conditional Factorization for Probabilistic
Forecasts

Receiver Operating Characteristic for Probabilistic
Forecasts

Economic Cost/Loss Value derived from CTC and PCT lines
Matched Pair Data

Neighborhood Contingency Table Counts

Neighborhood Contingency Table Statistics

Neighborhood Continuous Statistics

Intensity-Scale

Ensemble Continuous Statistics

Ranked Probability Score Statistics

Rank Histogram

Probability Integral Transform Histogram

Observation Rank

Spread Skill Variance

Gradient statistics (S1 score)

5.2.28 nc_pairs_flag

The “nc_pairs_flag” can be set either to a boolean value or a dictionary in either Grid-Stat, Wavelet-Stat or
MODE. The dictionary (with slightly different entries for the various tools ... see the default config files)
has individual boolean settings turning on or off the writing out of the various fields in the netcdf output file
for the tool. Setting all dictionary entries to false means the netcdf file will not be generated.

“nc_pairs_flag” can also be set to a boolean value. In this case, a value of true means to just accept the
default settings (which will turn on the output of all the different fields). A value of false means no netcdf
output will be generated.

nc_pairs_flag = {
latlon = TRUE;
raw = TRUE;
diff = TRUE;
climo = TRUE;
climo_cdp = FALSE;
weight = FALSE;
nbrhd = FALSE;
fourier = FALSE;
gradient = FALSE;
distance_map = FLASE;
apply_mask = TRUE;

}

68 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.2.29 nc_pairs_var_name

The “nc_pairs_var name” entry specifies a string for each verification task in Grid-Stat. This string is parsed
from each “obs.field” dictionary entry and is used to construct variable names for the NetCDF matched pairs
output file. The default value of an empty string indicates that the “name” and “level” strings of the input
data should be used. If the input data “level” string changes for each run of Grid-Stat, using this option to
define a constant string may make downstream processing more convenient.

For example:

nc_pairs var_name = “TMP”;

nn

nc_pairs_var_name = ;

5.2.30 nc_pairs_var_suffix

The “nc_pairs_var_suffix” entry is similar to the “nc_pairs var _name” entry described above. It is also parsed
from each “obs.field” dictionary entry. However, it defines a suffix to be appended to the output variable
name. This enables the output variable names to be made unique. For example, when verifying height for
multiple level types but all with the same level value, use this option to customize the output variable names.

For example:

nc_pairs_var_suffix = “TROPQO”; (for the tropopause height)

“FREEZING”; (for the freezing level height)

nc_pairs_var_suffix

NOTE: This option was previously named “nc_pairs_var_str”, which is now deprecated.

nn

nc_pairs_var_suffix = ;

5.2.31 ps_plot _flag

The “ps_plot_flag” entry is a boolean value for Wavelet-Stat and MODE indicating whether a PostScript plot
should be generated summarizing the verification.

ps_plot_flag = TRUE;

5.2. Settings common to multiple tools 69

MET User’s Guide, version 12.0.0-betal

5.2.32 grid weight flag

The “grid_weight flag” specifies how grid weighting should be applied during the computation of continuous
statistics and partial sums. It is meant to account for grid box area distortion and is often applied to global
Lat/Lon grids. It is only applied for grid-to-grid verification in Grid-Stat and Ensemble-Stat and is not applied
for grid-to-point verification. Three grid weighting options are currently supported:

* “NONE” to disable grid weighting using a constant weight (default).

* “COS_LAT” to define the weight as the cosine of the grid point latitude. This an approximation for grid
box area used by NCEP and WMO.

* “AREA’ to define the weight as the true area of the grid box (km ™ 2).

The weights are ultimately computed as the weight at each grid point divided by the sum of the weights for
the current masking region.

grid_weight_flag = NONE;

5.2.33 hss_ec_value

The “hss_ec_value” entry is a floating point number used in the computation of the HSS EC statistic in
the CTS and MCTS line types. It specifies the expected correct (EC) rate by chance for multi-category
contingency tables. If set to its default value of NA, it will automatically be replaced with 1.0 divided by the
CTC or MCTC table dimension. For example, for a 2x2 CTC table, the default hss_ec value is 1.0 / 2 = 0.5.
For a 4x4 MCTC table, the default hss_ec value is 1.0 / 4 = 0.25.

If set, it must greater than or equal to 0.0 and less than 1.0. A value of 0.0 produces an HSS EC statistic
equal to the Accuracy statistic.

hss_ec_value = NA;

5.2.34 rank_corr_flag

The “rank _corr_flag” entry is a boolean to indicate whether Kendall’s Tau and Spearman’s Rank Correlation
Coefficients (in the CNT line type) should be computed. Computing them over large datasets is computa-
tionally intensive and slows down the runtime significantly.

rank_corr_flag = FALSE;

70 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.2.35 duplicate flag

The “duplicate_flag” entry specifies how to handle duplicate point observations in Point-Stat and Ensemble-
Stat:

* “NONE” to use all point observations (legacy behavior)

* “UNIQUE” only use a single observation if two or more observations match. Matching observations are
determined if they contain identical latitude, longitude, level, elevation, and time information. They
may contain different observation values or station IDs

The reporting mechanism for this feature can be activated by specifying a verbosity level of three or higher.
The report will show information about where duplicates were detected and which observations were used
in those cases.

duplicate_flag = NONE;

5.2.36 obs_summary
The “obs_summary” entry specifies how to compute statistics on observations that appear at a single location
(lat,lon,level,elev) in Point-Stat and Ensemble-Stat. Eight techniques are currently supported:
* “NONE” to use all point observations (legacy behavior)
* “NEAREST” use only the observation that has the valid time closest to the forecast valid time
* “MIN” use only the observation that has the lowest value
* “MAX” use only the observation that has the highest value
* “UW_MEAN” compute an unweighted mean of the observations
* “DW_MEAN” compute a weighted mean of the observations based on the time of the observation
* “MEDIAN” use the median observation
* “PERC” use the Nth percentile observation where N = obs_perc value

The reporting mechanism for this feature can be activated by specifying a verbosity level of three or higher.
The report will show information about where duplicates were detected and which observations were used
in those cases.

obs_summary = NONE;

5.2. Settings common to multiple tools 71

MET User’s Guide, version 12.0.0-betal

5.2.37 obs_perc_value

Percentile value to use when obs_summary = PERC

obs_perc_value = 50;

5.2.38 obs_quality inc

The “obs_quality inc” entry specifies the quality flag values that are to be retained and used for verification.
An empty list signifies that all point observations should be used, regardless of their quality flag value.
The quality flag values will vary depending on the original source of the observations. The quality flag
values to retain should be specified as an array of strings, even if the values themselves are numeric. Note
“obs_quality_inc” replaces the older option “obs_quality”.

ObS_quality_inC = I: "1”, 11211, 11311’ ngn :l;

5.2.39 obs_quality_exc

The “obs_quality exc” entry specifies the quality flag values that are to be ignored and not used for veri-
fication. An empty list signifies that all point observations should be used, regardless of their quality flag
value. The quality flag values will vary depending on the original source of the observations. The quality
flag values to ignore should be specified as an array of strings, even if the values themselves are numeric.

ObS_quality_eXC = I: 11111, 11211, 11311’ ngn :l;

5.2.40 met_data_dir

The “met_data_dir” entry specifies the location of the internal MET data sub-directory which contains data
files used when generating plots. It should be set to the installed share/met directory so the MET tools can
locate the static data files they need at run time.

met_data_dir = "MET_BASE";

5.2.41 many plots
The “fcst raw_plot” entry is a dictionary used by Wavelet-Stat and MODE containing colortable plotting
information for the plotting of the raw forecast field:

* The “color_table” entry specifies the location and name of the colortable file to be used.

* The “plot_min” and “plot_max” entries specify the range of data values. If they are both set to 0, the
MET tools will automatically rescale the colortable to the range of values present in the data. If they
are not both set to 0, the MET tools will rescale the colortable using their values.

* When applicable, the “colorbar flag” enables the creation of a colorbar for this plot.

72 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

fecst_raw_plot = {
color_table "MET_BASE/colortables/met_default.ctable”;
plot_min = 0.0;
plot_max 0.0;
colorbar_flag = TRUE;

b

v [13

The “obs_raw plot”, “wvlt_plot”, and “object_plot” entries are dictionaries similar to the “fcst raw_plot”
described above.

5.2.42 output_prefix

The “output_prefix” entry specifies a string to be included in the output file name. The MET statistics tools
construct output file names that include the tool name and timing information. You can use this setting to
modify the output file name and avoid naming conflicts for multiple runs of the same tool.

nn

output_prefix = ;

5.2.43 version

The “version” entry specifies the version number of the configuration file. The configuration file version
number should match the version number of the MET code being run. This value should generally not be
modified.

version = "VN.N";

5.2.44 time_summary

This feature was implemented to allow additional processing of observations with high temporal resolution.
The “flag” entry toggles the “time_summary” on (TRUE) and off (FALSE). Obs may be summarized across
the user specified time period defined by the “beg” and “end” entries. The “step” entry defines the time
between intervals in seconds. The “width” entry specifies the summary interval in seconds. It may either be
set as an integer number of seconds for a centered time interval or a dictionary with beginning and ending
time offsets in seconds.

For example:

beg = "00";
end = "235959";
step = 300;
width = 600;

width = { beg = -300; end = 300; }

This example does a 10-minute time summary every 5 minutes throughout the day. The first interval will
be from 23:55:00 the previous day through 00:04:59 of the current day. The second interval will be from
0:00:00 through 00:09:59. And so on.

5.2. Settings common to multiple tools 73

MET User’s Guide, version 12.0.0-betal

The two “width” settings listed above are equivalent. Both define a centered 10-minute time interval. Use the
“beg” and “end” entries to define uncentered time intervals. The following example requests observations
for one hour prior:

width = { beg = -3600; end = 0; }

The summaries will only be calculated for the specified GRIB codes or observation variable (“obs_var”)
names.

When determining which observations fall within a time interval, data for the beginning timestamp is in-
cluded while data for the ending timestamp is excluded. Users may need to adjust the “beg” and “end”
settings in the “width” dictionary to include the desired observations in each time interval.

7”7« ” o«

The supported time summaries are “min” (minimum), “max” (maximum), “range”, “mean”, “stdev” (stan-
dard deviation), “median”, “sum”, and “p##” (percentile, with the desired percentile value specified in place

of ##).

The “vld_freq” and “vld_thresh” options may be used to require that a certain ratio of observations must be
present and contain valid data within the time window in order for a summary value to be computed. The
“vld_freq” entry defines the expected observation frequency in seconds. For example, when summarizing
1-minute data (vld_freq = 60) over a 30 minute time window, setting “vld_thresh = 0.5” requires that at
least 15 of the 30 expected observations be present and valid for a summary value to be written. The default
“vld_thresh = 0.0” setting will skip over this logic.

When using the “sum” option, users should specify “vld_thresh = 1.0” to avoid missing data values from
affecting the resulting sum value.

The variable names are saved to NetCDF file if they are given instead of grib_codes which are not available
for non GRIB input. The “obs_var” option was added and works like “grib_code” option (string value VS. int
value). They are inclusive (union). All variables are included if both options are empty. Note: grib_code 11
is equivalent to obs_var “TMP”.

time_summary = {

flag = FALSE;
beg = "000000";
end = "235959";
step = 300;
width = 600;

width = { beg = -300; end = 300; }
grib_code = [11, 204, 211 J;

obs_var = [];
type = ["min", "max", "range", "mean"”, "stdev", "median”, "p80" 7;
vld_freq = 0;
vld_thresh = 0.0;
}

74 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.3 Settings specific to individual tools

5.3.1 GenEnsProdConfig default
5.3.1.1 ens

The “ens” entry is a dictionary that specifies the fields for which ensemble products should be generated.
This is very similar to the “fcst” and “obs” entries. This dictionary may include the following entries:

* The “censor_thresh” and “censor_val” entries are described above.

* The “ens_thresh” entry specifies a proportion between 0 and 1 to define the required ratio of valid
input ensemble member files. If the ratio of valid input ensemble files to expected ones is too low, the
tool will error out.

* The “vld_thresh” entry specifies a proportion between 0 and 1 to define the required ratio of valid data
points. When computing ensemble products, if the ratio of valid data values is too low, the ensemble
product will be set to bad data for that point.

* The “field” entry is as described above. However, in this case, the cat_thresh entry is used for calcu-
lating probabilities of exceeding the given threshold. In the default shown below, the probability of
accumulated precipitation > 0.0 mm and > 5.0 mm will be calculated from the member accumulated
precipitation fields and stored as an ensemble field.

ens = {
censor_thresh = [];
censor_val = [1;
ens_thresh = 1.0;
vld_thresh =1.0;
field = [
{
name = "APCP";
level = "AQ3";
cat_thresh = [>0.0, >=5.0 1;
}
1;

5.3.1.2 nbrhd_prob

The nbrhd prob dictionary defines the neighborhoods used to compute NEP and NMEP output. The neigh-
borhood shape is a SQUARE or CIRCLE centered on the current point, and the width array specifies the
width of the square or diameter of the circle as an odd integer. The vld thresh entry is a number between 0
and 1 specifying the required ratio of valid data in the neighborhood for an output value to be computed.

If ensemble flag.nep is set to TRUE, NEP output is created for each combination of the categorical threshold
(cat_thresh) and neighborhood width specified.

5.3. Settings specific to individual tools 75

MET User’s Guide, version 12.0.0-betal

nbrhd_prob = {

width =[5171;
shape = CIRCLE;
vld_thresh = 0.0;

5.3.1.3 nmep_smooth

Similar to the interp dictionary, the nmep smooth dictionary includes a type array of dictionaries to define
one or more methods for smoothing the NMEP data. Setting the interpolation method to nearest neighbor
(NEAREST) effectively disables this smoothing step.

If ensemble flag.nmep is set to TRUE, NMEP output is created for each combination of the categorical thresh-
old (cat_thresh), neighborhood width (nbrhd prob.width), and smoothing method (nmep_smooth.type)
specified.

nmep_smooth = {

vld_thresh = 0.0;
shape = CIRCLE;
gaussian_dx = 81.27;
gaussian_radius = 120;
type = [
{
method = GAUSSIAN;
width = 1;
}
1;

5.3.1.4 ensemble_flag
The “ensemble flag” entry is a dictionary of boolean value indicating which ensemble products should be
generated:

* “latlon” for a grid of the Latitude and Longitude fields

* “mean” for the simple ensemble mean

» “stdev” for the ensemble standard deviation

* “minus” for the mean minus one standard deviation

* “plus” for the mean plus one standard deviation

* “min” for the ensemble minimum

* “max” for the ensemble maximum

* “range” for the range of ensemble values

76 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

* “vld_count” for the number of valid ensemble members

* “frequency” for the ensemble relative frequency meeting a threshold

* “nep” for the neighborhood ensemble probability

* “nmep” for the neighborhood maximum ensemble probability

* “rank” to write the rank for the gridded observation field to separate NetCDF output file.

* “weight” to write the grid weights specified in grid weight flag to the rank NetCDF output file.

ensemble_flag = {

latlon = TRUE;
mean = TRUE;
stdev = TRUE;
minus = TRUE;
plus = TRUE;
min = TRUE;
max = TRUE;
range = TRUE,

vld_count = TRUE;
frequency = TRUE;

nep = FALSE;
nmep = FALSE;
rank = TRUE;

weight = FALSE;

5.3.2 EnsembleStatConfig default
5.3.2.1 fcst, obs

The fcst and obs entries define the fields for which Ensemble-Stat should compute rank histograms, proba-
bility integral transform histograms, spread-skill variance, relative position histograms, economic value, and
other statistics.

The “ens_ssvar_bin_size” entry sets the width of the variance bins. Smaller bin sizes provide the user with
more flexibility in how data are binned during analysis. The actual variance of the ensemble data will
determine the number of bins written to the SSVAR output lines.

The “ens_phist_bin_size” is set to a value between 0 and 1. The number of bins for the probability integral
transform histogram in the PHIST line type is defined as the ceiling of 1.0 / ens_phist_bin_size. For example,
a bin size of 0.05 results in 20 PHIST bins.

The “prob_cat_thresh” entry is an array of thresholds to be applied in the computation of the ranked proba-
bility score. If left empty, but climatology data is provided, the climo_cdf thresholds will be used instead.

fest = {
message_type = ["ADPUPA" 7;

(continues on next page)

5.3. Settings specific to individual tools 77

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

ens_ssvar_bin_size = 1;

ens_phist_bin_size = 0.05;
prob_cat_thresh = [1;
field = [
{
name = "APCP";
level = ["A@3" 1;
}
1;

5.3.2.2 nc_var_str

The “nc_var_str” entry specifies a string for each ensemble field and verification task in Ensemble-Stat. This
string is parsed from each “ens.field” and “obs.field” dictionary entry and is used to customize the variable
names written to the NetCDF output file. The default is an empty string, meaning that no customization is
applied to the output variable names. When the Ensemble-Stat config file contains two fields with the same
name and level value, this entry is used to make the resulting variable names unique. e.g. nc var str =
“MIN”;

nn

nc_var_str = ;

5.3.2.3 obs_thresh

The “obs_thresh” entry is an array of thresholds for filtering observation values prior to applying ensemble
verification logic. They specify the values to be included in the verification, not excluded. The default setting
of NA, which always evaluates to true, means that all observations should be used. Verification output will
be computed separately for each threshold specified. This option may be set separately for each obs.field
entry.

obs_thresh = [NA 1;

5.3.2.4 skip_const

Setting “skip_const” to true tells Ensemble-Stat to exclude pairs where all the ensemble members and the
observation have a constant value. For example, exclude points with zero precipitation amounts from all
output line types. This option may be set separately for each obs.field entry. When set to false, constant
points are included and the observation rank is chosen at random.

skip_const = FALSE;

78 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.3.2.5 obs_error

Observation error options

Set dist_type to NONE to use the observation error table instead. May be set separately in each “obs.field”
entry. The obs_error dictionary controls how observation error information should be handled. Observation
error information can either be specified directly in the configuration file or by parsing information from an
external table file. By default, the MET BASE/data/table_files/obs_error_table.txt file is read but this may be
overridden by setting the SMET _OBS_ERROR_TABLE environment variable at runtime.

The flag entry toggles the observation error logic on (TRUE) and off (FALSE). When flag is TRUE, random
observation error perturbations are applied to the ensemble member values. No perturbation is applied to
the observation values but the bias scale and offset values, if specified, are applied.

The dist_type entry may be set to NONE, NORMAL, EXPONENTIAL, CHISQUARED, GAMMA, UNIFORM, or
BETA. The default value of NONE indicates that the observation error table file should be used rather than
the configuration file settings.

The dist_parm entry is an array of length 1 or 2 specifying the parameters for the distribution selected in
dist_type. The NORMAL, EXPONENTIAL, and CHISQUARED distributions are defined by a single parameter.
The GAMMA, UNIFORM, and BETA distributions are defined by two parameters. See the GNU Scientific
Library Reference Manual for more information on these distributions.

The inst_bias_scale and inst_bias_offset entries specify bias scale and offset values that should be applied to
observation values prior to perturbing them. These entries enable bias-correction on the fly.

Defining the observation error information in the configuration file is convenient but limited. If defined
this way, the random perturbations for all points in the current verification task are drawn from the same
distribution. Specifying an observation error table file instead (by setting dist_type = NONE;) provides much
finer control, enabling the user to define observation error distribution information and bias-correction logic
separately for each observation variable name, message type, PREPBUFR report type, input report type,
instrument type, station ID, range of heights, range of pressure levels, and range of values.

obs_error = {

flag = FALSE; TRUE or FALSE

dist_type = NONE; Distribution type

dist_parm = [1; Distribution parameters
inst_bias_scale = 1.0; Instrument bias scale adjustment
inst_bias_offset = 0.0; Instrument bias offset adjustment
min = NA; Valid range of data

max = NA;

’

5.3. Settings specific to individual tools 79

https://www.gnu.org/software/gsl/manual
https://www.gnu.org/software/gsl/manual

MET User’s Guide, version 12.0.0-betal

5.3.2.6 rng

See: Random Number Generator Performance used for random assignment of ranks when they are tied.

rng = {
type = "mt19937";
seed = "";

}

5.3.3 MODEAnalysisConfig_default

MODE line options are used to create filters that determine which MODE output lines are read in and
processed. The MODE line options are numerous. They fall into seven categories: toggles, multiple set string
options, multiple set integer options, integer max/min options, date/time max/min options, floating-point
max/min options, and miscellaneous options. In order to be applied, the options must be uncommented
(i.e. remove the “//” marks) before running. These options are described in subsequent sections. Please
note that this configuration file is processed differently than the other config files.

Toggles: The MODE line options described in this section are shown in pairs. These toggles represent
parameters that can have only one (or none) of two values. Any of these toggles may be left unspecified.
However, if neither option for toggle is indicated, the analysis will produce results that combine data from
both toggles. This may produce unintended results.

This toggle indicates whether forecast or observed lines should be used for analysis.

fest = FALSE;
obs FALSE;

This toggle indicates whether single object or object pair lines should be used.

single
pair

FALSE;
FALSE;

This toggle indicates whether simple object or object cluster object lines should be used.

simple
cluster

FALSE;
FALSE;

This toggle indicates whether matched or unmatched object lines should be used.

matched = FALSE;
unmatched = FALSE;

Multiple-set string options: The following options set various string attributes. They can be set multiple
times on the command line but must be separated by spaces. Each of these options must be indicated as a
string. String values that include spaces may be used by enclosing the string in quotation marks.

This options specifies which model to use

80 Chapter 5. Configuration File Overview

https://www.gnu.org/software/gsl/doc/html/rng.html#performance

MET User’s Guide, version 12.0.0-betal

// model = [1;

These two options specify thresholds for forecast and observations objects to be used in the analysis, respec-
tively.

// fest_thr
// obs_thr

L1;
L1;

These options indicate the names of variables to be used in the analysis for forecast and observed fields.

// fcst_var = [];
// obs_var = [];

These options indicate vertical levels for forecast and observed fields to be used in the analysis.

// fecst_lev = [1;
// obs_lev = [];

Multiple-set integer options: The following options set various integer attributes. Each of the following
options may only be indicated as an integer.

These options are integers of the form HH[MMSS] specifying the lead_time.

// fcst_lead = [1;
//obs_lead = [1;

These options are integers of the form HH[MMSS] specifying the valid hour.

// fcst_valid_hour = [1;
// obs_valid_hour = [];

These options are integers of the form HH[MMSS] specifying the model initialization hour.

// fest_init_hour = [1;
// obs_init_hour = [];

These options are integers of the form HHMMSS specifying the accumulation time.

// fcst_accum = [1;
// obs_accum = [1;

These options indicate the convolution radius used for forecast of observed objects, respectively.

// fcst_rad = [1;
// obs_rad = [1;

Integer max/min options: These options set limits on various integer attributes. Leaving a maximum value
unset means no upper limit is imposed on the value of the attribute. The option works similarly for minimum
values.

5.3. Settings specific to individual tools 81

MET User’s Guide, version 12.0.0-betal

These options are used to indicate minimum/maximum values for the area attribute to be used in the
analysis.

// area_min = 0;
// area_max = 0Q;

These options are used to indicate minimum/maximum values accepted for the area thresh. The area thresh
is the area of the raw field inside the object that meets the threshold criteria.

// area_thresh_min = Q;
// area_thresh_max = Q;

These options refer to the minimum/maximum values accepted for the intersection area attribute.

// intersection_area_min
// intersection_area_max

0;
0;

These options refer to the minimum/maximum union area values accepted for analysis.

// union_area_min = 0;
// union_area_max = 0Q;

These options refer to the minimum/maximum values for symmetric difference for objects to be used in the
analysis.

// symmetric_diff_min
// symmetric_diff_max

0;
0;

Date/time max/min options: These options set limits on various date/time attributes. The values can
be specified in one of three ways: First, the options may be indicated by a string of the form YYYM-
MDD _HHMMSS. This specifies a complete calendar date and time. Second, they may be indicated by a
string of the form YYYYMMMDD_ HH. Here, the minutes and seconds are assumed to be zero. The third way
of indicating date/time attributes is by a string of the form YYYMMDD. Here, hours, minutes, and seconds
are assumed to be zero.

These options indicate minimum/maximum values for the forecast valid time.

// fcst_valid_min ",

nn

// fecst_valid_max ;

These options indicate minimum/maximum values for the observation valid time.

nn

// obs_valid_min ;

nn

// obs_valid_max ;

These options indicate minimum/maximum values for the forecast initialization time.

nn

// fcst_init_min = "";

nn

// fcst_init_max = "";

82 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

These options indicate minimum/maximum values for the observation initialization time.

nn

// obs_init_min = ;

nn

// obs_init_max = ;

Floating-point max/min options: Setting limits on various floating-point attributes. One may specify these
as integers (i.e., without a decimal point), if desired. The following pairs of options indicate minimum and
maximum values for each MODE attribute that can be described as a floating- point number. Please refer to
“The MODE Tool” section on attributes in the MET User’s Guide for a description of these attributes.

// centroid_x_min = 0.0;
// centroid_x_max = 0.0;
// centroid_y_min = 0.0;
// centroid_y_max =0.0;
// centroid_lat_min = 0.0;
// centroid_lat_max = 0.0;
// centroid_lon_min = 0.0;
// centroid_lon_max =0.0;
// axis_ang_min = 0.0;
// axis_ang_max = 0.0;
// length_min = 0.0;
// length_max =0.0;
// width_min =0.0;
// width_max = 0.0;
// aspect_ratio_min =0.0;
// aspect_ratio_max = 0.0;
// curvature_min = 0.0;
// curvature_max = 0.0;
// curvature_x_min = 0.0;
// curvature_x_max = 0.0;
// curvature_y_min =0.0;
// curvature_y_max = 0.0;
// complexity_min = 0.0;
// complexity_max = 0.0;
// intensity_10_min = 0.0;

(continues on next page)

5.3. Settings specific to individual tools 83

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

//

//
//

//
/7

//
//

//
//

//
//

/7
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

intensity_10_max

intensity_25_min
intensity_25_max

intensity_50_min
intensity_50_max

intensity_75_min
intensity_75_max

intensity_9@0_min
intensity_90_max

intensity_user_min
intensity_user_max

intensity_sum_min
intensity_sum_max

centroid_dist_min
centroid_dist_max

boundary_dist_min
boundary_dist_max

convex_hull_dist_min
convex_hull_dist_max

angle_diff_min
angle_diff_max

area_ratio_min
area_ratio_max

intersection_over_area_min
intersection_over_area_max

complexity_ratio_min
complexity_ratio_max

percentile_intensity_ratio_min
percentile_intensity_ratio_max

interest_min
interest_max

84

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.3.4 MODEConfig_default
5.3.4.1 quilt

The “quilt” entry is a boolean to indicate whether all permutations of convolution radii and thresholds
should be run. If set to false, the number of forecast and observation convolution radii and thresholds
must all match. One configuration of MODE will be run for each group of settings in those lists. If set to
true, the number of forecast and observation convolution radii must match and the number of forecast and
observation convolution thresholds must match. For N radii and M thresholds, NxM configurations of MODE
will be run.

quilt = false;

5.3.4.2 fcst, obs

The object definition settings for MODE are contained within the “fcst” and “obs” entries:

* The “censor_thresh” and “censor_val” entries are described above. The entries replace the previously
supported “raw_thresh” entry.

* The “conv_radius” entry specifies the convolution radius in grid squares. The larger the convolution
radius, the smoother the objects. Multiple convolution radii may be specified as an array. For example:

conv_radius = [5, 10, 15 1;

* The “conv_thresh” entry specifies the convolution threshold used to define MODE objects. The lower
the threshold, the larger the objects. Multiple convolution thresholds may be specified as an array. For
example:

conv_thresh = [>=5.0, >=10.0, >=15.0 1;

* The “vld_thresh” entry is described above.

* The “filter attr name” and “filter_attr thresh” entries are arrays of the same length which specify
object filtering criteria. By default, no object filtering criteria is defined.

The “filter_attr name” entry is an array of strings specifying the MODE output header column names
for the object attributes of interest, such as “AREA”, “LENGTH”, “WIDTH”, and “INTENSITY 50”. In
addition, “ASPECT_RATIO” specifies the aspect ratio (width/length), “INTENSITY 101” specifies the
mean intensity value, and “INTENSITY 102” specifies the sum of the intensity values.

The “filter_attr thresh” entry is an array of thresholds for the object attributes. Any simple objects not
meeting all of these filtering criteria are discarded.

Note that the “area_thresh” and “inten perc thresh” entries form earlier versions of MODE are re-
placed by these options and are now deprecated.

* The “merge thresh” entry specifies a lower convolution threshold used when the double-threshold
merging method is applied. The number of merge thresholds must match the number of convolution
thresholds. Multiple merge thresholds may be specified as an array. For example:

5.3. Settings specific to individual tools 85

MET User’s Guide, version 12.0.0-betal

merge_thresh = [>=1.0, >=2.0, >=3.0 1;

* The “merge flag” entry specifies the merging methods to be applied:
- “NONE” for no merging

— “THRESH” for the double-threshold merging method. Merge objects that would be part of the
same object at the lower threshold.

— “ENGINE” for the fuzzy logic approach comparing the field to itself
- “BOTH?” for both the double-threshold and engine merging methods

fest = {
field = {
name = "APCP";
level = "A@3";
}
censor_thresh = [1;
censor_val = [];
conv_radius = 60.0/grid_res; in grid squares
conv_thresh = >=5.0;
vld_thresh = 0.5;
filter_attr_name = [];
filter_attr_thresh = [];
merge_thresh = >=1.25;
merge_flag = THRESH;
}

5.3.4.3 grid_res

The “grid res” entry is the nominal spacing for each grid square in kilometers. The variable is not used
directly in the code, but subsequent variables in the configuration files are defined in terms of it. Therefore,
setting the appropriately will help ensure that appropriate default values are used for these variables.

grid_res = 4;

5.3.4.4 match_flag

The “match_flag” entry specifies the matching method to be applied:
* “NONE” for no matching between forecast and observation objects

* “MERGE_BOTH?” for matching allowing additional merging in both fields. If two objects in one field
match the same object in the other field, those two objects are merged.

* “MERGE_FCST” for matching allowing only additional forecast merging

86 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

* “NO_MERGE” for matching with no additional merging in either field

match_flag = MERGE_BOTH;

5.3.4.5 max_centroid_dist

The “max_centroid_dist” entry specifies the maximum allowable distance in grid squares between the cen-
troids of objects for them to be compared. Setting this to a reasonable value speeds up the runtime enabling
MODE to skip unreasonable object comparisons.

max_centroid_dist = 800.0/grid_res;

5.3.4.6 weight

The weight variables control how much weight is assigned to each pairwise attribute when computing a total
interest value for object pairs. The weights need not sum to any particular value but must be non-negative.
When the total interest value is computed, the weighted sum is normalized by the sum of the weights listed.

weight = {

centroid_dist
boundary_dist
convex_hull_dist
angle_diff
area_ratio
int_area_ratio
complexity_ratio
inten_perc_ratio
inten_perc_value

1
S O N = = O N
(SR SENG IS ENGEE S AR

1
(&)
[

5.3.4.7 interest_function

The set of interest function variables listed define which values are of interest for each pairwise attribute
measured. The interest functions may be defined as a piecewise linear function or as an algebraic expression.
A piecewise linear function is defined by specifying the corner points of its graph. An algebraic function may
be defined in terms of several built-in mathematical functions.

interest_function = {

centroid_dist = (
(0.0, 1.0)
(60.0/grid_res, 1.0)
(600.0/grid_res, 0.0)

);

(continues on next page)

5.3. Settings specific to individual tools 87

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

boundary_dist = (

(0.0, 1.0)
(400.0/grid_res, 0.0)
)5
convex_hull_dist = (
(0.0, 1.0)
(400.0/grid_res, 0.0)
)5
angle_diff = (
(0.0, 1.0)
(30.0, 1.0)
(90.0, 0.0)
)5
corner = 0.8;
ratio_if = (
(0.0, 0.0)
(corner, 1.0)
(1.0, 1.0)
)5

area_ratio = ratio_if;

int_area_ratio = (
(0.00, 0.0
(0.10, 0.5
(0.25, 1.0
(1.00, 1.0
)5

complexity_ratio = ratio_if;

inten_perc_ratio = ratio_if;

88

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.3.4.8 total_interest_thresh

The total interest thresh variable should be set between 0 and 1. This threshold is applied to the total
interest values computed for each pair of objects and is used in determining matches.

total_interest_thresh = 0.7;

5.3.4.9 print_interest_thresh

The print_interest_thresh variable determines which pairs of object attributes will be written to the output
object attribute ASCII file. The user may choose to set the print_interest thresh to the same value as the
total interest_thresh, meaning that only object pairs that actually match are written to the output file. When
set to zero, all object pair attributes will be written as long as the distance between the object centroids is
less than the max_centroid_dist variable.

print_interest_thresh = 0.0;

5.3.4.10 plot_valid_flag

When applied, the plot_valid_flag variable indicates that only the region containing valid data after masking
is applied should be plotted. TRUE indicates the entire domain should be plotted; FALSE indicates only the
region containing valid data after masking should be plotted.

plot_valid_flag = FALSE;

5.3.4.11 plot_gcarc_flag

When applied, the plot_gcarc flag variable indicates that the edges of polylines should be plotted using great
circle arcs as opposed to straight lines in the grid.

plot_gcarc_flag = FALSE;

5.3.4.12 ct_stats_flag

The ct_stats_flag can be set to TRUE or FALSE to produce additional output, in the form of contingency table
counts and statistics.

ct_stats_flag = TRUE;

5.3. Settings specific to individual tools 89

MET User’s Guide, version 12.0.0-betal

5.3.4.13 shift_right

When MODE is run on global grids, this parameter specifies how many grid squares to shift the grid to
the right. MODE does not currently connect objects from one side of a global grid to the other, potentially
causing objects straddling that longitude to be cut in half. Shifting the grid by some amount enables the user
to control where that longitude cut line occurs. This option provides a very specialized case of automated
regridding. The much more flexible “regrid” option may be used instead.

shift_right = 0;

5.3.5 PB2NCConfig_default

The PB2NC tool filters out observations from PREPBUFR or BUFR files using the following criteria:
(1) by message type: supply a list of PREPBUFR message types to retain
(2) by station id: supply a list of observation stations to retain

(3) by valid time: supply the beginning and ending time offset values in the obs_window entry described
above.

(4) by location: use the “mask” entry described below to supply either an NCEP masking grid, a masking
lat/lon polygon or a file to a mask lat/lon polygon

(5) by elevation: supply min/max elevation values

(6) by report type: supply a list of report types to retain using pb_report_type and in_report_type entries
described below

(7) by instrument type: supply a list of instrument type to retain
(8) by vertical level: supply beg/end vertical levels using the level range entry described below

(9) by variable type: supply a list of observation variable types to retain using the obs bufr var entry
described below

(10) by quality mark: supply a quality mark threshold

(11) Flag to retain values for all quality marks, or just the first quality mark (highest): use the
event stack flag described below

(12) by data level category: supply a list of category types to retain.
0 - Surface level (mass reports only)
1 - Mandatory level (upper-air profile reports)
2 - Significant temperature level (upper-air profile reports)

2 - Significant temperature and winds-by-pressure level (future combined mass and wind upper-air
reports)

3 - Winds-by-pressure level (upper-air profile reports)

4 - Winds-by-height level (upper-air profile reports)

90 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5 - Tropopause level (upper-air profile reports)

6 - Reports on a single level (e.g., aircraft, satellite-wind, surface wind, precipitable water retrievals,
etc.)

7 - Auxiliary levels generated via interpolation from spanning levels (upper-air profile reports)

5.3.5.1 message_type

In the PB2NC tool, the “message type” entry is an array of message types to be retained. An empty list
indicates that all should be retained.

List of valid message types:

ADPUPA AIRCAR AIRCFT ADPSFC ERS1DA GOESND GPSIPW
MSONET PROFLR QKSWND RASSDA SATEMP SATWND SFCBOG
SFCSHP SPSSMI SYNDAT VADWND

For example:

message type[] = [“ADPUPA”, “AIRCAR” |;

Current Table A Entries in PREPBUFR mnemonic table

message_type = [];

5.3.5.2 station_id

The “station_id” entry is an array of station ids to be retained or the filename which contains station ids.
An array of station ids contains a comma-separated list. An empty list indicates that all stations should be
retained.

For example: station_id = [“KDEN”];

station_id = [];

5.3. Settings specific to individual tools 91

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

MET User’s Guide, version 12.0.0-betal

5.3.5.3 elevation_range

The “elevation _range” entry is a dictionary which contains “beg” and “end” entries specifying the range of
observing locations elevations to be retained.

elevation_range = {
beg = -1000;
end = 100000;

5.3.5.4 pb_report_type

The “pb report type” entry is an array of PREPBUFR report types to be retained. The numeric
“pb_report_type” entry allows for further stratification within message types. An empty list indicates that all
should be retained.

See: Code table for PREPBUEFR report types used by Regional NAM GSI analyses

For example:

Report Type 120 is for message type ADPUPA but is only RAWINSONDE
Report Type 132 is for message type ADPUPA but is only FLIGHT-LEVEL RECON
and PROFILE DROPSONDE

pb_report_type = [];

5.3.5.5 in_report_type

The “in_report type” entry is an array of input report type values to be retained. The numeric
“in_report_type” entry provides additional stratification of observations. An empty list indicates that all
should be retained.

See: Code table for input report types

For example:

Input Report Type 11 Fixed land RAOB and PIBAL by block and station number
Input Report Type 12 Fixed land RAOB and PIBAL by call letters

92 Chapter 5. Configuration File Overview

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_6.htm

MET User’s Guide, version 12.0.0-betal

in_report_type = [1;

5.3.5.6 instrument_type

The “instrument_type” entry is an array of instrument types to be retained. An empty list indicates that all
should be retained.

instrument_type = [];

5.3.5.7 level_range

The “level range” entry is a dictionary which contains “beg” and “end” entries specifying the range of vertical
levels (1 to 255) to be retained.

level _range = {
beg = 1;
end = 255;

5.3.5.8 level category

The “level category” entry is an array of integers specifying which level categories should be retained:

0 = Surface level (mass reports only)

1 = Mandatory level (upper-air profile reports)

2 = Significant temperature level (upper-air profile reports)

2 = Significant temperature and winds-by-pressure level (future combined mass
and wind upper-air reports)

3 = Winds-by-pressure level (upper-air profile reports)

4 = Winds-by-height level (upper-air profile reports)

5 = Tropopause level (upper-air profile reports)

5.3. Settings specific to individual tools 93

MET User’s Guide, version 12.0.0-betal

6 = Reports on a single level (For example: aircraft, satellite-wind,
surface wind, precipitable water retrievals, etc.)

7 = Auxiliary levels generated via interpolation from spanning levels
(upper-air profile reports)

An empty list indicates that all should be retained.

See: Current Table A Entries in PREPBUFR mnemonic table

level_category = [];

5.3.5.9 obs_bufr_var

The “obs_bufr var” entry is an array of strings containing BUFR variable names to be retained or derived.
This replaces the “obs_grib_code” setting from earlier versions of MET. Run PB2NC on your data with the
“-index” command line option to see the list of available observation variables.

Observation variables that can be derived begin with “D_":
D_DPT for Dew point Temperature in K
D_WDIR for Wind Direction
D_WIND for Wind Speed in m/s
D_RH for Relative Humidity in %
D_MIXR for Humidity Mixing Ratio in kg/kg
D _PRMSL for Pressure Reduced to Mean Sea Level in Pa

obs_bufr_var = ["QOB", "TOB"”, "zOB", "UOB", "VOB" 7;

5.3.5.10 obs_bufr_map

Mapping of input BUFR variable names to output variables names. The default PREPBUFR map,
obs_prepbufr map, is appended to this map. Users may choose to rename BUFR variables to match the
naming convention of the forecast the observation is used to verify.

obs_bufr_map = [];

94 Chapter 5. Configuration File Overview

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

MET User’s Guide, version 12.0.0-betal

5.3.5.11 obs_prepbufr_map

Default mapping for PREPBUFR. Replace input BUFR variable names with GRIB abbreviations in the output.
This default map is appended to obs_bufr map. This should not typically be overridden. This default
mapping provides backward-compatibility for earlier versions of MET which wrote GRIB abbreviations to
the output.

obs_prepbufr_map = [

key = "POB"; val = "PRES"; 3},
key = "QOB"; val = "SPFH"; 3},
key = "TOB"; val = "TMP"; 3},
key = "ZOB"; val = "HGT"; },
key = "UOB"; val = "UGRD"; 3,
key = "VOB"; val = "VGRD"; 1},

key = "D_DPT"; val = "DPT"; 3,
key = "D_WDIR"; wval = "WDIR"; 3},
key = "D_WIND"; wval = "WIND"; 3},
key = "D_RH"; val = "RH"; T,
key = "D_MIXR"; wval = "MIXR"; 1},
key = "D_PRMSL"; val = "PRMSL"; }

e e e e T e W e W e W e W s W e W e W

5.3.5.12 quality_mark_thresh

The “quality_mark thresh” entry specifies the maximum quality mark value to be retained. Observations
with a quality mark LESS THAN OR EQUAL TO this threshold will be retained, while observations with a
quality mark GREATER THAN this threshold will be discarded.

See Code table for observation quality markers

quality_mark_thresh = 2;

5.3.5.13 event_stack flag

The “event_stack flag” entry is set to “TOP” or “BOTTOM?” to specify whether observations should be drawn
from the top of the event stack (most quality controlled) or the bottom of the event stack (most raw).

event_stack_flag = TOP;

5.3. Settings specific to individual tools 95

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_7.htm

MET User’s Guide, version 12.0.0-betal

5.3.6 SeriesAnalysisConfig default

5.3.6.1 block_size

Computation may be memory intensive, especially for large grids. The “block_size” entry sets the number of
grid points to be processed concurrently (i.e. in one pass through a time series). Smaller values require less
memory but increase the number of passes through the data. If set less than or equal to 0, it is automatically
reset to the number of grid points, and they are all processed concurrently.

block_size = 1024;

5.3.6.2 vld_thresh

Ratio of valid matched pairs to total length of series for a grid point. If valid threshold is exceeded at that
grid point the statistics are computed and stored. If not, a bad data flag is stored. The default setting requires
all data in the series to be valid.

vld_thresh = 1.0;

5.3.6.3 output_stats

Statistical output types need to be specified explicitly. Refer to User’s Guide for available output types. To
keep output file size reasonable, it is recommended to process a few output types at a time, especially if the
grid is large.

output_stats = {

fho = [1;
cte = [1;
cts = [1;
mctc = [];
mcts = [];
cnt = ["RMSE”, "FBAR”, "OBAR" I;
sl112 = [];
pct = [1;
pstd = [1;
pjc = [1;
prc = [1;
}
96 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

5.3.7 STATAnalysisConfig_default

5.3.7.1 jobs

The “jobs” entry is an array of STAT-Analysis jobs to be performed. Each element in the array contains the
specifications for a single analysis job to be performed. The format for an analysis job is as follows:

-job job_name
OPTIONAL ARGS

Where “job_name” is set to one of the following:
* “filter”

To filter out the STAT or TCMPR lines matching the job filtering criteria specified below and using
the optional arguments below. The output STAT lines are written to the file specified using the “
dump row” argument. Required Args: -dump_row

e “summary”

To compute summary information for a set of statistics. The summary output includes the mean, stan-
dard deviation, percentiles (Oth, 10th, 25th, 50th, 75th, 90th, and 100th), range, and inter-quartile
range. Also included are columns summarizing the computation of WMO mean values. Both un-
weighted and weighted mean values are reported, and they are computed using three types of logic:

— simple arithmetic mean (default)
— square root of the mean of the statistic squared (applied to columns listed in “wmo_sqrt_stats”)

— apply fisher transform (applied to columns listed in “wmo_fisher stats”)

The columns of data to be summarized are specified in one of two ways:
* Specify the -line_type option once and specify one or more column names.

* Format the -column option as LINE_TYPE:COLUMN.

5.3. Settings specific to individual tools 97

MET User’s Guide, version 12.0.0-betal

Use the -derive job command option to automatically derive statistics on the fly from input
contingency tables and partial sums.

Use the -column_union TRUE/FALSE job command option to compute summary statistics across
the union of input columns rather than processing them separately.

For TCStat, the “-column” argument may be set to:

* “TRACK” for track, along-track, and cross-track errors.

* “WIND?” for all wind radius errors.

* “TT” for track and maximum wind intensity errors.

* “AC” for along-track and cross-track errors.

* “XY” for x-track and y-track errors.

* “col” for a specific column name.

* “coll-col2” for a difference of two columns.

* “ABS(col or coll-col2)” for the absolute value.
Required Args: -line_type, -column

Optional Args:

-by column_name to specify case information
-out_alpha to override default alpha value of 0.05
-derive to derive statistics on the fly
-column_union to summarize multiple columns

“aggregate”

To aggregate the STAT data for the STAT line type specified using the “-line type” argument. The
output of the job will be in the same format as the input line type specified. The following line types
may be aggregated:

-line_type FHO, CTC, MCTC,
SL1L2, SAL1L2, VL1L2, VAL1L2,
PCT, NBRCNT, NBRCTC, GRAD,
ISC, ECNT, RPS, RHIST, PHIST, RELP, SSVAR

Required Args: -line_type

“aggregate stat”

To aggregate the STAT data for the STAT line type specified using the “-line_type” argument. The output
of the job will be the line type specified using the “-out _line type” argument. The valid combinations
of “-line_type” and “-out_line type” are listed below.

98

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

-line_type FHO, CTC, -out_line_type CTS, ECLV
-line_type MCTC -out_line_type MCTS
-line_type SL1L2, SAL1L2, -out_line_type CNT
-line_type VL1L2 -out_line_type VCNT
-line_type VL1L2, VAL1L2, -out_line_type WDIR (wind direction)
-line_type PCT, -out_line_type PSTD, PJC, PRC, ECLV
-line_type NBRCTC, -out_line_type NBRCTS
-line_type ORANK, -out_line_type ECNT, RPS, RHIST, PHIST,
RELP, SSVAR
-line_type MPR, -out_line_type FHO, CTC, CTS,
MCTC, MCTS, CNT,
SL1L2, SALIL2,
VL1L2, VCNT,
PCT, PSTD, PJC, PRC, ECLV,
WDIR (wind direction)

Required Args: -line_type, -out_line type
Additional Required Args for -line_type MPR:

-out_thresh or -out_fcst_thresh and -out_obs_thresh
When -out_line_type FHO, CTC, CTS, MCTC, MCTS,
PCT, PSTD, PJC, PRC

Additional Optional Args for -line_type MPR:

-mask_grid, -mask_poly, -mask_sid

-out_thresh or -out_fcst_thresh and -out_obs_thresh
-out_cnt_logic

-out_wind_thresh or -out_fcst_wind_thresh and
-out_obs_wind_thresh

-out_wind_logic

When -out_line_type WDIR

Additional Optional Arg for:

-line_type ORANK -out_line_type PHIST, SSVAR ...
-out_bin_size

Additional Optional Args for:

-out_line_type ECLV ..
-out_eclv_points

* “ss_index”

The skill score index job can be configured to compute a weighted average of skill scores derived from
a configurable set of variables, levels, lead times, and statistics. The skill score index is computed using

5.3. Settings specific to individual tools 99

MET User’s Guide, version 12.0.0-betal

two models, a forecast model and a reference model. For each statistic in the index, a skill score is
computed as:

SS =1 - (S[model]*S[model])/(S[reference]*S[reference])
Where S is the statistic.

Next, a weighted average is computed over all the skill scores.
Lastly, an index value is computed as:

Index = sqrt(1/(1-SS[avg]))

Where SS[avg] is the weighted average of skill scores.

Required Args:

Exactly 2 entries for -model, the forecast model and reference
For each term of the index:

-fcst_var, -fcst_lev, -fcst_lead, -line_type, -column, -weight
Where -line_type is CNT or CTS and -column is the statistic.
Optionally, specify other filters for each term, -fcst_thresh.

“go_index”

The GO Index is a special case of the skill score index consisting of a predefined set of variables, levels,
lead times, statistics, and weights.

For lead times of 12, 24, 36, and 48 hours, it contains RMSE for:

- Wind Speed at the surface(b), 850(a), 400(a), 250(a) mb
- Dew point Temperature at the surface(b), 850(b), 700(b), 400(b) mB
- Temperature at the surface(b), 400(a) mB
Height at 400(a) mB
- Sea Level Pressure(b)
Where (a) means weights of 4, 3, 2, 1 for the lead times, and
(b) means weights of 8, 6, 4, 2 for the lead times.

Required Args: None

“ramp”

The ramp job operates on a time-series of forecast and observed values and is analogous to the RIRW
(Rapid Intensification and Weakening) job supported by the tc_stat tool. The amount of change from
one time to the next is computed for forecast and observed values. Those changes are thresholded to
define events which are used to populate a 2x2 contingency table.

Required Args:

100

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

-ramp_thresh (-ramp_thresh_fcst or -ramp_thresh_obs)
For DYDT, threshold for the amount of change required to
define an event.
For SWING, threshold the slope.
-swing_width val
Required for the swinging door algorithm width.

Optional Args:

-ramp_type str
Overrides the default ramp definition algorithm to be used.
May be set to DYDT (default) or SWING for the swinging door
algorithm.

-line_type str
Overrides the default input line type, MPR.

-out_line_type str
Overrides the default output line types of CTC and CTS.

Set to CTC,CTS,MPR for all possible output types.

-column fcst_column,obs_column
Overrides the default forecast and observation columns
to be used, FCST and OBS.

-ramp_time HH[MMSS] (-ramp_time_fcst or -ramp_time_obs)
Overrides the default ramp time interval, 1 hour.

-ramp_exact true/false (-ramp_exact_fcst or -ramp_exact_obs)
Defines ramps using an exact change (true, default) or maximum
change in the time window (false).

-ramp_window width in HH[MMSS] format

-ramp_window beg end in HH[MMSS] format
Defines a search time window when attempting to convert misses
to hits and false alarms to correct negatives. Use 1 argument
to define a symmetric time window or 2 for an asymmetric
window. Default window is @ @, requiring an exact match.

Job command FILTERING options to further refine the STAT data:

Each optional argument may be used in the job specification multiple times unless otherwise indicated.
When multiple optional arguments of the same type are indicated, the analysis will be performed over

their union:

"-model name"
"-fcst_lead HHMMSS"
"-obs_lead HHMMSS"

"-fcst_valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_valid_end YYYYMMDD[_HH[MMSS]]"” (use once)
"-obs_valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-obs_valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_init_beg YYYYMMDD[_HH[MMSS]]" (use once)

(continues on next page)

5.3.

Settings specific to individual tools

101

MET User’s Guide, version 12.0.0-betal

(continued from previous page)

"-fcst_init_end
"-obs_init_beg
"-obs_init_end
"-fcst_init_hour
"-obs_init_hour

"-obs_valid_hour"”
"-fcst_var
"-obs_var
"-fcst_lev
"-obs_lev
"-obtype
"-vx_mask
"-interp_mthd
"-interp_pnts
"-fcst_thresh
"-obs_thresh
"-cov_thresh
"-thresh_logic

"-alpha
"-line_type
"~-column
"-weight

"-fcst_valid_hour"

YYYYMMDD[_HH[MMSS]1]" (use once)
YYYYMMDD[_HH[MMSS]1"” (use once)
YYYYMMDD[_HH[MMSS]1]" (use once)
HH[MMSS]"
HH[MMSS]"

HH[MMSS]

HH[MMSS]

name"”
name”
name"”
name”
name”
name”
name”
"

£

£

£
UNION,

or, ||

INTERSECTION, and, &&
SYMDIFF, symdiff, =*

n

a
type”
name"”
value”

Job command FILTERING options that may be used only when -line_type has been listed once. These
options take two arguments: the name of the data column to be used and the min, max, or exact value
for that column. If multiple column eq/min/max/str/exc options are listed, the job will be performed
on their intersection:

"-column_min
"-column_max
"-column_eq
"-column_thresh
"-column_str

"-column_str_exc

col_name
col_name
col_name
col_name
col_name

col_name

value” e.g. —column_min BASER 0.02

value”

value”

threshold” e.g. -column_thresh FCST '>273'

string” separate multiple filtering strings
with commas

string” separate multiple filtering strings
with commas

Job command options to DEFINE the analysis job. Unless otherwise noted, these options may only be
used ONCE per analysis job:

"~dump_row

path”

102

Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

"-mask_grid name"
"-mask_poly file”
"-mask_sid file|list" see description of "sid"” entry above

"-out_line_type name”

"-out_thresh value” sets both -out_fcst_thresh and -out_obs_thresh

"-out_fcst_thresh value” multiple for multi-category contingency tables
and probabilistic forecasts

"-out_obs_thresh value” multiple for multi-category contingency tables

"-out_cnt_logic value”

"-out_wind_thresh value”
"-out_fcst_wind_thresh value”
"-out_obs_wind_thresh value”
"-out_wind_logic value"

"-out_bin_size value”

"-out_eclv_points value” see description of "eclv_points"” config file
entry

"-out_alpha value”

"-boot_interval value”
"-boot_rep_prop value”

"-n_boot_rep value”
"-boot_rng value”
"-boot_seed value”
"-hss_ec_value value”
"-rank_corr_flag value”
"-vif_flag value”

For aggregate and aggregate stat job types:

"-out_stat path” to write a .stat output file for the job
including the .stat header columns. Multiple
values for each header column are written as
a comma-separated list.

"-set_hdr col_name value” may be used multiple times to explicity
specify what should be written to the header
columns of the output .stat file.

When using the “-by” job command option, you may reference those columns in the “-set_hdr” job
command options. For example, when computing statistics separately for each station, write the station
ID string to the VX_MASK column of the output .stat output file:

Settings specific to individual tools 103

MET User’s Guide, version 12.0.0-betal

-job aggregate_stat -line_type MPR -out_line_type CNT \

-by OBS_SID -set_hdr VX_MASK OBS_SID -stat_out out.stat

When using mulitple "-by"” options, use "CASE" to reference the full string:
-by FCST_VAR,0BS_SID -set_hdr DESC CASE -stat_out out.stat

jobs = [
"-job filter -line_type SL1L2 -vx_mask DTC165 \
-dump_row job_filter_SL1L2.stat",
"-job summary -line_type CNT -alpha 0.050 -fcst_var TMP \
—dump_row job_summary_ME.stat -column ME",
"-job aggregate -line_type SL1L2 -vx_mask DTC165 -vx_mask DTC166 \

-fcst_var TMP -dump_row job_aggregate_SL1L2_dump.stat \

-out_stat job_aggregate_SL1L2_out.stat \

-set_hdr VX_MASK CONUS",

"-job aggregate_stat -line_type SL1L2 -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP \

-dump_row job_aggregate_stat_SL1L2_CNT_in.stat"”,

"-job aggregate_stat -line_type MPR -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcat_var TMP -dump_row job_aggregate_stat_MPR_CNT_in.stat",
"-job aggregate -line_type CTC -fcst_thresh <300.000 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP -dump_row job_aggregate_CTC_in.stat”,

"-job aggregate_stat -line_type CTC -out_line_type CTS \

-fcst_thresh <300.000 -vx_mask DTC165 -vx_mask DTC166 -fcst_var TMP \
-dump_row job_aggregate_stat_CTC_CTS_in.stat",

"-job aggregate -line_type MCTC -column_eq N_CAT 4 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var APCP_24 -dump_row job_aggregate_MCTC_in.stat",
"-job aggregate_stat -line_type MCTC -out_line_type MCTS \

-column_eq N_CAT 4 -vx_mask DTC165 -vx_mask DTC166 -fcst_var APCP_24 \
—dump_row job_aggregate_stat_MCTC_MCTS_in.stat”,

"-job aggregate -line_type PCT -vx_mask DTC165 -vx_mask DTC166 \
—dump_row job_aggregate_PCT_in.stat”,

"-job aggregate_stat -line_type PCT -out_line_type PSTD -vx_mask DTC165 \
-vx_mask DTC166 -dump_row job_aggregate_stat_PCT_PSTD_in.stat"”,

"-job aggregate -line_type ISC -fcst_thresh >0.000 -vx_mask TILE_TOT \
-fcst_var APCP_12 -dump_row job_aggregate_ISC_in.stat",

"-job aggregate -line_type RHIST -obtype MC_PCP -vx_mask HUC4_1605 \
-vx_mask HUC4_1803 -dump_row job_aggregate_RHIST_in.stat"”,

"-job aggregate -line_type SSVAR -obtype MC_PCP -vx_mask HUC4_1605 \

-vx_mask HUC4_1803 -dump_row job_aggregate_SSVAR_in.stat"”,
"-job aggregate_stat -line_type ORANK -out_line_type RHIST -obtype ADPSFC \
-vx_mask HUC4_1605 -vx_mask HUC4_1803 \
—dump_row job_aggregate_stat_ORANK_RHIST_in.stat”
1;

List of statistics by the logic that should be applied when computing their WMO mean value in the summary
job. Each entry is a line type followed by the statistic name. Statistics using the default arithemtic mean
method do not need to be listed.

104 Chapter 5. Configuration File Overview

MET User’s Guide, version 12.0.0-betal

wmo_sqrt_stats
wmo_fisher_stats

L1;
L1;

The “vif flag” entry is a boolean to indicate whether a variance inflation factor should be computed when
aggregating a time series of contingency table counts or partial sums. The VIF is used to adjust the normal
confidence intervals computed for the aggregated statistics.

vif_flag = FALSE;

5.3.8 WaveletStatConfig_default

5.3.8.1 grid_decomp_flag
The “grid_decomp flag” entry specifies how the grid should be decomposed in Wavelet-Stat into dyadic
(27 nx 2" n) tiles:

* “AUTO” to tile the input data using tiles of dimension n by n where n is the largest integer power of 2
less than the smallest dimension of the input data. Center as many tiles as possible with no overlap.

* “TILE” to use the tile definition specified below.

* “PAD” to pad the input data out to the nearest integer power of 2.

grid_decomp_flag = AUTO;

5.3.8.2 tile
The “tile” entry is a dictionary that specifies how tiles should be defined in Wavelet-Stat when the
“grid_decomp flag” is set to “TILE”:

* The “width” entry specifies the dimension for all tiles and must be an integer power of 2.

* The “location” entry is an array of dictionaries where each element consists of an “x_11” and “y_11” entry
specifying the lower-left (x,y) coordinates of the tile.

tile = {
width = 9;
location = [
{
x_11 = 9;
y_11 = 0;
}
1;
}

5.3. Settings specific to individual tools 105

MET User’s Guide, version 12.0.0-betal

5.3.8.3 wavelet
The “wavelet” entry is a dictionary in Wavelet-Stat that specifies how the wavelet decomposition should be
performed:

* The “type” entry specifies which wavelet should be used.

* The “member” entry specifies the wavelet shape. See: Discrete Wavelet Transforms (DWT) initializa-
tion

* Valid combinations of the two are listed below:
— “HAAR” for Haar wavelet (member = 2)
- “HAAR_CNTR” for Centered-Haar wavelet (member = 2)
— “DAUB” for Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16, 18, 20)
- “DAUB_CNTR” for Centered-Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16, 18, 20)

— “BSPLINE” for Bspline wavelet (member = 103, 105, 202, 204, 206, 208, 301, 303, 305, 307,
309)

— “BSPLINE_CNTR” for Centered-Bspline wavelet (member = 103, 105, 202, 204, 206, 208, 301,
303, 305, 307, 309)

wavelet = {

type
member

HAAR;
2 .

)

5.3.8.4 obs_raw_wvlt_object_plots

7 [13

The “obs_raw_plot”, “wvlt_plot”, and “object plot” entries are dictionaries similar to the “fcst raw_plot”
described in the “Settings common to multiple tools” section.

5.3.9 WWMCARegridConfig_default
5.3.9.1 to_grid

Please see the description of the “to_grid” entry in the “regrid” dictionary above.

106 Chapter 5. Configuration File Overview

https://www.gnu.org/software/gsl/doc/html/dwt.html#initialization
https://www.gnu.org/software/gsl/doc/html/dwt.html#initialization

MET User’s Guide, version 12.0.0-betal

5.3.9.2 NetCDF output information

Supply the NetCDF output information. For example:

variable_name = "Cloud_Pct";

units = "percent”;

long_name = "cloud cover percent”;
level = "SFC";

nn

variable_name = ;

units =""
nn

long_name = ;

nn

level = ;

5.3.9.3 max_minutes (pixel age)

Maximum pixel age in minutes

max_minutes = 120;

5.3.9.4 swap_endian

The WWMCA pixel age data is stored in binary data files in 4-byte blocks. The swap_endian option indicates
whether the endian-ness of the data should be swapped after reading.

swap_endian = TRUE;

5.3.9.5 write_pixel_age

By default, wwmca_ regrid writes the cloud percent data specified on the command line to the output file.
This option writes the pixel age data, in minutes, to the output file instead.

write_pixel_age = FALSE;

5.3. Settings specific to individual tools 107

MET User’s Guide, version 12.0.0-betal

108 Chapter 5. Configuration File Overview

Chapter 6

Tropical Cyclone Configuration Options

See Section 5 for a description of the configuration file syntax.

6.1 Configuration settings common to multiple tools

6.1.1 storm_id

Specify a comma-separated list of storm id’s to be used:

2-letter basin, 2-digit cyclone number, 4-digit year

An empty list indicates that all should be used.

For example:

storm_id = [“AL092011”];

This may also be set using basin, cyclone, and timing information below.

storm_id = [];

109

MET User’s Guide, version 12.0.0-betal

6.1.2 basin
Specify a comma-separated list of basins to be used. Expected format is a 2-letter basin identifier. An empty

list indicates that all should be used.

Valid basins: WP, 10, SH, CP, EP, AL, SL

For example:

basin = [“AL”, “EP”];

basin = [1;

6.1.3 cyclone

Specify a comma-separated list of cyclone numbers (01-99) to be used. An empty list indicates that all
should be used.

For example:

cyclone = [“017, “02”, “03” 1;

cyclone = [];

6.1.4 storm_name

Specify a comma-separated list of storm names to be used. An empty list indicates that all should be used.

For example:

storm_name = [“KATRINA”];

110 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 12.0.0-betal

storm_name = [];

6.1.5 init beg end inc exc

Specify a model initialization time window in YYYYMMDD[HH[MMSS]] format or provide a list of specific
initialization times to include (inc) or exclude (exc). Tracks whose initial time meets the specified criteria
will be used. An empty string indicates that all times should be used.

In TC-Stat, the -init_beg, -init_end, init_inc and -int_exc job command options can be used to further refine
these selections.

For example:

init_beg = “20100101”;
init_end = “20101231”;
init_inc = [“20101231_06"];
init_exc = [“20101231_00” ;

init_beg = "";
init_end = "";
init_inc = [];
init_exc = [];

6.1.6 valid_beg end inc exc

Specify a model valid time window in YYYYMMDD[HH[MMSS]] format or provide a list of specific valid
times to include (inc) or exclude (exc). If a time window is specified, only tracks for which all points are
contained within the window will be used. If valid times to include or exclude are specified, tracks will be
subset down to the points which meet that criteria. Empty begin/end time strings and empty include/exclude
lists indicate that all valid times should be used.

In TC-Stat, the -valid_beg, -valid_end, valid_inc and -valid_exc job command options can be used to
further refine these selections.

For example:

valid beg = “201001017;
valid_end = “20101231 12”;
valid_inc = [“20101231 06”];
valid_exc = [“20101231_00” J;

6.1. Configuration settings common to multiple tools 111

MET User’s Guide, version 12.0.0-betal

valid_beg = "";
valid_end = "";
valid_inc = [];
valid_exc = [];

6.1.7 init_hour

Specify a comma-separated list of model initialization hours to be used in HH[MMSS] format. An empty list
indicates that all hours should be used.

For example:

init_hour — [“0077’ “0677’ “12”’ “1877];

init_hour = [1;

6.1.8 lead req

Specify the required lead time in HH[MMSS] format. Tracks that contain all of these required times will be
used. If a track has additional lead times, it will be retained. An empty list indicates that no lead times are
required to determine which tracks are to be used; all lead times will be used.

lead_req = [];

6.1.9 version

Indicate the version number for the contents of this configuration file. The value should generally not be
modified.

version = "VN.N";

6.2 Settings specific to individual tools

6.2.1 TCPairsConfig_default
6.2.1.1 model

The “model” entry specifies an array of model names to be verified. If verifying multiple models, choose
descriptive model names (no whitespace) to distinguish between their output.

112 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 12.0.0-betal

For example:

model = [“AHW4”, “AHWI” |;

model = [];

6.2.1.2 init_mask, valid_mask

Specify lat/lon polylines defining masking regions to be applied. Tracks whose initial location falls within
init_mask will be used. Tracks for which all locations fall within valid_mask will be used.

For example:

init mask = “MET_BASE/poly/EAST.poly”;

nn

init_mask ;

nn

valid_mask = ;

6.2.1.3 check_dup

Specify whether the code should check for duplicate ATCF lines when building tracks. Setting this to FALSE
makes the parsing of tracks quicker.

For example:

check dup = FALSE,;

check_dup = FALSE;

6.2. Settings specific to individual tools 113

MET User’s Guide, version 12.0.0-betal

6.2.1.4 interp12

Specify whether special processing should be performed for interpolated model names ending in T (e.g.
AHWI). Search for corresponding tracks whose model name ends in 2’ (e.g. AHW2) and apply the following
logic:

* “NONE” to do nothing.
* “FILL” to create a copy of ‘2’ track and rename it as ‘I’ only when the ‘T track does not already exist.

* “REPLACE” to create a copy of the 2’ track and rename it as ‘T’ in all cases, replacing any ‘T’ tracks that
may already exist.

interp12 = REPLACE;

6.2.1.5 consensus

Specify how consensus forecasts should be defined:

name = consensus model name

members = array of consensus member model names

required = array of TRUE/FALSE for each member if empty, default is FALSE
min_req = minimum number of members required for the consensus

For example:

consensus = [

{
name = “CON1”;
members = [“MOD1”, “MOD2”, “MOD3” |;
required = [TRUE, FALSE, FALSE];
min_req = 2;

by

consensus = [];

114 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 12.0.0-betal

6.2.1.6 lag time

Specify a comma-separated list of forecast lag times to be used in HH[MMSS] format. For each ADECK track
identified, a lagged track will be derived for each entry listed.

For example:

lag time = [“06”, “12”];

lag_time = [1;

6.2.1.7 best

Specify comma-separated lists of CLIPER/SHIFOR baseline forecasts to be derived from the BEST and oper-
ational tracks, as defined by the best_technique and oper_technique settings.

Derived from BEST tracks:
BCLP, BCS5, BCD5, BCLA

Derived from OPER tracks:
OCLP, OCS5, OCD5, OCDT

For example:

best_technique = [“BEST” ;

best_technique = ["BEST" 1;
best_baseline = [];
oper_technique = ["CARQ" 1;
oper_baseline = [];

6.2. Settings specific to individual tools 115

MET User’s Guide, version 12.0.0-betal

6.2.1.8 anly_track

Analysis tracks consist of multiple track points with a lead time of zero for the same storm. An analysis track
may be generated by running model analysis fields through a tracking algorithm. Specify which datasets
should be searched for analysis track data by setting this to NONE, ADECK, BDECK, or BOTH. Use BOTH to
create pairs using two different analysis tracks.

For example:

anly track = BDECK;

anly_track = BDECK;

6.2.1.9 match_points

Specify whether only those track points common to both the ADECK and BDECK tracks should be written
out.

For example:

match_points = FALSE;

match_points = FALSE;

6.2.1.10 dland_file

Specify the NetCDF output of the gen dland tool containing a gridded representation of the minimum dis-
tance to land.

dland_file = "MET_BASE/tc_data/dland_nw_hem_tenth_degree.nc”;

116 Chapter 6. Tropical Cyclone Configuration Options

MET User’s Guide, version 12.0.0-betal

6.2.1.11 watch_warn

Specify watch/warning information. Specify an ASCII file containing watch/warning information to be
used. At each track point, the most severe watch/warning status in effect, if any, will be written to the
output. Also specify a time offset in seconds to be added to each watch/warning time processed. NHC applies
watch/warning information to all track points occurring 4 hours (-14400 second) prior to the watch/warning
time.

watch_warn = {
file_name
time_offset

"MET_BASE/tc_data/wwpts_us.txt";
-14400;

6.2.1.12 basin_map

The basin_map entry defines a mapping of input names to output values. Whenever the basin string matches
“key” in the input ATCF files, it is replaced with “val”. This map can be used to modify basin names to make
them consistent across the ATCF input files.

Many global modeling centers use ATCF basin identifiers based on region (e.g., ‘SP’ for South Pacific Ocean,
etc.), however the best track data provided by the Joint Typhoon Warning Center (JTWC) use just one basin
identifier ‘SH’ for all of the Southern Hemisphere basins. Additionally, some modeling centers may report
basin id